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Abstract. For a genus-1 1-bridge knot in S3, that is, a (1, 1)-knot, a middle tunnel is
a tunnel that is not an upper or lower tunnel for some (1, 1)-position. Most torus knots have
a middle tunnel, and non-torus-knot examples were obtained by Goda, Hayashi, and Ishihara.
We generalize their construction and calculate the slope invariants for the resulting middle
tunnels. In particular, we obtain the slope sequence of the original example of Goda, Hayashi,
and Ishihara.

Introduction. Genus-2 Heegaard splittings of the exteriors of knots in S3 have been a
topic of considerable interest for several decades. They form a class large enough to exhibit
rich and interesting geometric behavior, but restricted enough to be tractable. Traditionally
such splittings are discussed using the language of knot tunnels, which we will use from now
on.

The article [2] developed two sets of invariants that together give a complete classifica-
tion of all tunnels of all tunnel number 1 knots. One is a finite sequence of rational “slope”
invariants, and the other is a finite sequence of binary invariants. The latter sequence is trivial
exactly when the tunnel is a so-called (1, 1)-tunnel, that is, a tunnel that arises as the “upper”
or “lower” tunnel of a genus-1 1-bridge position of the knot. In the language of [2], the (1, 1)-
tunnels are called semisimple, except for those which occur as the upper and lower tunnels
of a 2-bridge knot and are called simple. The tunnels which are not (1, 1)-tunnels are called
regular.

For quite a long time, the examples of knots having both regular and (1, 1)-tunnels were
found only in the collection of torus knots, whose tunnels were classified by Boileau, Rost,
and Zieschang [1] and independently by Moriah [13]. Recently, another example was found
by Goda and Hayashi [9]. The knot is the Morimoto-Sakuma-Yokota (5, 7, 2)-knot, and Goda
and Hayashi credit H. Song with bringing it to their attention. Like the torus knots, it has a
(1, 1)-position with two associated semisimple tunnels, and a third “middle” tunnel which is
regular. A tunnel arc for the regular tunnel is shown in Figure 1.

A preliminary version of [9] contained a gap in the verification that the latter tunnel is not
a (1, 1)-tunnel: the authors relied on [14, Proposition 1.3] (a nonetheless useful and important
work), which turns out to be erroneous. As noted in [9], Ishihara [11] developed an algorithm
to compute the slope invariants of a tunnel using manipulation of families of compressing
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FIGURE 1. The Morimoto-Sakuma-Yokota (5, 7, 2)-knot. The dotted
line is a tunnel arc for its regular tunnel.

disks in the associated Heegaard splitting, and successfully applied it to compute the sequence
of binary invariants of the tunnel, sufficient to complete the proof that it is regular. In view
of this, we will refer to this example as the Goda-Hayashi-Ishihara tunnel. As noted in [9], a
simple modification of their construction, varying a nonzero integer parameter n, produces an
infinite collection of very similar examples.

In this paper, we analyze a general construction that produces all examples directly ob-
tainable by the geometric phenomenon that underlies the Goda-Hayashi-Ishihara example.
Moreover, we give an effective method to compute the full set of slope invariants of any
of these examples. We illustrate it by computing the slope invariants of the Goda-Hayashi-
Ishihara example, and the binary invariants as well, verifying Ishihara’s calculation.

Here is a knot-theoretic description of the examples. As seen in Figure 7 below, the
Morimoto-Sakuma-Yokota (5, 7, 2)-knot is the band sum of two torus knots T3,−4 and T2,−3

lying in concentric tori, by a (half-twisted) band running vertically between the tori, with the
tunnel represented by an arc cutting across the band. The general example is an (arbitrarily
twisted) band sum of two concentric torus knots Tp+r,q+s and Tr,s (for certain allowable
combinations of p, q , r , and s). As we will see, in terms of our theory this tunnel is obtained
by a cabling construction starting from the middle tunnel of the torus knot Tp+r,q+s .

For calculations, we need a very precise description. The general construction, detailed
in Section 3 after preliminary work in Sections 1 and 2, is called the splitting construction.
There are four versions of it; each starting with a so-called middle tunnel of a torus knot K ,
whose sequences of invariants were calculated in [3]. Start with a torus knot K contained in a
standard torus T in S3, together with an arc in T representing the middle tunnel of K . Regard
T as one level of a product region T × I . A tubular neighborhood of K , together with a 1-
handle determined by the middle tunnel, is a genus-2 handlebody H positioned “horizontally”
in T × I . Section 2 describes four disks, called the drop-ρ, lift-ρ, drop-λ, and lift-λ disks, and
an isotopy that “splits off” and either “drops” or “lifts” a solid torus from H . The solid torus is
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a neighborhood of a certain torus knot K ′ in another level of T × I . Inserting a disk called γn

into H , in a certain way, is a cabling construction [2] that produces the new tunnel (provided
that n �= 0). Its associated knot is the sum of K and K ′, connected by two vertical arcs in
T × I positioned with n half-twists. In Section 4 we give explicit versions of the splitting
construction that produce the Goda-Hayashi-Ishihara example and its mirror image.

From the precise description, it is easy to read off the binary invariant of this cabling
construction. For the slope invariant, we set up a general method in Sections 5 and 6. Besides
adding the transparency of abstraction, the setup will be used in [7] to calculate the slope
invariants obtained by an iteration of the splitting construction, which we will discuss mo-
mentarily. Section 7 uses the general method to give the slopes in all cases of the splitting
construction, and Section 8 illustrates them for the Goda-Hayashi-Ishihara example.

Each tunnel obtained by the splitting construction is associated to a (1, 1)-position of its
associated knot, and in Section 9 we explain how the method of [6] allows an easy calculation
of the slope invariants of its upper and lower tunnels. As usual, we apply these to the Goda-
Hayashi-Ishihara example.

We mentioned a further generalization of the splitting construction. In [7], we show
how one can start with a tunnel obtained by a splitting construction and carry out an itera-
tion of similar constructions, producing a much larger class of knots having both regular and
semisimple tunnels. Each of the four splitting constructions admits two kinds of iteration se-
quences, giving eight versions of the iterated construction. As with the splitting constructions,
which allows variation by any nonzero choice of n, each cabling in an iterated sequence can
be varied by a nonzero integer, producing an enormous number of possible examples. Rather
surprisingly to the authors, the setup of Sections 5 and 6 allows one to calculate the slopes of
all the cablings in the iterated construction.

We have already described most of the content of the paper, apart from the first section
below which establishes notation and reviews the method from [3] for calculating the invari-
ants of the middle tunnels of torus knots. We have not included a review of the general theory,
as the original theory is detailed in [2] and brief reviews are already available in several of our
articles. For the present paper, we would guess that [4, Section 1] together with the review
sections of [6] form the best option for most readers.

1. Middle tunnels of torus knots. Figure 2 shows a standard Heegaard torus T in
S3, and an oriented longitude-meridian pair {l,m} which will be our ordered basis for H1(T )

and for the homology of a product neighborhood T × I . For a relatively prime pair of integers
(p, q), we denote by Tp,q a torus knot isotopic to a (p, q)-curve in T . In particular, l = T1,0

and m = T0,1, also Tp,q is isotopic in S3 to Tq,p, and T−p,−q = Tp,q since our knots are
unoriented. Figure 2 shows the knot T3,5.

We will sometimes but not always restrict attention to normalized torus knots, that is,
to Tp,q with p > q ≥ 2. When allowing trivial knots, we include Tn,1, n ≥ 1, and T1,0 as
normalized torus knots.
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FIGURE 2. m, l, and T3,5.

Any of our torus knot constructions or calculations can be reduced to this case. To un-
derstand why, consider a product neighborhood T × [−1, 1] of T = T × {0}. There is an
isotopy of S3 that takes T × {s} to T × {−s}, interchanges l and m, and moves Tp,q to Tq,p.
Allowing such isotopies, we may always assume that |p| ≥ |q|. Since Tp,q = T−p,−q , we
may always assume further that p > 0, and if still q < 0, we may apply a reflection of S3 pre-
serving T and taking m to −m and l to l, so Tp,q and Tp,−q are mirror images. The reflection
multiplies each slope invariant by −1. As we will point out along the way, however, our con-
structions and algebraic procedures always work, sometimes with some simple modifications,
for unnormalized torus knots.

We briefly recall the iterative construction of middle tunnels of torus knots detailed in [3],
adapting the notation somewhat to suit our current purposes. Figure 3(a) shows the middle
tunnel disk τ of a torus knot Kτ = Tp+r,q+s (in [3], p = p1, r = p2, q = q1, and s = q2). A
regular neighborhood of Kτ with an attached 1-handle having cocore disk τ forms a standard
handlebody H . Also seen are the disks ρ and λ of the principal pair of τ , whose associated
knots Kρ and Kλ are torus knots Tp,q and Tr,s , respectively. The knots Kρ and Kλ are core
circles of the solid tori H cut off by disks ρ and λ, respectively. Figure 3(a) shows the slope-0
separating disk ρ0 used to define (ρ, ρ0)-coordinates. In general, ρ0 makes (q + s)r turns
around the handlebody, as indicated in the drawing for the case (q + s)r = 2.

Figure 3(b) shows a tunnel disk τU , which is obtained from τ by a cabling construction
replacing ρ. It meets ρ in a single arc, and is disjoint from λ. Observing that a core circle of
the solid torus H cut off by τU is the torus knot Tp+2r,q+2s , which is geometrically evident
from Figure 3(b), τU is the middle tunnel of Tp+2r,q+2s . Figure 3(c) shows a similar disk τL

which is the middle tunnel for T2p+r,2q+s , and is obtained from τ by a cabling construction
replacing λ. It meets λ in a single arc and is disjoint from ρ.

The notations here indicate the underlying algebra. Assume that Tp+r,q+s is normalized,
with p + r > q + s ≥ 2; as mentioned above, all other cases can be reduced to this one. Write
(p + r)/(q + s) as a continued fraction [n1, . . . , nk] with all ni positive. Write U = (

1 1
0 1

)
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FIGURE 3. The disks τ , λ, ρ, ρ0, τU , and τL.

and L = (
1 0
1 1

)
. We call the matrix

Mp+r,q+s = (U or L)nk−1 · · · Un2Ln1 =
(

p q

r s

)

the matrix associated to Tp+r,q+s . As seen in [3], the knots Kρ and Kλ are Tp,q and Tr,s ,
respectively.

The associated matrix of Tp+2r,q+2s is

Mp+2r,q+2s =
(

p + r q + s

r s

)
= UMp+r,q+s .

The principal pair of τU is {λ, τ }, and passing from τ to τU is a cabling construction which
we call the U -construction. Similarly, the associated matrix of T2p+r,2q+s is

M2p+r,2q+s =
(

p q

p + r q + s

)
= LMp+r,q+s ,

τL has principal pair {ρ, τ } and is produced by the L-construction.
As detailed in [3], a sequence of U - and L-constructions producing the middle tunnel of

Tp+r,q+s (that is, the unique sequence of cabling constructions producing the middle tunnel
of Tp+r,q+s) can be obtained as follows.

(1) Start with the trivial knot positioned as T1,1, whose associated matrix is

M1+0,0+1 =
(

1 0
0 1

)
.
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(2) Perform n1 L-constructions. The result is Tn1+1,1, still a trivial knot, but with asso-
ciated matrix

Ln1M1,1 =
(

1 0
n1 1

)
.

(3) Perform n2 U -constructions, n3 L-constructions, and so on, except at the last step
we perform only nk − 1 U - or L-constructions (according as k is even or odd). The resulting
knot is Tp+r,q+s and the effect of U - and L-constructions on the associated matrices verifies
that the associated matrix of Tp+r,q+s is Mp+r,q+s .

The construction we have discussed is for normalized Tp+r,q+s , but if q +s > p+r ≥ 2,
the only difference is that n1 = 0 and the first n2 U -constructions produce trivial knots. If
p + r > 0 > q + s, we may perform a reflection to make both positive and proceed as before,
but the method can easily be adapted directly as follows. To T1,−1 we associate

M1,−1 =
(

1 0
0 −1

)
.

To find the matrix Mp+r,q+s associated to Tp+r,q+s , we use the continued fraction expression
(p + r)/(q + s) = −[n1, . . . , nk], with n1 ≥ 0 and ni ≥ 1 for 1 ≤ i ≤ k, to write

Mp+r,q+s = (U or L)nk−1 · · ·Un2Ln1M1,−1 .

Starting with the trivial knot positioned as T1,−1, perform n1 L-constructions, n2 U -construc-
tions, and so on, again ending with nk − 1 (U or L)-constructions to obtain the middle tunnel
of Tp+r,q+s .

For the next result, we introduce a useful notation.

NOTATION 1.1. The diagonal sum of a 2 × 2 matrix is the number

diag

(
a b

c d

)
= ad + bc .

The slopes of a U - or L-construction performed on Tp+r,q+s were obtained in [3]. We
give them in the next theorem, which for reference also summarizes some of the previous
discussion.

THEOREM 1.2. Let Tp+r,q+s be a torus knot, not T±1,0 or T0,±1.
(U) The U -construction applied to Tp+r,q+s produces the middle tunnel of Tp+2r,q+2s .

Its slope is the slope of τU in (ρ, ρ0)-coordinates,

mτU = (p + r)s + (q + s)r = diag(UMp+r,q+s) = diag Mp+2r,q+2s.

(L) The L-construction applied to Tp+r,q+s produces the middle tunnel of T2p+r,2q+s .
Its slope is the slope of τL in (λ, λ0)-coordinates,

mτL = p(q + s) + (p + r)q = diag(LMp+r,q+s ) = diag M2p+r,2q+s .

In [3], only the normalized case is explicitly treated, but as we have seen the procedures
extend easily enough to the general case.
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2. Drop disks and lift disks. Certain disks, called the drop-λ, lift-λ, drop-ρ, and
lift-ρ disks, will play a key role.

Figure 4 shows a picture of the drop-λ disk, called σ there, and the knots Kτ = Tp+r,q+s ,
Kρ = Tp,q , and Kλ = Tr,s . Figure 4(a) shows σ in the standard picture of the middle tunnel,
and Figure 4(b) shows an isotopic repositioning of the first configuration. In the latter, Kτ and
Kλ are on concentric tori in a product neighborhood T × I of the standard Heegaard torus in
S3, and the 1-handle with cocore σ is a vertical 1-handle connecting tubular neighborhoods of
these two knots. The term “drop-λ” is short for “drop-Kλ”, motivated by the fact that a copy
of Kλ can be dropped to a lower torus level.

The lift-λ disk is similar, and is shown in Figure 5. The drop-ρ and lift-ρ disks are simi-
lar, except that they cut across the upper copy of λ, travel over the portion of the neighborhood
of Tp+r,q+s that does not contain the drop-λ disk, and cut across the lower copy of λ, while
staying disjoint from the copies of ρ.

3. The splitting construction. We are now ready to present the basic construction.
It is called the splitting construction, or just splitting, because its effect is to split a copy of
Kρ = Tp,q or Kλ = Tr,s off from Kτ = Tp+r,q+s , obtaining copies of these knots on two
concentric torus levels, then summing them together by a pair of arcs with some number of
twists.

FIGURE 4. The drop-λ disk σ , first as seen in a neighborhood of Kτ = Tp+r,q+s and the tunnel τ , then
after dropping Kλ = Tr,s and part of Kρ = Tp,q .
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FIGURE 5. The lift-λ disk σ , first as seen in a neighborhood of Kτ = Tp+r,q+s and the tunnel
τ , then after lifting Kλ = Tr,s and part of Kρ = Tp,q .

There are actually four cases of the splitting construction. We begin with the drop-λ
splitting. The first step was illustrated in Figure 4. Next, consider the disk γn shown in Fig-
ure 6. It is obtained from ρ by n right-handed half-twists along σ . When n < 0, the twists are
left-handed, while γ0 = ρ. The γn are nonseparating in the genus-2 handlebody consisting of
a tubular neighborhood of Kτ together with the 1-handle for its middle tunnel, since each γn

meets Kτ in a single point.
The disk γn is a tunnel for the knot obtained by joining the copies of Kτ and Kλ in

Figure 4 by a pair of vertical arcs that have n right-handed half-twists. Indeed, for n �= 0
going from τ to γn is a cabling construction replacing ρ, so that the principal pair of γn is
{λ, τ }. The case of n = 0 does not produce a cabling construction (that is, the resulting tunnel
would be ρ so the principal path would have reversed direction).

The lift-λ, drop-ρ, and lift-ρ splittings are exactly analogous, using the lift-λ, drop-ρ,
and lift-ρ disks as σ in the respective cases.

4. The Goda-Hayashi-Ishihara tunnel. To illustrate the splitting construction, we
will examine the first example of a middle tunnel of a non-torus knot, which is due to Goda,
Hayashi, and Ishihara. The example was given by Goda and Hayashi in [9], indeed in an
earlier preliminary version of that article. In [11], Ishihara developed a general algorithm to
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FIGURE 6. The disk γn is obtained from ρ by n right-handed half-twists along
σ . The case n = 3 is shown here. For n < 0, the half-twists are
left-handed, while γ0 = ρ.

compute slope and binary invariants and applied it to obtain the principal path of the Goda-
Hayashi tunnel, thereby proving that it is regular. In principle, the algorithm could be used to
obtain the slope invariants, although this appears to be difficult.

The example is the Morimoto-Sakuma-Yokota knot of type (5, 7, 2) [15]. Goda and
Hayashi credit Song with bringing it to their attention. As noted in [15], the knot can be
moved into two concentric Heegaard torus levels, apart from a pair of arcs that run between
the levels, as shown in Figure 7. The tunnel is seen as an arc in the upper left-hand drawing,
which is the knot. The remaining drawings show two torus levels and a pair of connecting
arcs running between them. On the “upper” level, the knot appears as a torus knot T2,−3, and
on the “bottom” level as a torus knot T3,−4. The pair of connecting arcs has a single left-hand
twist.

This knot is obtained from the middle tunnel of T3,−4 by a lift-λ splitting construction
with n = −1. This allows us to find its entire cabling sequence. We first calculate the contin-
ued fraction expansion −3/4 = −[0, 1, 3] and use it to find that

M3,−4 = L(3−1)U1L0
(

1 0
0 −1

)
=

(
1 −1
2 −3

)
.

The cabling sequence is then as follows:
1. Starting with T1,−1, a U -construction produces T1,−2 with associated matrix

M1,−2 = U

(
1 0
0 −1

)
=

(
1 −1
0 −1

)
.

It is a trivial cabling construction since it produces a trivial knot.
2. Next, an L-construction produces T2,−3, with associated matrix

M2,−3 = LM1,−2 =
(

1 −1
1 −2

)
.
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FIGURE 7. The Goda-Hayashi-Ishihara example, seen as two torus levels connected by a pair of
arcs.

According to Theorem 1.2, the slope of this cabling is diag(M2,−3) = −3, so the simple slope
is [−1/3] = [2/3] (the simple slope, used for the first nontrivial cabling construction in the
cabling sequence, is the reciprocal of the slope modulo Q / Z).

3. Another L-construction produces the middle tunnel of T3,−4, with associated matrix

M3,−4 = LM2,−3 =
(

1 −1
2 −3

)
.

According to Theorem 1.2, this time the slope is diag(M3,−4) = −5.
4. A lift-λ splitting lifts a copy of Kλ = T2,−3 to the top level, and using γ−1 as the

tunnel disk puts one left-hand twist in the two vertical strands, producing the Goda-Hayashi-
Ishihara knot. A tunnel arc for γ−1 runs horizontally between the two vertical strands, so is
the Goda-Hayashi-Ishihara tunnel.

This construction proves that the tunnel is regular, since the L-constructions replace
λ, while the lift-λ construction replaces ρ. In Section 8, we will see that the final splitting
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construction in its cabling sequence has slope −19, giving the full principal path of the Goda-
Hayashi-Ishihara tunnel shown in Figure 11 below.

As remarked in Section 1, one can also maneuver so that the splitting takes place on
a normalized torus knot Tp+r,q+s . Starting with the Goda-Hayashi-Ishihara knot, apply an
isotopy of S3 that interchanges the meridian and longitude of the level tori. It inverts the order
as well, putting T4,−3 on the upper level and T3,−2 on the bottom level, while preserving the
tunnel. The vertical arcs still have a left-handed twist. Next, apply an orientation-reversing
diffeomorphism that fixes the longitudes of the Heegaard tori and reflects the meridians, after
which the top level is T4,3 and the bottom level is T3,2. In addition, the two vertical arcs now
have one right-handed half-twist, rather than left-handed, since the reflection reverses the
sense of the twist. The orientation-reversing diffeomorphism negates the values of the slope
invariants, and does not change the binary invariants. Since the continued fraction expansion
of 4/3 is [1, 3], the torus knot T4,3 = T3+1,2+1 has associated matrix

M4,3 = U2L =
(

3 2
1 1

)
.

Starting with T1,1, one L-construction followed by two U -constructions produces the middle
tunnel of T4,3, with Kρ = T3,2 and Kλ = T1,1. Now a drop-ρ splitting drops a copy of T3,2

to the lower level, and using γ1 puts the right-hand half-twist in the vertical strands. The
slope and binary invariants can be calculated, as we will see in Section 8 below, and the slope
invariants negated to obtain the slope invariants of the original unreflected example.

As noted in [9], infinitely many similar examples are obtained by changing the number
of twists of the vertical strands, that is, by different choices of γn.

5. The first general slope calculation. In order to understand the slope invariants of
tunnels resulting from the splitting constructions, we must calculate the slopes of the disks γn

in certain coordinates. For this, one needs the slopes of the drop- and lift-disks. In fact, there
is a general slope calculation that covers all four cases (as well as additional cases that will
arise in [7]). In this section, we present this general slope calculation, and in the next section,
we present the calculation of the slopes of disks γn.

Consider the setup illustrated in Figure 8(a). The first drawing shows tubular neighbor-
hoods of two (oriented) knots KU and KL, contained in a product neighborhood T × I of a
Heegaard torus T of S3. The neighborhoods are connected by a vertical 1-handle to yield a
genus-2 handlebody H . In our applications, H will always be unknotted, although that is not
needed for the calculations of this and the next section.

We interpret KU as the “upper” knot, contained in T × (3/4, 1], and KL as the “lower”
knot, contained in T ×[0, 1/4). The vertical 1-handle with cocore σ is assumed to run between
T × {1/4} and T × {3/4}, with the separating disk σ being its intersection with T × {1/2}.

The homology group H1(T × I) ∼= H1(T ) will have ordered basis the oriented longitude
and meridian l and m shown in Figure 2. Our linking convention is that Lk(m×{1}, l×{0}) =
+1. Now, suppose that KU represents (lU ,mU) and KL represents (lL,mL) in H1(T × I).
Since Lk(m × {0}, l × {1}) = 0, we have Lk(KU ,KL) = mUlL.
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FIGURE 8. The setup for the first general slope calculation.

The disks D+
U and D−

U are parallel in H , as are the disks D+
L and D−

L , and these four
disks bound a ball B seen in Figure 8. Our task is to compute the slope of σ in (D,D0)-
coordinates. Here, D is a slope disk in B seen in Figure 8(a), and D0 is the slope-0 disk in B

that meets D in a single arc and separates H into two solid tori with linking number 0.
Figure 8(b) shows core knots K0

U and K0
L of the complementary solid tori of D0. They

are like KU and KL, except that they have Lk(KU ,KL) right-handed full twists in this pic-
ture. Provided that the orientations of KU and KL appear from left-to-right, as indicated in
Figure 8(b), each right-handed twist changes the linking number by −1. Figure 8 is drawn for
the case Lk(KU ,KL) = 2, so there are two right-handed twists and Lk(K0

U ,K0
L) = 0.

If one uses the opposite linking convention that Lk(m × {1}, l × {0}) = −1, then
Lk(KU ,KL) is negated but the effect of a right-handed twist is also negated. Thus K0

U and
K0

L are the same whatever independent of the linking convention, and the slope-0 disk D0,
shown in Figure 8(c), is well-defined.

We are now ready to compute the slope of σ in (D,D0)-coordinates. Figure 9(a) shows
a cabling arc α(D0), that is, an arc in B ∩ ∂H connecting two frontier disks and disjoint
from D0. In this instance, the disk is the D0 shown in Figure 8(c), so α(D0) makes two turns
around B in the direction shown. Also seen in Figure 9(a) is a cabling arc α(σ) for σ .

Figure 9(b) is simply Figure 9(a) redrawn so that α(D0) appears horizontal. This moves
α(σ) to an arc that makes two turns in the opposite direction from the turns of α(D0) in
Figure 9(a), that is, the two right-handed turns of α(D0) become two left-handed turns of
α(σ).

Figure 9(c) shows part of the covering space of Σ = B ∩ ∂H seen in [6, Figure 8]
(originally, in [2, Figure 7]). The shaded region is a fundamental domain, and each boundary
circle of the covering space double covers the indicated boundary circle of Σ . The lifts of
α(D0) are horizontal arcs connecting inverse image circles of D+

L to inverse image circles of
D−

L . The lifts of the cabling arc of σ appear as line segments connecting the inverse image
circles for D+

U to inverse image circles for D−
U . In the case shown, those segments have slope

pair [1, 4], as each left-handed turn of α(σ) around B produces two vertical units of rise in
the lift. In general, if α(D0) made R right-handed twists, the slope pair of σ is [1, 2R], that
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FIGURE 9. The cabling arc α(σ) and some of its lifts.

is, its slope is 2R/1. Since R was Lk(KU ,KL), this yields our first general slope calculation.
Assuming that the orientation of KU and KL is from left to right in the figures we have
discussed, and that we use our linking convention Lk(m × {1}, l × {0}) = 1, we have the
following proposition.

PROPOSITION 5.1. In Figure 8(a), the slope of σ in (D,D0)-coordinates is
2 Lk(KU ,KL). Consequently, if KU represents (lU ,mU) and KL represents (lL,mL) in
H1(T × I), then the slope of σ is 2mUlL.

As an immediate consequence, we get the following corollary.

COROLLARY 5.2. The slopes of the splitting disks are as follows:
(a) In (ρ, ρ0)-coordinates, the drop-λ disk has slope 2r(q + s).
(b) In (ρ, ρ0)-coordinates, the lift-λ disk has slope 2s(p + r).
(c) In (λ, λ0)-coordinates, the drop-ρ disk has slope 2p(q + s).
(d) In (λ, λ0)-coordinates, the lift-ρ disk has slope 2q(p + r).
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FIGURE 10. Calculation of the slope of γn .

6. The second general slope calculation. It remains to obtain the slope of γn. Fig-
ure 10 illustrates the calculation. Figure 10(a) shows the ball B from Figures 8(a) and 9(a),
bounded by the disks D−

U , D+
U , D−

L , and D+
L . The arc α(σ) connecting D−

U and D+
U is a ca-

bling arc for σ , and the arc α(γ3) connecting D−
L and D+

U is a cabling arc for γ3. In general,
one of the cabling arcs for γn connects D−

L to either D−
U or D+

U according as n is even or odd.
Again we use the covering space from Figure 9(c). As before, the lifts of α(σ) appear as

line segments connecting inverse image circles for D+
U to inverse image circles for D−

U . In the
case shown in Figure 10(b), those segments have slope pair [1, 2], while Proposition 5.1 show
that in general, the slope pair of the lifts of α(σ) is [1, 2 Lk(KU ,KL)] = [1,mσ ], where mσ

is the slope of σ in (D,D0)-coordinates.
Figure 10(b) also shows a lift of α(γ3). Since α(γ3) or in general α(γn) is disjoint from

α(σ), the lift cannot cross the line segments that are lifts of α(σ). Each right-hand half-twist
of γn corresponds to a right-hand half-twist of α(γn), and an upward displacement of the lift
of α(γn) that runs roughly parallel to one of the segments that is a lift of α(σ). Thus in general
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the slope pair of the lifts of the cabling arc for γn is [0, 1]+n[1,mσ ]. Consequently the slope
pair of γn is [n, 1 + nmσ ], and its slope is (1 + nmσ )/n = mσ + 1/n. This gives our second
general slope calculation. Again with our usual orientation and linking conventions, we have
the following proposition.

PROPOSITION 6.1. The slope of γn in (D,D0)-coordinates is mσ + 1/n.

7. Slopes for the splitting construction. Corollary 5.2 and Proposition 6.1 give im-
mediately the slopes of the four splitting constructions:

PROPOSITION 7.1. For the torus knot Tp+r,q+s , we have the following.
(a) A drop-λ splitting has slope 2r(q + s) + 1/n.
(b) A lift-λ splitting has slope 2s(p + r) + 1/n.
(c) A drop-ρ splitting has slope 2p(q + s) + 1/n.
(d) A lift-ρ splitting has slope 2q(p + r) + 1/n.

With the exception of a few phenomena described in the next theorem, splitting construc-
tions on nontrivial torus knots produce distinct tunnels.

THEOREM 7.2. Suppose that two splitting constructions on a nontrivial normalized
torus knot produce the same tunnel. Then both splittings are obtained from the same torus
knot, and either

(a) one is a drop-λ splitting with n = 1 and the other is a lift-λ splitting with n = −1,
and the tunnel is the middle tunnel of Tp+2r,q+2s , or

(b) one is a drop-ρ splitting with n = −1 and the other is a lift-ρ splitting with n = 1,
and the tunnel is the middle tunnel of T2p+r,2q+s , or

(c) the knot in normalized form is T2r+1,2, and the splittings are either
(i) the lift-λ and lift-ρ splittings with the same value of n, or

(ii) the lift-λ splitting with n = 1 and the drop-ρ splitting with n = −1, or
(iii) the drop-λ splitting with n = 1 and the lift-ρ splitting with n = −1.

For the trivial normalized torus knots Tp,1, p ≥ 1, one can quickly work out the results of
all possible splittings by using Proposition 7.1. They are the simple tunnels having slope
invariant [n/(2kn + 1)], k ≥ 0.

Before proving Theorem 7.2, we identify the tunnels and knots that arise from the mul-
tiple splittings that it classifies as follows.

COROLLARY 7.3. The following are the tunnels that arise from distinct splittings on
some nontrivial torus knot:

(a) The middle tunnel of each normalized torus knot Ta,b with b ≥ 4 arises from exactly
two splittings:

(i) If the tunnel arises from a U -construction on Tp+r,q+s , and hence is the mid-
dle tunnel of Tp+2r,q+2s , then it arises from Tp+r,q+s using either a drop-λ
splitting with n = 1 or a lift-λ splitting with n = −1.
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(ii) If the tunnel arises from an L-construction on Tp+r,q+s , and hence is the
middle tunnel of T2p+r,2q+s , then it arises from Tp+r,q+s using either a drop-
ρ splitting with n = −1 or a lift-ρ splitting with n = 1.

(b) For each r ≥ 1 and nonzero integer n with |n| ≥ 2, there is a semisimple tunnel of
a non-torus 3-bridge knot that arises from exacly two distinct splittings on T2r+1,2: lift-λ and
lift-ρ splittings with the value n. It has slope sequence [1/(2r + 1)], 4r + 2 + 1/n.

(c) For each torus knot T3r+1,3, r ≥ 1, the middle tunnel, which is semisimple, arises
from three distinct splittings on T2r+1,2: lift-λ and lift-ρ splittings with n = 1, and a drop-ρ
splitting with n = −1.

(d) For each torus knot T3r+2,3, r ≥ 1, the middle tunnel, which is semisimple, arises
from three distinct splittings on T2r+1,2: lift-λ and lift-ρ splittings with n = −1, and a drop-λ
splitting with n = 1.

PROOF. Case (a) just describes Cases (a) and (b) of Theorem 7.2. In Cases (b), (c),
and (d), the tunnels are semisimple since they result from only two cablings. Also, since the
tunnels are constructed by cabling sequences of length 2, [5, Theorem 6.1] shows that the
associated knots have bridge number at most 3.

In Theorem 7.2(c)(i), Proposition 7.1 finds the cabling sequences to be [1/(2r + 1)],
4r + 2 + 1/n. The associated knots are not 2-bridge since for tunnels of 2-bridge knots
every slope invariant after the first is of the form ±2 + 1/n (see [2, Section 15]). For n with
|n| > 1, these give Case (b). Since the second slope invariant is not integral, these are not
torus knots [3, Section 6]. Those with |n| = 1 will appear in Cases (c) and (d).

In Theorem 7.2(c)(ii) and (c)(iii), the slope sequences are respectively [1/(2r+1)], 4r+1
and [1/(2r + 1)], 4r + 3, and the algorithm of [3, Section 6] identifies these as the middle
tunnels of the torus knots T3r+1,3 and T3r+2,3, respectively. These give Cases (c) and (d). �

PROOF OF THEOREM 7.2. Consider a normalized torus knot Tp+r,q+s , for p + r >

q + s ≥ 2, with associated matrix

Mp+r,q+s = (U or L)nk−1 · · · Un2Ln1 =
(

p q

r s

)
.

We recall from Section 1 that the sequence of U - and L-cablings producing the middle tunnel
of Tp+r,q+s is determined by the positive integer continued fraction expansion [n1, . . . , nk]
of (p + r)/(q + s) > 1. Since this expansion is unique, apart from the ambiguity that
[n1, . . . , nk, 1] = [n1, . . . , nk + 1], middle tunnels of nontrivial torus knots have the same
principal path only when they are the same tunnel. Since the principal path of a splitting con-
struction is a continuation of the principal path of the middle tunnel on which it is performed,
splitting constructions on distinct middle tunnels of torus knots cannot produce the same tun-
nel. So we need only consider a pair of splitting constructions applied to the middle tunnel of
the same normalized nontrivial torus knot.
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FIGURE 11. The principal path of the Goda-Hayashi-Ishihara tunnel.

Consider first a lift-λ splitting using γm and a drop-λ splitting using γn applied to
Tp+r,q+s to produce the same tunnel. Equating the expressions for their slopes from Proposi-
tion 7.1, we obtain 1/n − 1/m = 2ps − 2qr = 2, so m = −1 and n = 1, giving Case (a).
Case (b) is similar.

For a lift-λ splitting using γm and a lift-ρ splitting using γn, we obtain 2(p+ r)(s −q) =
1/n − 1/m. The right-hand side can only be −2, 0, or 2. Since Tp+r,q+s is nontrivial, p, q ,
r , and s are all positive, forcing the right-hand side to be 0 and hence m = n and q = s.
Since ps − qr = 1, we have q = s = 1 and p = r + 1, so Tp+r,q+s = T2r+1,2. This is Case
(c)(i). Similar procedures lead to Cases (c)(ii) and (c)(iii) (although ps−qr = 1 must be used
earlier in the calculations making the right-hand side 2 + 1/n − 1/m), and to no possibilities
for a drop-λ and drop-ρ pair. �

8. The invariants of the Goda-Hayashi-Ishihara tunnel. For the Goda-Hayashi-
Ishihara example described in Section 4, we found the slope invariants of the first two cablings
to be [2/3] and −5. We can now find the slope of the middle tunnel produced by the lift-λ
splitting applied to T3,−4. We have

M3,−4 = L2UM1,1 =
(

1 −1
2 −3

)
.

By Proposition 7.1(b), the slope of the tunnel produced by the lift-λ splitting with n = −1 is
2(−3)(1 + 2) + 1/(−1) = −19.

The principal path of the tunnel is shown in Figure 11. As noted in Section 4, the first
two nontrivial cablings in the cabling sequence are the L-constructions that are the first two
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steps where the path moves down and to the right. The L-constructions replace λ, and the
lift-λ-splitting replaces ρ, so the path turns downward for the λ-splitting. This proves that the
tunnel is not semisimple (as its principal pair does not contain a primitive disk, or alternatively
because its depth 2 is greater than 1). Summarizing, we have the following theorem.

THEOREM 8.1. The Goda-Hayashi-Ishihara tunnel has slope invariant sequence
[2/3], −5, −19, and binary invariant sequence 1. It is a regular tunnel of depth 2 with the
principal path shown in Figure 11.

Of course, for the other examples obtained by varying n, the only difference is that the
third slope is −18 + 1/n.

We can also carry out the calculation using the normalized description of the mirror-
image knot given in Section 4. Start with T1,1 and perform an L-construction followed by
two U -constructions with slopes [1/3] and 5 to obtain T4,3 with M4,3 = U2L = (

3 2
1 1

)
. We

have Kρ = T3,2 and Kλ = T1,1. Now, the drop-ρ splitting with n = 1 gives the middle
tunnel of the mirror-image Goda-Hayashi-Ishihara knot, and by Proposition 7.1(c), its slope
is 2 · 3 · (2 + 1) + 1/1 = 19.

9. Upper and lower tunnels. The (1, 1)-positions of the knots obtained by the split-
ting constructions are readily described using the methods of [6]. This section assumes a basic
knowledge of that paper.

We will examine the drop-ρ case, the others being very straightforward modifications.
Using the methodology of [6] and the associated software [8] that implements its algorithms,
we will find the slopes of the upper and lower tunnels of the Goda-Hayashi-Ishihara knot.

Let ω(a, b) denote the braid word describing the torus knot Ta,b, as given in [6, Section
11]. Begin with a drop-ρ disk dropped onto a horizontal level, creating the setup picture in
Figure 8(a). We have KU = Kτ = Tp+r,q+s , with braid word description ω(p + r, q + s),
and KL = Kρ = T (p, q), with braid word description ω(p, q). The two vertical arcs are un-
twisted, and Kλ is in (1, 1)-position described by the braid word ω(p + r, q + s) ω(p, q)−1.
This equals ω(r, s) in the (reduced) braid group B, reflecting the fact that Kλ = Tr,s . Re-
placing ρ by γn creates Kγn , and the position is described by the braid word ω(p + r, q +
s) σn ω(p, q)−1. From this, the general algorithm in [6] gives the sequence of slope invari-
ants.

Let us do the calculations for the Goda-Hayashi-Ishihara examples. We will use the
normalized version, producing the mirror-image examples by the drop-ρ splitting applied to
T4,3. We have Kτ = T (4, 3), Kρ = T (3, 2), and Kλ = T (1, 1). We compute ω(4, 3) and
ω(3, 2):

Semisimple> print fullTorusBraidWord(4,3)
l -1 m 1 l -1 m 1 l -2 m 1

Semisimple> print fullTorusBraidWord(3,2)
l -1 m 1 l -2 m 1
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The knot with position described by ω(4, 3) ω(3, 2) = ω(7, 5) is T (7, 5), while the one
described by ω(4, 3)ω(3, 2)−1 = ω(1, 1) is the trivial knot Kλ = T (1, 1) that would result
from a drop-ρ construction with no twisting (that is, n = 0). To confirm these, we compute:

Semisimple> upperSlopes( ’l -1 m 1 l -1 m 1 l -2 m 1 s 0 l -1
m 1 l -2 m 1’ )
[ 1/3 ], 5, 9, 11

Semisimple> torusUpperSlopes(7,5)
[ 1/3 ], 5, 9, 11

while entering upperSlopes( ’l -1 m 1 l -1 m 1 l -2 m 1 s 0 m -1 l
2 m -1 l 1’) produces empty output, indicating the trivial knot. For the Goda-Hayashi-
Ishihara knot, we insert σ giving

ω(4, 3) · σ · ω(3, 2)−1

as a braid word describing its (1, 1)-position. We find

Semisimple> upperSlopes( ’l -1 m 1 l -1 m 1 l -2 m 1 s 1 l -1
m 1 l -2 m 1’ )
[ 1/3 ], 7, 9, 11

Semisimple> lowerSlopes( ’l -1 m 1 l -1 m 1 l -2 m 1 s 1 l -1
m 1 l -2 m 1’ )
[ 1/3 ], 5, 7, 7, 9

We know that using n = −1 would give T (7, 5), confirmed by

Semisimple> upperSlopes( ’l -1 m 1 l -1 m 1 l -2 m 1 s -1 l -1
m 1 l -2 m 1’ )
[ 1/3 ], 5, 9, 11

We can also observe the effect of changing the number of twists in the Goda-Hayashi-Ishihara
example:

Semisimple> upperSlopes( ’l -1 m 1 l -1 m 1 l -2 m 1 s 2 l -1
m 1 l -2 m 1’ )
[ 1/3 ], 13/2, -3, -1

Semisimple> upperSlopes( ’l -1 m 1 l -1 m 1 l -2 m 1 s 3 l -1
m 1 l -2 m 1’ )
[ 1/3 ], 19/3, 9, 11

Semisimple> upperSlopes( ’l -1 m 1 l -1 m 1 l -2 m 1 s 4 l -1
m 1 l -2 m 1’ )
[ 1/3 ], 25/4, -3, -1

Semisimple> upperSlopes( ’l -1 m 1 l -1 m 1 l -2 m 1 s 5 l -1
m 1 l -2 m 1’ )
[ 1/3 ], 31/5, 9, 11
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We do not know whether these knots have additional (1, 1)-positions, although it seems
highly unlikely.

Braid word descriptions for the other three kinds of splittings are obtained simply by
using the appropriate knots for KU and KL.
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