
Middle-Tier Database Caching for e-Business *

Qiong Luo # Sailesh Krishnamurthy ÷ C. Mohan ~ Hamid Pirahesh ~

Honguk Woo ° Bruce G. Lindsay ~ Jeffrey F. Naughton #

• Work done at IBM Almaden Research Center

#Computer Sciences Dept, University of Wisconsin, Madison, WI 53706

• Department of EECS, UC Berkeley, Berkeley, CA 94720

5IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120

°Department of Computer Sciences, University of Texas-Austin, Austin, TX 78712

Contact email: {mohan@almaden.ibm.com, qiongluo@cs.wisc.edu}

ABSTRACT

While scaling up to the enormous and growing Internet

population with unpredictable usage patterns, E-commerce

applications face severe challenges in cost and manageability,

especially for database servers that are deployed as those

applications' backends in a multi-tier configuration. Middle-tier

database caching is one solution to this problem. In this paper, we

present a simple extension to the existing federated features in

DB2 UDB, which enables a regular DB2 instance to become a

DBCache without any application modification. On deployment

of a DBCache at an application server, arbitrary SQL statements

generated from the unchanged application that are intended for a

backend database server, can be answered: at the cache, at the

backend database server, or at both locations in a distributed

manner. The factors that determine the distribution of workload

include the SQL statement type, the cache content, the application

requirement on data freshness, and cost-based optimization at the

cache. We have developed a research prototype of DBCache, and

conducted an extensive set of experiments with an E-Commerce

benchmark to show the benefits of this approach and illustrate

tradeoffs in caching considerations.

1. INTRODUCTION

Various caching techniques have been deployed to increase the

performance of multi-tier web-based applications in response to

the ever-increasing scale of the Internet. Such applications

typically achieve a measure of scalability with application servers

running on multiple (relatively cheaper) systems connecting to a

single database system. This, however, does not solve the

scalability problem for backend database servers. One way to

address this problem is middle-tier database caching (shown as

the gray box in Figure 1), which is deployed in the middle,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM S1GMOD "2002, June 4-6, 2002, Madison, Wisconsin, USA.
Copyright 2002 ACM 1-58113-497-5/02/06...$5.00.

usually at the application server, of a multi-tier web site

infrastructure. Example commercial products include the

Database Cache of Oracle 9i Internet Application Server [19] and

TimesTen's Front-Tier [22].

I-WIP

Figure 1: Middle-Tier Databas Caching

In a multi-tier e-Business infrastructure, middle-tier database

caching is attractive because of improvements to the following

attributes:

(1) Scalability: by distributing query workload from

backend to multiple cheap front-end systems.

(2) Flexibility: with QoS (Quality Of Service) control

where each cache hosts different parts of the backend

data, e.g., the data of Platinum customers is cached

while that of ordinary customers is not.

(3) Availability: by continued service for applications that

depend only on cached tables even if the backend server

is unavailable.

(4) Performance: by potentially responding to locality

patterns in the workload and smoothing out load peaks.

Using a general-purpose industrial-strength DBMS for

middle-tier database caching is especially attractive to e-

Businesses, even though there have been special-purpose

solutions (for example, e-Bay uses its own front-end data cache

[18]). This is mainly due to crucial business requirements such as

reliability, scalability, and manageability. For instance, an

industrial-strength DBMS closely tracks SQL enhancements, and

provides a variety of tools for application development. More

importantly, it provides transactional support, multiple

consistency levels, and efficient recovery services. Finally, an

ideal cache should be transparent to the application that uses it,

and this is difficult to achieve with a special-purpose solution. We

would also like to take advantage of existing replication support

600

in commercial products rather than developing and supporting

home-grown customer solutions.

Many research questions arise in using a full-fledged

database engine for middle-tier database caching, and the answers

to some of them affect the relevance of others. In decreasing

order of importance, these are:

(1) What are the performance bottlenecks in e-Business

applications, or in other words, are we addressing the

right problems by focusing on database caching?

(2) Will performance be acceptable using a commercial

DBMS as a middle-tier data cache? Features such as

transactional semantics, consistency, and recovery come

with some overhead. What features can be dispensed

with in such an environment?

(3) What database caching schemes are suitable for e-

Business applications?

(4) How can a database caching scheme be implemented in

a commercial database engine and how does it perform

under realistic e-Commerce workloads?

(5) What is the impact of running a database server in the

same computer as an application server?

(6) How can we generalize these results to other kinds of

web applications?

Most of these questions remain open, partly due to the

diversity of e-Commerce applications and the complexity of these

systems.

In this paper, we attempt to answer some of these questions.

We start with examining the opportunities in e-Commerce

applications for middle-tier database caching by running an e-

Commerce benchmark on typical web site architectures. We

observe that this benchmark generated a large number of simple

OLTP-style queries, their table accesses were highly skewed on a

few read-dominant tables, and there was a clear separation

between write-dominant tables and read-dominant tables. We find

that web application clones could scale up to heavy loads and this

leaves the backend database server to eventually become the

performance bottleneck in the system.

We then explore how to extend DB2 so that it can be used as

a middle-tier database cache. By extending DB2's federated

features, we turned a DB2 instance into a table level database

cache without changing user applications. The novelty of this

extension is that query plans at the cache may involve both the

cache and the remote server based on cost estimation. Through

experiments, we showed that the overhead of adding a full-

strength DBMS as a middle-tier database cache was insignificant

for e-Commerce workloads. Consequently, middle-tier database

caching improved users response time significantly when the

backend database server was heavily loaded.

The remainder of the paper is organized as follows. In

Section 2, we present our prototype middle-tier database cache

(called DBCache) that leverages existing features of federated

technology in a commercial DBMS engine (DB2). In Section 3,

we describe our overall evaluation methodology with an e-

Commerce benchmark. We then present our experimental results

to show the performance impact of middle-tier database caching

(Section 4). We discuss related work in Section 5 and conclude in

Section 6 with our agenda for future research.

2. TURNING DB2 INTO A DBCACHE

y.. A . .v
Boo • o l o

""A ~ A"'"

. . . . I I • . Networ spate er

~ ~ . .
I Application I Application

Web/App. • Web/App.

Server I Server

I oBCaoh 1 I

l DB Server]

Figure 2: Deploying DBCache

In this section, we will first discuss our design considerations for

the DBCache. Then, we present our cache initialization tool and

our modification to the DB2 engine.

2.1 Design Considerations

The goal of our DBCache is to improve the performance and

scalability of web-based applications by distributing query

processing to the clones of the applications and the underlying

application servers (as in Figure 2). With this goal in mind, we

examine the design requirements, our choice of caching schemes

and existing mechanisms.

2.1.1 Requirements

The first requirement in our design of DBCache is that neither the

application, nor the underlying database schema should have to

change. Firstly, it is desired that the decision to deploy a

DBCache could be made for an arbitrary shrink-wrapped

application by local administrators who do not have access to the

application source code. Secondly, requiring the application to be

cognizant of the DBCache would result in increased complexity,

which is undesirable especially given that cost and maintainability

are already major problems in such environments. We aim to

make it easy for database administrators to set up the cache

database schema, and make the DBCache be transparent to the

applications at run time.

The second requirement is to support reasonable update

601

semantics. Update transactions increase resource contention at

the backend database server as well as the cost for cache

consistency maintenance. Fortunately, E-commerce applications

have high browse-to-buy ratios (read-dominant) and high

tolerance for slightly out-of-date data. This allows us to defer

update propagation to the cache so that it affects on-line

transactions as little as possible. Nevertheless, time limits on the

deferral of cache synchronization are necessary to ensure

reasonable freshness of cached data.

Other requirements include support for failover of incoming

requests to a failed cache node to another cache node, and

dynamic cache node addition and removal. These requirements

are aimed at increasing system availability, manageability, and

incremental changes to capacity.

2.1.2 Choice of Caching Schemes

Given the above requirements, we have the task of choosing a

caching scheme for DBCache. We categorize caching schemes by

the unit of logical data (base or derived) that is cached as follows:

full table, a subset of a table, an intermediate query result, or a

final query result. Although (full) table level caching can be

viewed as a full table scan query, it is the only scheme among the

four that needs only schema information of the cached table. In

contrast, other schemes need to know extra information, such as

the query definitions that correspond to the current cache content.

Therefore, we regard the latter three as query result caching and

consider caching a subset of a table as a special case of an

intermediate query result.

Table level caching has several advantages, with the most

definitive ones being the ability to answer arbitrary queries on

cached tables. However, updates on a table must reach all nodes

that cache this table within a reasonable amount of time. If the

queries are expensive, table level caching does not save any

computation even on a cache hit unless the access paths are

different and/or the cache node is less loaded. In comparison,

query result caching schemes may save expensive computation on

a cache hit. The downside is that they require complex schema

definitions for deployment, complex query rewriting at runtime,

and complex update logic to minimize the number of cache nodes

to synchronize.

The relative performance of these caching schemes is

determined by the characteristics of the data and workload. From

our observations on an E-Commerce benchmark and anecdotal

knowledge of real world e-Businesses, table level caching seems

to be sufficient for these applications. The simple OLTP-type

queries do not need complex intermediate result caching, the

small number of frequently queried tables serve as easy candidates

for table level caching; and the clean separation of read-dominant

tables and write-dominant tables enables selectively caching

tables to reduce update propagation costs.

Accordingly, as the first step of turning DB2 into a middle-

tier data cache, we explore table level caching. Other techniques

such as subset caching and intermediate result caching in the form

of materialized views and final query result caching at a call-level

interface library (such as a JDBC driver) are also on-going work

at IBM but are out of the scope of this paper.

2.1.3 Leveraging Existing Mechanisms

Having decided on table level caching, our problem is the

following: given a web application that cannot be changed, its

backend database schema, and its database workload, generate

the middle-tier cache database schema, and process the SQL

statements utilizing both the cache and the backend database.

In our research prototype, we chose to exploit the existing

DB2 federated features instead of developing a special-purpose

cache manager. One reason is that there is an interesting match

between the existing federated features and the query routing

fimction needed in our cache. Moreover, our approach allows us

to handle distribute queries effectively, where it is possible for the

optimizer to decide what portion of the query should be processed

in the front end and what portion in the backend.

The federated features in DB2 V7 first appeared in IBM's

DataJoiner [10] product. Users can access' IBM and some non-

IBM databases, relational data and non-relational data, as well as

local data or remote data through a single federated DB2 database.

The local database, called afederator, translates a user query over

local aliases for remote data into a distributed query to remote

data sources. When setting up a federated database, users need to

create references in the local database to remote data sources, for

example, a node to identify a remote host, a server for a remote

database on the host, and a nickname for a table or view in the

remote database.

If we use a federator to model a cache, and a remote data

source to be the backend database, we instantly have almost all

the desired query routing capability that we need. We can

therefore design the cache schema to be such that all cached tables

are local tables, and all un-cached tables to be nicknames of the

backend tables. SQL statements submitted to the cache are

compiled as usual; i f a statement involves nicknames, the

federated features of DB2 will estimate the cost of query

execution at the remote server, decide on predicate pushdown

based on the cost estimation, and generate a distributed query

plan.

We aim to keep the data in our DBCache consistent using

standard replication techniques. In our approach, all updates must

happen in the backend, and we use DataPropagator/Relational

(DPropR) [11] to propagate the updates from the backend to the

cache. DPropR is IBM's tool for asynchronous data replication

for relational databases. It consists of three independent

programs: an administration program, a data change capture

program, and an update apply program. The three programs

communicate with one another through a set of tables called

control tables. Users can subscribe replication requests using

GUI tools and the subscription information is stored in the control

tables. Subscriptions can be on a set of tables, possibly with some

selection predicates on tables. Users can also specify the

frequency of update propagation, the minimum size of each data

transfer, among other options.

2.2 Cache Initialization

Implementing table level caching using DB2 consists of two

pieces of work. The first is a tool for initializing the cache. The

602

second is to modify the DB2 engine for query routing. In

addition, for reasons explained below, DPropR also has to be

modified slightly. In this subsection, we describe our tool called

DBCachelnit.

First, the tool collects necessary access authorization

information about the backend database, such as the server name,

the backend database name, and user/password information.

Then, it uses that information to examine the catalog of the

backend database, and further collects information about existing

tables, views, indexes, referential integrity constraints, and so on.

Information about triggers, stored procedures, or user-defined

functions is not collected, as they may be involved with updates,

and in this version, we want all updates to happen only at the

backend.

Ideally, after collecting information about the backend

database, the tool should examine a snapshot of a typical

workload consisting of SQL queries, and decide which tables to

cache. This is a similar problem to that solved by DB2's Index

Advisor, which recommends indexes based on query workload

and available disk space. Therefore, in our tool, we presume that

selection of the cached tables versus uncached tables is provided

a-priori.

Once the tables to cache are determined, the tool then creates

a cache database with the same name as that of the backend

database, unless specified otherwise, and replicates the to-be-

cached tables at the cache database. For each table that is not to

be cached, the tool creates a nickname for it at the cache database,

with the same name as the corresponding table at the backend. In

addition, all views in the backend are recreated in the front-end.

By setting up names of cached tables and nicknames identical to

their counterparts at the backend database, the user application

does not need to change or even be aware of the existence of the

cache database. The DB2 federated query processor will decide

how to process queries.

Finally, for the cached tables, we need to load their initial

data. We also need to set up replication subscriptions for them so

that when the tables in the backend database change, the cached

tables will be brought up to date asynchronously. We use DPropR

for this purpose. When the cached tables are subscribed for update

propagation, and the capture and apply programs start running,

the cached tables are loaded with the data from their counterparts

in the backend database and are updated asynchronously at the

specified frequency.

2.3 Inside DBCache

Inside the DBCache, we achieve query routing by introducing an

automatic passthru, or auto-passthru mechanism based on DB2's

existing passthru mechanism.

The existing mechanism relies on the commands setpassthru

<remote-server-name> and set passthru reset. All statements

submitted after a passthru session has been turned on and before it

has been reset, are sent to the specified remote server directly.
The exception to this is another "set passthru" command. If a

user sets passthru to Server A and then sets passthru to Server B

before resetting passthru, the statements before set passthru B are

sent to Server A directly, and after set passthru B to Server B

directly, implicitly ending the passthru to Server A. When a set

passthru reset is issued later, the passthru mode to B is then

ended. Note that this model is different from a truly nested or a

stack model.

Unlike the existing passthru mechanism, we do not depend

on explicit passthru set and reset commands, as that will require

application modification. Instead, auto-passthru takes place in

the DBCache. Three factors affect where a statement is executed:

(1) statement type, whether it is a UDI (Update/Delete/Insert) or a

query (Select), (2) the current value of the REFRESH AGE

register, which indicates the user's tolerance for out-of-date data,

and (3) any nicknames in the query.

More specifically, if a statement is a UDI, auto-passthru

sends it through to the remote server. I fa statement is a read-only

query, auto-passthru examines the current value of REFRESH

AGE to decide further: if the value is zero, it means that the user

has requested the most-up-to-date data. In this case, auto-passthru

will send the statement through to the backend database server to

ensure the freshness of the data. Otherwise, the auto-passthru

mechanism will allow the query to be executed locally at the

cache. Interestingly, if a query is routed to the local database but

involves nicknames, then the existing federated query processing

takes over: if the query involves any cached tables, then a

distributed query plan is generated; otherwise, a remote-only plan

is chosen. Finally, statements other than a UDI or a query, such as

Data Definition Language (DDL) statements, are directly passed

to the backend database on the assumption that it is what the user

desired. The philosophy here is that the user is in general

unaware of the existence of the cache, and so any schema change

should be effected at the backend database.

For situations where a user is aware of the cache's existence

(such as creation of local indexes), we need a way to capture the

user's intent. An example of a situation where operations are

explicitly targeted at the cache database is the DPropR apply

program. This application propagates data updated on the

backend database to the cache database. Since DpropR reuses the

SQL API, the cache DBMS engine has no way of knowing that

these updates are targeted at the cache database, and so we have to

ensure that auto-passthru does not send them to the backend

database again. Other administration activities over the cache

database face the same problem. We solve this problem by

providing an SQL statement set passthru local. Applications use

this command to indicate that the following statements should be

executed locally even in the DBCache. Like a normal passthru,

this can be turned off with the setpassthru reset command. In our

case we modified the DPropR apply program to let it issue set

passthru local command right after it sets up a connection to the

cache database for applying changes.

3. EVALUATION M E T H O D O L O G Y

There are at least two alternative ways to examine the

performance impact of middle-tier database caching in e-Business

applications. One alternative is to apply our prototype in the field

and perform case studies. Unfortunately, this is seldom viable for

various business reasons. Moreover, with the diversity of these

applications and workloads, it may be difficult to gain insights

603

from case studies. The other alternative is to pursue simulation

studies. The problem there is that it may be extremely difficult to

model the complex running environments of e-Commerce

applications.

Therefore, we chose to pursue a middle-of-the-road approach

to test out our ideas. We used hardware and software components

that are popular in real e-Commerce applications to build our

testing environment. We chose an e-Commerce benchmark called

ECDW (Electronic Commerce Division Workload) to be the test

target application. This benchmark is developed and used

internally by the WebSphere Commerce Server Performance

group at IBM Toronto Lab. It is similar to the TPC-W benchmark

[23], but has more features that are typical in e-Commerce

applications.

We tested the ECDW workload in several typical server-side

configurations. We chose to use production DB2 in all

configurations, instead of using production DB2 for some

configurations and using our DBCache prototype for some other

configurations with a middle-tier database cache. The main

reason was that we wanted to compare the caching scheme results
with the non-caching results without worrying about the effects of

implementation differences. Therefore, for configurations with

middle-tier database caching, we created special database schema

at the middle-tier to simulate the effects of caching. By

"simulating" table level caching using the existing DB2 federated

features, it is sufficient to show how this scheme performs.

Disclaimer: The usage of the ECDW benchmark throughout this

paper is for us to gain insights in an e-Commerce application and

test our ideas. It neither was intended for nor should be in any

way viewed as the best possible performance results for any

specific IBM or non-IBM products.

3.1 Benchmark Description

The ECDW benchmark was designed through close interactions

with a wide range of customers in order to reflect the key
characteristics of real world e-Commerce applications. It

simulates web users accessing an on-line shopping mall. It uses

IBM's WebSphere Commerce Suite (WCS) [13] on the server

side, and Segue Software's SilkPerformer [21] tool on the browser

side. We describe WCS, SilkPerformer, and ECDW itself in
order.

WCS is an integrated solution used by e-commerce sites in

various industries. A sample set of customers are: BuyUSA,

InfinityQS, Mazda's Competition Parts Program, Milwaukee
Electronic Corporation, and IBM's own shoplBM site

(www.ibm.com). It provides services for creating, customizing,

running, and maintaining on-line stores throughout their entire
lifespan of operations. On the database side, it has more than 500

tables, many indexes, constraints, and triggers. There are tools to

create the database schema and load in data. On the application

side, it uses an Enterprise Java Bean (EJB) framework so that

developers can program database accesses without being directly

bound to the underlying database schema. Furthermore, customers

can and do extend the database schema as well as the application,

by creating new columns and tables and new EJBs.

SilkPerformer is a load and performance testing tool for e-
business web applications. It emulates workloads that testers

specify, such as number of concurrent users, testing period, testing

scenarios, and other options. The tool warms up the testing

environment, does the measurement, and finishes with a proper

shutdown process. All the measurements are performed on the

client side; in the normal configuration, no instrumentation is

done at the web server, application server, or backend database

server. The measurement output includes throughput, response

time, user-defined counters, user-defined timers, and other

numbers, both on a running basis and on an aggregation basis.

StoreFront I

Registered U S ~ u ~ s t ~ t e f i n g user

[L o g O n [1 [Register I

Browsing c

Regis tered

I DisplayOrder lnfo I [F i m n A d d r e s s B o o k]

 Buying

Figure 3: Regular Shopping Scenario

The ECDW benchmark uses around 300 tables in the WCS

schema. The database size can be small (10,000 items, 650MB),

medium (30,000 items, 2GB), or large (50,000 items, 3.5GB).

The regular shopping scenario is defined in a SilkPerformer
script, which depends on two variables - user type and shop flow.

The user types are: new registering user (5%), existing registered

user (10%), and guest user (85%). The shop flows are: browsing

(88%), browsing and adding to a shopping cart (5%), browsing

and preparing an order (2%), and browsing and buying (5%).

These ratios were obtained through customer interactions, and

thus attempt to mimic common browse to buy ratios at real

shopping sites.

The benchmark measures web interactions and web

transactions. A web interaction corresponds to a user conducting

a specific operation at a browser that may involve a few mouse

clicks and possibly some user input. For instance, a LogOn web

interaction is one in which a registered user clicks on the "Log

on" link, fills out her information, and clicks on the submit button.

A web transaction corresponds to an HTTP session - a series of

user operations, which includes multiple web interactions.

Figure 3 shows the regular shopping scenario of the

benchmark. Each box represents a web interaction. A web

transaction in the regular shopping scenario consists of the
following sequence of web interactions: 1) Go to the front page of

604

Browser

A

! HTTP

Application

Web/App.

Server

DB Server

Browser [

A

HTTP

i,
Application

Web/App.

Server

Browser [

A

! HTTP

[Ne twork Dispatcher [

Application Application

Web/App. • Web/App.

Server Server

[DB-Server]

A

HTTP

Application

Web/App.

Server

DBCache

] .
DB Server I

DBCache

Single Box

Network Dispatcher]

~ ~ ~
Application I Application

Web/App. Web/App.

Server Server

DBCache DBCache

[DB-Se~er]

Remote DB Clustered Remote DB

Figure 4: Three Non-Caching Server-side Topologies

4) are the following: (1) single box, in which the web/application
~] server and the backend database server are on the same machine;

(2) remote DB, in which these two components are on two

machines; (3) clustered remote DB, in which there are multiple
i HTTP web/application server machines that communicate with the same

• backend database server. The HTTP requests are distributed to
the web application server machines in round-robin fashion
through a network dispatcher or some mechanisms like that.

Clustered DBCache

The two topologies that do have middle-tier caching are
shown in Figure 5. DBCache topology adds a middle-tier
database cache to the Remote DB topology, and Clustered

DBCache adds a middle-tier database cache to each web
application server in the Clustered Remote DB topology. Note
that the single box topology in Figure 4 is essentially a DBCache
topology with a 100% cache hit ratio.

3.3 Test Environment Details

Figure 5: Two Caching Server-side Topologies

the store. 2) If the user is a new registering shopper, register with
the site; if the user is an existing registered shopper, log on to the
site; otherwise (a guest shopper), go to the next step directly. 3)
Browse a few items.. 4) If the current shop flow is not just
browsing, but also preparing an order or buying, loop a few times
adding some browsed products into the shopping cart, and
browsing a few items again. 5) If the current shop flow needs to
prepare an order, open and fill out the address book for a guest
shopper or directly display order information for registered users,
and generate the detailed shipping information for all users. 6) If
the current shop flow is to buy, finish the order.

Since there are four different shop flows in the regular
shopping scenario, a web transaction may end after one of the
following four web interactions (grayed boxes as in Figure 3):
Browse, AddingToShopCart, ShippingDetails, or Order.

3.2 Server-side Topologies

We benchmarked five server-side topologies, two of them with a
middle-tier database cache, and three of them without. The three
topologies that do not have a middle-tier cache (shown in Figure

We used six computers in the tests. Four of them were IBM
Netfinity 3500 server machines with an 800MHz Pentium III CPU
and 1GB memory, and two of them were IBM IntelliStation
workstations with 930 MHz Pentium III CPU and 512MB
memory. The four server machines had Windows 2000 Server
and the two workstations had Windows 2000 Professional. All
machines had 20-30GB disk space. All machines were on a LAN
with a bandwidth of 100Mbits/second.

We installed IBM WebSphere Commerce Suite (WCS) V5.1
on each server system, which includes the IBM HTTP Server
(repackaged Apache), WebSphere Application Server (WAS), and
DB2 V7.1. We also deployed the ECDW store application (JSP
files, HTML files, Java class files, E.IB files, etc.) in the WCS
instance on each sever system, and created the store database with
the large data size (3.5GB) using the scripts and data that come
with the benchmark. On one workstation computer, we installed
SilkPerformer V3.5 to be used as the test driver (web client). On
the other workstation machine, we installed IBM WebSphere
Edge Server V3.6 to be used as a network dispatcher to distribute
HTTP requests to multiple WAS servers.

We configured DB2 as specified by the ECDW benchmark
with appropriate buffer pool and log buffer sizes. To intensify the

605

testing for the database server, we set the think time (waiting time

between web interactions) to be zero in the ECDW client test

driver.

3.4 Database Workload Details

We are especially interested in the characteristics of the database

workload from the application. This WCS-based benchmark is a

canned application. We used DB2's dynamic SQL statement

snapshot tool [12] to capture the SQL execution information on

the database server side. It reports the SQL statement text (with

'? ' representing parameter markers - input variables that are

bound at query run-time as opposed to compile-time), the total

number of executions, total execution time, number of rows read,

and other information.

We examined the SQL statements that were captured through

the snapshot tool. For the 1-user regular shopping workload,

there were 151 distinct query templates (with parameter markers

and literals), consisting of 125 read queries, 14 insert statements,

and 11 update statements. For the 30-user regular shopping

workload, there were 388 distinct query templates, but still the

same 14 inserts and 11 updates as in the 1-user workload. This

was because while all the insertions and updates were issued as

prepared statements with parameter markers, some queries (for
example, checking orders of a particular registered user) were

issued with literals and not parameter markers. As a result, the

different workloads had a fixed numbers of insert and update

templates, but had different numbers of selection templates. This

large and varying number of query templates made it difficult for

us to analyze the SQL query characteristics of the workloads.

Since ordering and registering comprised only a small fraction of

the workload, in later experiments we focused on browsing-only

workloads, which we created by modifying the original regular
shopping workloads.

In a browsing-only scenario, all users are guest shoppers and

all transactions are browsing only. We also examined the SQL

snapshots of 1-user and 30-user browsing-only workloads. The

query templates in the browsing-only workloads were fixed.

There were a total of 47 query templates, with 27 of them having
parameter markers, and the other 20 not. All of them were simple

OLTP style queries, with only 15 of them having joins among two

to four tables and the other 32 being single-table selection queries.

In total, the browsing only workloads involved 51 tables.

The number of executions of these query templates in
browsing-only workload is shown in Figure 6. The top 12 most

accessed query templates all had parameter markers in them. Four

of them were joins and the other eight were selection queries.

Collectively they accessed 15 tables (less than 1/4 of the involved

tables of the workload) and consisted of 88% of the total number
of SQL executions.

Moreover, in regular shopping workloads, we observed that
there was a large degree of overlap between tables with inserts

and updates - of the 11 tables with updates and 14 with inserts

(there was no deletion in the workload), 9 had both inserts and

updates. We observed that there was little overlap between read-
only tables with queries and tables with updates and inserts. Only

two tables (userreg and users) were subject to inserts, updates and

#executions of query templates/xact

5 0

o ~ 4 0 - ~

• ~ 3 0

20

. . . . A . A A

0 ---- ========================

query templates

Figure 6: Number of Executions of Query Templates in

Browsing

selects, only one table (member) was both queried from and
inserted into, and one table (keys) was queried from and updated

to. We also examined if any updates/inserts happened on the

tables that were involved in the top 12 most frequent query

templates. We found that there was only one such table (the table
users accessed by the 6 th mos t frequent query template).

In summary, we observed that e-Commerce workloads had

short query execution time, highly skewed popularity of tables,

and clean separation of read-dominant and write-dominant tables.

These characteristics make middle-tier database caching very

attractive.

4. EXPERIMENTAL RESULTS

First, we compared performance of regular shopping scenarios

with that of browse-only scenarios. Then, we measured the

overhead of adding a middle-tier database cache by using a
database cache with 0% hit rate. Then, we cached tables for the

top 6 most frequent queries at the middle-tier and measured its

performance while varying the workload on the backend database

server. We then explored update propagation cost in the caching

scheme. Finally, we examined the performance of clustered

topologies.

4.1 Comparing Workload Characteristics

We tested the regular shopping scenario in the single box
topology. We varied the number of concurrent users at the

simulator and measured each user executing 100 web transactions.

The backend database was restored after each run so that each run

started with the same database content. The throughput is

reported in terms of average number of web transactions per

second, and the average response time is reported in terms of the
number of seconds per web transaction. We also report the

average response times (in seconds) per web interaction as

TBrowse, TBuy, TOthers, and TOverAll. TBrowse refers to the

time spent in browsing. TBuy includes the time spent in adding

items to shopping carts, filling out address book, displaying order

information, working out shipping details, and ordering. TOthers

refers to the time spent in registered user logging on and new
users registering. TOverAll is the weighted average response time

per web interaction for all types of web interactions, with the
weights being the occurrences of each type of interaction. These

606

numbers are shown in Table 1. We also ran the browsing only

workload on a single box server topology varying the number of

concurrent users as shown in Table 2.

Table 1: Regular Shopping Scenario on Single Box

#users I1 5 10 30
i

#xacts/sec 0.5 0.8 0.8 1.0
i

secs/xact 1.9 6.2 11.2 30.1

TBrowse 0.1 0.5 0.8 3.0

TBuy 1.0 1.9 6.1 5.5

TOthers 0.2 1.0 3.7 3.0

TOverAll 0.2 0.7 1.2 3.2

Table 2: Browsing-only Scenario on Single Box

#users 1 5 10 30

#xacts/sec 1.3 1.6 1.6 1.6
i

secs/xact 2.8 3.1 6.4 19.5

TOverAll 2.1 0.4 0.8 2.5

Not surprisingly, both the throughput and response times (per

web transaction and per web interaction) of the browsing-only

workload improved over those of the regular shopping workload.

Nevertheless, both scenarios followed the same pattern: the

throughput increased slightly from 1 user to 30 users, while the

response time consistently increased proportional to the increase

in the number of users. Since browsing represents the majority of

the total workload (TOverAll in regular shopping scenario follows

closely with the TBrowse value), and browsing-only scenario is

much simpler to test, most of the following experiments are

focused on browsing-only workloads.

4.2 Examining Overhead of Adding a Front

End Cache

Adding a middle-tier database cache at the application server

creates overhead by consuming resources on the application

server machine. This is a common concern, especially when the

middle-tier database cache is a full-strength DBMS and not a

lightweight query processor, so we examine this overhead.

We configured WAS (WebSphere Application Server) on a

server machine to let it use a local DB2 server, and used the

DBCachelnit tool to create a database of all nicknames in the

local DB2 referencing the backend database in a remote DB2 on

another server machine. This makes the local DB2 act as a

middle-tier DBCache with a 0% cache hit rate. We compared the

performance of this dbcacheO configuration and the remote DB

configuration to examine the overhead.

We compare the throughput and web transaction response

time of these configurations for varying number of concurrent

users in Figure 7. The remote DB configuration is shown as

remote, and the database cache with all nicknames dbcacheO. As

expected, dbcache0 was always worse than the remote DB case,

because the backend server was not overloaded. This is because

all the queries at the cache are misses and every query goes

through two database servers. This made the performance of

dbcache0 around one half of the remote DB ease under a light

load (less than 10 users), but when the number of concurrent users

increased to 30, the difference became much less significant. This

shows that although using a full strength DBMS as a middle-tier

database cache adds some overhead, this overhead is insignificant
when the server is fully loaded.

4.3 Examining Server Workload Sharing

In real world scenarios, e-business applications have a large

number of online users, and the load can vary by a factor of 100 in

daily operations [5]. When the backend database server is more

heavily loaded, caching in the front ends is even more important

to improve users' response time. Therefore, we set up a middle-

tier cache database at a WAS machine as the front end and

measured its performance varying the workload on the backend
s e r v e r .

From previous investigation on the browse-only workloads,

we observed that the accesses of different query templates were

highly skewed. We selected the top 8 most used query templates

and cached in the local database the eight tables that they

accessed. Queries on these eight tables consisted of 71% of the

database queries in the browse-only scenario. In the later

experiments, we also used this cache configuration for all

DBCache cases.

The setup for varying the backend server workload in the

80

~,.~ 20 .

0

#users 1 5 10 30 100

[D remote • dbcacheO]

2

1.5

1
2 ~
f . ~ o.s

0

#users 1 5 10 30 100

0 remote • dbcacheO }
J

Figure 7: Overhead of Adding a Front End Cache with a 0% Cache Hit Rate

607

n I . Extra Work load
I t~rowser ~ . I ' - l ' ~ F •

I Appl ica t ion [
10-user load I

~ ~ W e b / A p p . I i! :: ~ -
I B rowse r ~1 IP Server ["

H T T P = =

Appl ica t ion

W e b / A p p .

Server

B a c k e n d

D B Serve r

Figure 8: Setup for Varying Server Workload

'i ==

o =
==

Users Connecting to the Front End

10

8
6
4

2

0

10 users 50 users 100 users

Extra Workload at Backend

Users Connecting to the Back End

E] w / d b c a c h e O w / o dbcache

• 100

'i /-- ~ 6o
8 40 ~ ' ~
~. 20

10 users 50 users 100 users

Extra Workload at Backend

Figure 9: Caching Effect with Varying Server Workload

DBCache topology is shown in Figure 8. The goal is to vary the

backend server workload and examine how caching can help. We

achieved this by sending an extra browsing only workload to the

backend directly. The setup for varying the backend server

workload in the Remote topology is similar except that there is no

middle-tier dbcache at the front end. Both the front-end response

time and the backend response time were measured at the test

driver (web client side). We compare the response times in the

dbcache case with those in the remote case.

In Figure 9, we see that when the extra workload on the

backend database was 10 or 50 users, adding a cache at the

application server did not help. However, when the number of

extra users on the backend reached 100, caching started to make a

difference. The front-end response time was improved because

the cache sheltered its users from the overloaded backend

database server, and the backend response time was improved

because the cache shared its server workload. Due to resource

constraints, we were not able to test more than 100 users, but we

believe that this caching benefit will be even more significant

when the backend database server is more heavily loaded.

4.4 Examining Update Propagation Cost

This experiment was to examine how much performance impact

the asynchronous update propagation process had on the on-line

query performance. We set up DPropR on the backend database

server and the WAS server with a DBCache. The capture program

was running on the backend database server, and the apply

program on the cache database. The cache database still had the

eight tables cached and the other tables uncached. Since the

cached users table was updated frequently in a regular-shopping

scenario to update the lastSession field with the timestamp of the

last log-on session for each registered user, we subscribed the

users table for update propagation with the minimum frequency of

1 minute.

We still used the same extra workloads on the backend as in

the previous experiment, and examined the update propagation

cost in this setting. Besides sending a 10-user browsing-only

workload to the front end WAS server with a DBCache and

sending extra browsing-only workload to the backend database

server with a WAS clone directly, we also sent an update workload

on the lastSession field of the users table to the backend database

server (shown in Figure 10). This lastSession field was updated

with the current timestamp to simulate the actual update in a

regular-shopping scenario when a registered user logged on. The

update workload was executed without any waiting time between

consecutive updates. The update throughput was measured to be

40-60 updates/second depending on the server load. We

measured the performance impact of update propagation on the

browsing workloads by measuring the response times at the

simulated browsers.

We compared the with-dpropr-running case with the without-

dpropr-running case when the same updater was updating the

backend database server. Figure 11 shows that in general

asynchronous update propagation did not add significant overhead

to the response time, although the capture program on the

backend database server incurred around 20% overhead to the

query workload when the extra load on the server was 100 users.

The overhead caused by the apply program was low because the

608

.t~rowser~ t'4''" HTTP Ex~a.Workload ~ Wei:

/ Application /] Apply J Se
10-user Loadl t ,

~. Ld ~ 7 Web/App [ladle-ier L Bac
I t~rowser r~ r . " ! DB~aehe ,-

- - / Server [~] " DB :
HTTP =

[Updater] Update Workload

Test Driver FE

Applicat ion

Web/App.

Server

Backend

Server

T
BE

Figure 10: Setup of DPropR with Varying Server Workload

O

Users Connecting to the Front End

Ow/o dpropr O w l dpropr

10

10 users 50 users 100 users

Extra Workload at Backend

Users Connecting to the Backend

Ow/o dpropr O w l dpropr

Q

~, loo

=~ 50

o ~ 0

10 users 50 users 100 users

Extra Workload at Backend

Figure 11: Update Propagation Cost with Varying Server Workload

apply program batched up updates for each propagation interval
(1 minute), and each experiment lasted 20-30 minutes. The

overhead caused by the capture program was reading the log and,

when a log record relating to a subscribed table is found,
performing an SQL insert into the changed data table (one of the
control tables used by DPropR).

4.5 Clustering Web Application Servers

Finally, we compared the performance on clustered topologies (2-

WAS and 3-WAS) with that on corresponding non-clustered

topologies (1-WAS) to see how they were scaling with the number
of WAS machines. Figure 12 shows the throughput and response

times of a 30-user browsing-only workload when the backend

database is heavily loaded under a CPU hog program.

When the number of WAS machines increased, both
clustered topologies improved the user response time, but

clustered dbcache improved the throughput more than clustered

remote DB topology. This implies that (1) For the clustered

remote DB topology, simply increasing the number of application
servers does not scale up the entire system under a heavy load,

and causes the backend database server to become the bottleneck.
(2) Clustered DBCache topology shares the backend database

server workload, and it can scale up throughput better by adding

more cache nodes. We are interested in adding more WAS nodes

to further examine the scale-up effect for clustered topologies.

A

¢J

X

g

=o

I - -

1 -

0

1-WAS 2-WAS 3-WAS

l ¢ remote-- , l - -dboachel

30

® 25

E ~o

0

1-WAS 2-WAS 3-WAS

¢ remote --.m--dbcache [
]

Figure 12: Varying Number of WAS machines

609

4.6 Discussion

By running the benchmark and its modifications in various

configurations, we show that both application servers and

backend database servers can be bottlenecks under different

workloads. Application servers are mostly CPU intensive under

e-Commerce workloads, but they can scale to a large number of

users by replicating (together with replicated applications) to

multiple nodes. In general, single node commercial database

servers consume much less CPU resource than application

servers, but they can also become a bottleneck under heavy loads.

One approach to scaling the backend database when it is a

bottleneck is to use a more expensive SMP/MPP system - while

this approach helps increase the scalability of the system, it does

not address the performance, flexibility and availability concerns.

It is also more expensive compared to the DBCache approach

where cheaper and less reliable machines can be used to run the

application servers with DBCache.

Due to resource constraints, we were not able to test more

than 100 simulated users, more than 3 WCS nodes, or separating

the application servers from the DB server by a wide area

network. However, from the trends shown in the experiments, we

believe that middle-tier database caching on the application

servers can improve server scalability. If these data caches are

deployed with edge servers, they can also bring content closer to

users and improve performance in terms of response time.

Performance can also be enhanced when the application server

and the database are geographically separated by a wide-area

network, as is common for many customers. Finally, by

continuing to provide limited service based on cached data, this

approach also increases availability of the web site. Many issues

relating to database caching in application and edge servers are

discussed in [18].

5. RELATED W O R K

Products most relevant to ours are the Database Cache of Oracle's

9i IAS (Internet Application Server) [19] and TimesTen's Front-

Tier [22]. Oracle's Database Cache caches full tables using a full-

fledged Oracle DBMS, and relies on replication tools to

asynchronously propagate updates from the backend database to

the cache. TimesTen's Front-Tier is a caching product based on

their in-memory database technology. One advanced feature of

Front-Tier is that users can create cache views at the Front-Tier,

which can be a subset of tables and join views. Unlike Oracle and

our DBCache, updates are performed at the Front-Tier cache, and

propagated to the backend database at transaction commit time (or

the propagation to the backend can also be done asynchronously).

A major difference between our work and these existing

products is that our cache has distributed query processing

capability. This is because we leverage DB2's federated features

so that query plans at the cache can involve both sites in a cost-

based manner [20]. In contrast, Oracle's query routing happens at

the OCI layer before a statement reaches the cache database.

Consequently, the statement is either entirely executed at the

backend database or entirely at the cache database. Similarly,

applications using TimesTen's Front-Tier must be aware of the

cache content and issue queries on cached content and on the

backend database separately.

Caching for data-intensive web sites have been recently

studied in [2], [3], [7], [16], [17], and [24]. They focused on

caching dynamically generated web pages, HTML fragments,

XML fragments, or query results from outside of a DBMS (except

[24] investigated using the backend database to cache

intermediate query results as materialized views). Our focus is to

engineer a full-strength DBMS into a middle-tier database cache

from inside out, and improve availability and performance for

applications without making any changes to them.

Finally, previous work on materialized views [9] and caching

for heterogeneous systems ([1], [4]), client-server database

systems ([6], [14]), and OLAP systems [8] are relevant to our

work. Most of the techniques proposed in these papers are

suitable for specific types of applications, for example, keyword

based search, mobile navigation, or computation intensive OLAP

queries. Compared to these applications, e-Commerce

applications are usually simple OLTP-style queries but require

reliability, scalability, and maintainability. Consequently, we

choose simple table level caching using an industrial strength

DBMS.

6. CONCLUSIONS AND FUTURE W O R K

We have examined the opportunities in e-Commerce applications

for middle-tier database caching by running an e-Commerce

benchmark on typical web site architectures. We observed that e-

Commerce applications generated a large number of simple

OLTP-style queries, their table accesses are highly skewed on a

few read-dominant tables, and there was a clear separation

between write-dominant tables and read-dominant tables. We
demonstrated that web application clones could scale up to heavy

loads and the backend database server eventually becomes the

performance bottleneck in the system.

We have presented our prototype implementation of a

middle-tier database cache. By extending DB2's federated

features, we turned a DB2 instance into a DBCache without

changing user applications. The novelty of this extension is that

query plans at the cache may involve both the cache and the

remote server based on cost estimation. Through experiments, we

showed that the overhead of adding a full-strength DBMS as a

middle-tier database cache was insignificant for e-Commerce

workloads. Consequently, middle-tier database caching improved

users response time significantly when the backend database

server was heavily loaded.

Future work includes extending the DBCache prototype to

handle special SQL data types, statements, and user defined

functions. We are also investigating alternatives for handling

updates. Usability enhancements, such as cache performance

monitoring, and dynamic identification of candidate tables for

caching are important directions for us to pursue.

610

7. ACKNOWLEDGEMENTS

We would like to thank Mehmet Altinel for his helpfial
suggestions on the paper, Larry Brown for setting up and testing
the prototype on NT, and Kiran Mehta and Dan Wolfson for
discussions about our architecture. We would also like to thank
Satya Dash, Joseph Fung, Jim Kleewein, Peter Schwarz, and
David Tolleson for answering our questions on the ECDW
benchmark, DB2 federated features, and DPropR.

8. REFERENCES

[1] Sibel Adali, K. Selquk Candan, Yannis Papakonstantinou,
and V. S. Subrahmanian. Query Caching and Optimization
in Distributed Mediator Systems. Proc. ACM SIGMOD
International Conference on Management of Data, Montreal,
Quebec, Canada, June 1996.

[2] K. Selguk Candan, Wen-Syan Li, Qiong Luo, Wang-Pin
Hsiung, and Divyakant Agrawal. Enabling Dynamic Content
Caching for Database-Driven Web Sites. Proc. ACM
SIGMOD International Conference on Management of Data,
Santa Barbara, May 2001.

[3] Jim Challenger, Arun Iyengar, and Paul Dantzig. A Scalable
System for Consistently Caching Dynamic Web Data. IEEE
INFOCOM 1999.

[4] Boris Chidlovskii, Claudia Roncancio, and Marie-Luise
Schneider. Cache Mechanism for Heterogeneous Web
Querying. Proc. 8th World Wide Web Conferences
(WWW8), Toronto, Canada, 1999.

[5] Mike Conner, George Copeland, and Greg Flurry. Scaling
Up e-Business Applications with Caching.
DeveloperToolbox Technical Magazine, August 2000.
http://service2.boulder.ibm.com/devtools/newsO8OO/art7.htm

[6] Shaul Dar, Michael J. Franklin, Bj6rn b6r J6nsson, and
Divesh Srivastava, Michael Tan. Data Caching and
Replacement. Proc. Very Large Data Bases Conference,
Bombay, India, 1996.

[7] Anindaya Datta, Kaushik Dutta, Helen M. Thomas, Debra E.
VanderMeer, Krithi Ramamritham, and Dan Fishman. A
Comparative Study of Alternative Middle Tier Caching
Solutions to Support Dynamic Web Content Acceleration.
Proc. Very Large Data Bases Conference, Roma, Italy, 2001.

[8] Prasad Deshpande, Karthikeyan Ramasamy, Amit Shukla,
and Jeffrey F. Naughton. Caching Multidimensional Queries
Using Chunks. Proc. ACM SIGMOD International
Conference on Management of Data, Seattle, 1998.

[9] Ashish Gupta and Inderpal Singh Mumick (Editors).
Materialized Views: Techniques, Implementations, and
Applications. The MIT Press, 1999.

[10] IBM. DB2 DataJoiner. http://www-
4.ibm. com/soffware/data/dataj oiner/

[11] IBM.DB2 DataPropagator. http://www-
4.ibm.com/soflware/data/DPropR/

[12] IBM. DB2 System Monitor Guide and Reference.
http://www-4.ibm.com/cgi-
bin/db2www/data/db2/udb/winos2unix/support/document.d2
w/report?fn=db2v7 f0frrn3 toc.htm

[13]IBM. WebSphere Commerce Suite. http://www-
4.ibm.com/software/webservers/cornmerce/wcs51.html

[14] Arthur M. Keller and Julie Basu. A Predicate-based Caching
Scheme for Client-Server Database Architectures. The
VLDB Journal 5(1): 35-47 (1996).

[15] Donald Kossmann, Michael J. Franklin, and Gerhard Drasch.
Cache Investment: Integrating Query Optimization and
Distributed Data Placement. ACM Transactions on Database

• Systems (TODS), December 2000

[16] Alexandros Labfinidis and Nick Roussopoulos. WebView
Materialization. ACM SIGMOD International Conference on
Management of Data, Dallas, Texas, 2000.

[17] Qiong Luo and Jeffrey F. Naughton. Form-Based Proxy
Caching for Database-Backed Web Sites. Proc. Very Large
Data Bases Conference, Roma, Italy, 2001.

[18] C. Mohan. Caching Technologies for Web Applications.
Tutorial at Very Large Data Bases Conference, Roma, Italy,
2001.
http ://www. almaden, ibm. com/u/mohan/Caching__VLDB 2001
.pdf

[19] Oracle Corporation. Oracle Internet Application Server
Documentation Library.
http://technet.oracle.corn/docs/products/ias/doc_index.htm

[20] Mary Tork Roth, Fatrna Ozcan, Laura M. Haas: Cost Models
DO Matter: Providing Cost Information for Diverse Data
Sources in a Federated System. Proc. Very Large Data
Bases, Edinburgh, Scotland, 1999

[21] Segue Software, Inc. SilkPerformer.
http://www.segue.com/html/s_solutions/s_performer/s_perfo
rmer.htm

[22] TimesTen. TimesTen Front-Tier.
http://www.timesten.com/products/fronttier/index.htrnl

[23] Transaction Processing Performance Council. TPC-W
Benchmark. http://www.tpc.org/tpcw/de fault.asp

[24] Khaled Yagoub, Daniela Florescu, Val6rie Issarny, and
Patrick Valduriez. Building and Customizing Data-Intensive
Web Sites Using Weave. Proc. Very Large Data Bases
Conference, Cairo, Egypt, 2000.

611

