
IEEE DISTRIBUTED SYSTEMS ONLINE 1541-4922 © 2006 Published by the IEEE Computer Society
Vol. 7, No. 4; April 2006

Middleware: Context Management in Heterogeneous,
Evolving Ubiquitous Environments

Richardo Couto Antunes de Rocha, Pontifícia Universidade Católica do Rio de Janeiro
Markus Endler, Pontifícia Universidade Católica do Rio de Janeiro

Design strategies and a flexible, adaptable middleware architecture for resource-limited,
evolving systems.

Mobile computing environments are characterized by heterogeneity systems consisting of different
device types, operating systems, network interfaces, and communication protocols. Such
heterogeneity calls for middleware that can adapt to different execution contexts, hide heterogeneity
from applications, and transparently and dynamically switch between network and sensor
technologies.

Additionally, middleware for context-aware systems must keep a context model (a model of their
environment), taking into account several aspects of the environment. The more complex and
heterogeneous an execution environment is, the more complicated its underlying context model.
Moreover, because systems can evolve, context management must also support model evolution
without restarting, reconfiguring, or redeploying applications and services.

We describe a context management middleware that can efficiently handle context despite the
execution environment's heterogeneity and evolution. It uses context meta-information to improve a
context-aware system's overall performance.

Heterogeneous environments

In pervasive environments, heterogeneity has hardware, software, and network aspects. Hardware
heterogeneity refers to the presence of different computing devices, such as desktop computers,
palmtops, and mobile phones. This type of heterogeneity demands middleware infrastructures that are
deployable on servers, workstations, and portable mobile devices. Software heterogeneity means the
environment is executing different operating systems and applications, requiring software
interoperability and the adoption of context models that address specific application requirements.
Network heterogeneity means that network interconnections among the system's devices don't

1
IEEE Distributed Systems Online April 2006

conform to a single architecture or technology. This heterogeneity demands adaptable, scalable
middleware that supports seamless communication. It also implies that you should limit context
models to specific network domains because some context information might pertain to only a subset
of applications or devices. We call this context domain, a logical boundary that establishes the context
information's scope.

Each of these aspects also has an evolutionary component: when a new device type, application, or
context type is introduced, context models and the software infrastructure should evolve to
accommodate the extended environment's properties and requirements. The infrastructure should
efficiently support this evolution.

Developers should work on context models and middleware in tandem to cope with heterogeneity and
efficiency. Notably, a context model's complexity determines the computational complexity of the
middleware's context-handling capability. For example, adopting a certain context model might
require adopting more complex context management and storage mechanisms as well. Joëlle Coutaz
and her colleagues present this relationship as a conceptual framework that interconnects an
ontological foundation for context modeling with a runtime infrastructure (middleware).1 Most
middleware projects (see the related sidebar) have not explored such an interdependence.
Consequently, most middleware have adopted context models restricted to a single context domain
(for example, a device's local execution context2,3 or location4), or the context-processing complexity
has hindered the middleware's deployment to resource-limited devices. Our approach uses context
meta-information to make middleware-level decisions that improve the provision, dissemination, and
access to context information.

Other work, such as CoCo,5 handles heterogeneity of context information services by adopting
different context models and services in different network domains. For example, CoCo provides an
infrastructure and language to describe context models in order to achieve interoperability among
context information services. However, our work doesn't specifically focus on context service
heterogeneity, so we assume that any context service and infrastructure are built on the same
middleware.

Designing context management middleware

We extended MoCA's (mobile collaboration architecture) context information service6 to support
hardware and software heterogeneity, context evolution, and deployment at devices with different
resource profiles. This new service provides a uniform view of context types and data so that the
system can retrieve context information published by different sources and at different locations using
a single primitive. It also permits the inclusion of new context-aware services without adapting (and
redeploying) the middleware to support the new context types.

In our approach, two basic components interact with the context management infrastructure to create,
disseminate, and use context: context providers and context consumers.

2
IEEE Distributed Systems Online April 2006

A context provider is an entity responsible for publishing a certain kind of context information; for
example, it can probe raw data or it can (as an inference agent) aggregate or interpret basic context
information into more complex context information. For example, MoCA's monitor is a context
provider that publishes information about a device's local execution context such as its memory usage,
energy consumption, or IEEE 802.11 RSSI (received signal strength indication). MoCA's location
inference service (LIS),7 another of its context providers, transforms IEEE 802.11 RSSI values
published by the monitor into symbolic positioning information.

A context consumer is an entity interested in certain context information, including context-aware
applications or context-processing services. An entity can act simultaneously as a context provider and
as a context consumer. For example, LIS is both a consumer of wireless connectivity context and a
publisher of location context. And MoCA's context information service (CIS) interconnects context
providers and consumers, receiving and storing context information and disseminating it to
consumers.

We provide a generic context access API for context providers and consumers, keeping the
heterogeneity management at the middleware implementation level. To do this, we follow three
design strategies:

 We propose an architecture that offers a set of components that help meet common
requirements of context management in different execution environments.

 We define a runtime strategy for incorporating new context types into the model and
middleware.

 We configure the access and evaluation of context information at runtime, enabling
different options for efficient context handling.

Architecture

The CIS consists of the basic elements shown in figure 1. This organization is logical that is, it
doesn't describe each component's actual location or distribution. However, it establishes well-defined
responsibilities for the following components:

 The context event service provides a mechanism for asynchronous communication,
which disseminates contextual events and context information to context consumers. A
contextual event represents a change of certain context information. The event service
adopts a publish-subscribe paradigm and offers a specialized API to handle subscriptions
for contextual events. It also maintains a trigger repository for notifying consumers about
events that have occurred.

3
IEEE Distributed Systems Online April 2006

 The type system manager maintains context types and validates them at context
deployment. The TSM also resolves a context provider's location within each context
domain in particular, when the context information consists of subcontexts placed at
different network locations.

 The context repository maintains a database of several types of context data.

 Subservices are additional services that ease client application development and
improve context management system performance. Examples of subservices include
caching, quality-of-context, and query services. The query service translates client
requests into context repository queries and delivers their results to the client.

Figure 1. The context service architecture.

These components hide the complexity required to manage context in a heterogeneous environment.
Each service's behavior and distribution can vary according to the target device where the middleware
will be deployed. The middleware implementation comes in two flavors: heavyweight and lightweight,
the latter targeting resource-limited devices. The lightweight instance defines more restrictive policies
for each component and typically distributes some context-related tasks to other remote components.
For example, with a lightweight instance, the context repository doesn't maintain a history of context

4
IEEE Distributed Systems Online April 2006

data. Moreover, the context repository would store only context published locally, delegating requests
for nonlocal context to remote repositories, say, at workstations or servers. Also, the subservices
available at each device depends on the type of middleware implementation for example, a
lightweight instance will likely have a caching service to cope with intermittent connectivity.

The external services implement services that either depend on or complement context management.
For example, we implemented our privacy service8 as an orthogonal service of MoCA's architecture.
Adopting these complementary services helps simplify the interaction between the context
management service and a client.

Deploying context types

When introducing a new type of context information into a context-aware system, a process that we
call deployment of context types, you must model and make it available to all interested parts: sensors,
inference agents, applications, and the middleware itself.

A fundamental principle of our approach is to use a strongly typed model for context data. That is, we
define and resolve the context type system at development time and describe the context type through
an XML-based model that contains:

 structural information such as attributes and dependencies among context types;

 behavioral information for example, if a context attribute has a constant or variable
value; and

 context-specific abstractions such as contextual events and queries.

Figure 2 shows the steps involved in deploying a new context type. First, we validate the context
model: the context tool (CT) checks for inconsistencies between the new and existing context types,
such as name conflicts or incorrect type dependency relationships. Next, the CT updates the context
type system through the type system manager, which in turn initializes the repository for storing the
new context information. Finally, the CT generates a library containing stubs that implement the
interface for context access. This approach allows efficient context handling and interoperability
among languages.

5
IEEE Distributed Systems Online April 2006

Figure 2. Context deployment steps.

Currently, we've only implemented a Java language binding for MoCA's context model. The
generated library maps the XML-based context model to object-oriented language constructs that the
applications use to access context information. We've decided to adopt an OO model for context
handling instead of an ontology-based model because the latter requires resource-hungry ontology
engines.

The context deployment task integrates context modeling with the development of the context-aware
application. The library and the middleware keep context access transparent to the application, thus
easing application development. We argue that context models should maintain the aforementioned
information to help the infrastructure (middleware) make the right decisions about how to use context
information efficiently. Finally, the context model helps developers better understand context usage
semantics.

6
IEEE Distributed Systems Online April 2006

Configuring context access

To access and evaluate context information efficiently, we employ a middleware configuration
comprised of static and dynamic parts, which adapt context evaluation and dissemination to the
modeled context's characteristics and to the application's runtime requirements, respectively. For each
configuration, the middleware selects the most appropriate policy for making the context available,
according to policies we discuss elsewhere.9

Static configuration

To explore each context type's particularities and improve its access performance, a middleware
should handle different types differently.

The context meta-information, obtained from the context model, lets the middleware choose the most
suitable mechanisms to handle certain context information. When a CT processes a context model, it
uses this meta-information to produce an efficient stub implementation for context access.
Additionally, the middleware uses such meta-information to adapt its runtime behavior. For example,
consider a static context attribute that is, an attribute that has a constant value (for example, the OS
type and version running on a device). When deploying this context, we configure the context
management infrastructure to disseminate and update this attribute only the first time an application
requests the context.

Context information management of local and nonlocal domains is another example of a task
improved through static configuration. A local context domain comprehends context information
provided by a device that describes its local execution context CPU usage, available memory, and
the operating system's type and version. On the other hand, a nonlocal context domain consists of
context information provided by an external context provider. Hence, access to nonlocal context
requires at least one hop on the network. The middleware stores local domain context in a local
instance of the context repository, which improves the performance for context information access.
Current middleware platforms usually don't distinguish between local and nonlocal context domains.

Table 1 shows some parameters for static configuration and alternatives for changes in the middleware
behavior. We call this configuration static because it doesn't change at runtime.

7
IEEE Distributed Systems Online April 2006

Table 1. Parameters for static configuration.

Dynamic configuration

Besides static configuration based on context models, our middleware also supports dynamic
configuration at application start-up time. When an application launches and registers itself at the
middleware, it can define a specific policy for using certain context information. These policies are
based on application requirements about the precision of the context information to be used. Table 2
shows some parameters for dynamic configuration (in terms of application requirements) and the
corresponding influence on the middleware behavior. Freshness (how recent data must be) and lazy
(on demand) evaluations are examples of access policies that applications can set.

8
IEEE Distributed Systems Online April 2006

Table 2. Parameters for dynamic configuration.

Several applications using the same middleware instance can select different policies for accessing the
same context information. In this case, the middleware chooses the most restrictive policy that
satisfies all application requirements. Using such a dynamic configuration, the middleware can choose
when to best publish context information and to execute context queries. For example, an application
might be interested in location context changes only in terms of a symbolic location for example,
the building name where the device is located and thus shouldn't receive notifications about location
changes at a finer granularity (for example, coordinates). In this example, if a middleware delivers the
location only in the selected granularity, it could decrease the amount of disseminated information,
improving the context dissemination's performance.

9
IEEE Distributed Systems Online April 2006

We're investigating how quality-of-context modeling can provide a richer, dynamic middleware
configuration. So far, we've decided to just implement freshness and context precision properties as
parameters for setting up our middleware policies.

At this point, we've developed a prototype of a context service based on our architecture. We're now
integrating this with other components and services of our MoCA context-provisioning middleware
architecture in particular, our privacy service for context access. Through this integration, we aim to
validate the architecture's ability to support configuration of context access and context model
evolution.

As part of our future work, we'll investigate extending our architecture to flexibly accommodate
quality-of-context parameters. We're also planning to research how context consumers can specify and
use context views that is, selected portions or attributes of a complex context type. We believe that
specifying different context views without changing the underlying context model could create new
opportunities for enhancing context access efficiency.

Acknowledgments

Research grants from the Brazilian National Research Funding Agency (CNPq) (project numbers
552.068/02-0 and 479824/2004-5) support this work.

References

1. J. Coutaz , et al., "Context is Key,"Comm. ACM, vol. 48, no. 3, 2005, pp. 49-53.
2. A.T.S. Chan and S.N. Chuang , "MobiPADS: A Reflective Middleware for Context-Aware

Mobile Computing,"IEEE Trans. Software Eng., vol. 29, no. 12, 2003, pp. 1072-1085.
3. H. Lei , et al., "The Design and Applications of a Context Service,"Sigmobile Mobile

Computing Comm. Rev., vol. 6, no. 4, 2002, pp. 45-55.
4. A. Ranganathan , et al., "MiddleWhere: A Middleware for Location Awareness in Ubiquitous

Computing Applications,"Proc. 5th Int'l Conf. Middleware (Middleware 05), Springer, 2004,
pp. 397-416.

5. T. Buchholz , et al., "Dynamic Composition of Context Information,"1st Ann. Int'l Conf.
Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous 04), 2004, pp. 335-
343.

6. V. Sacramento , et al., "MoCA: A Middleware for Developing Collaborative Applications for
Mobile Users,"IEEE Distributed Systems Online, vol. 5, no. 10, 2004; http://csdl2.computer.
org/comp/mags/ds/2004/10/ox002.pdf.

7. F. Ney da Costa Nascimento , "A Service for Location Inference of Mobile Devices Based on
IEEE 802.11," master's thesis, Dept. de Informática, Pontifícia Universidade Católica, 2005 (in
Portuguese).

8. V. Sacramento , M. Endler and F. Ney da Costa Nascimento , "A Privacy Service for Context-
Aware Mobile Services,"Proc. 1st Int'l Conf. Security and Privacy for Emerging Areas in
Comm. Networks (SecureComm 01), IEEE CS Press, 2005, pp. 182-193.

10
IEEE Distributed Systems Online April 2006

9. R. Couto Antunes da Rocha and M. Endler , "Evolutionary and Efficient Context Management
in Heterogeneous Environments,"3rd Int'l Workshop Middleware for Pervasive and Ad-Hoc
Computing (Middleware 05), ACM Press, 2005, pp. 1-7.

Ricardo Couto Antunes da Rocha is a PhD candidate in the Department of Informatics at the
Pontifícia Universidade Católica. His research interests include context-aware computing,
middleware, mobile and ubiquitous computing, and distributed systems. He received his MSc in
computer science from the University of São Paulo in 2001. He is a member of the ACM and
Brazilian Computer Society (SBC). Contact him at Rua Voluntários de Pátria, 330/601, Botafogo, Rio
de Janeiro, RJ, Brazil, 22270-010; rcarocha@inf.puc-rio.br.

Markus Endler is an assistant professor at the Pontifícia Universidade Católica's Department of
Informatics. His research interests include distributed algorithms and systems, mobile and ubiquitous
computing, and middleware for mobile networks. He received his Dr.rer.nat. in computer science from
the Technical University in Berlin and the title Professor Livre-docente from the University of São
Paulo. He is a member of the ACM and Brazilian Computer Society (SBC). Contact him at Dept. de
Informática, PUC Rio, Rua Marques de São Vicente 225, Office 503, Gavea, Rio de Janeiro, RJ,
Brazil, 22453-900; endler@inf.puc-rio.br.

Related Work on Managing Heterogeneity

Heterogeneity is a classic problem addressed by mobile computing middleware. However, most
middleware research efforts have managed heterogeneity in mobile and pervasive systems either
simply as an interoperability issue or solved it at a higher level, using static and dynamic
reconfiguration.1 For example, some middleware adopt a uniform communication paradigm that hides
the lower-level communication protocol's particularities.

11
IEEE Distributed Systems Online April 2006

The RCSM (reconfigurable context-sensitive middleware)2 and Pace (pervasive autonomic context-
aware environments)3 middleware address heterogeneity with approaches similar to ours. Both RCSM
and Pace provide tools for validating context models and generating stubs for different languages (to
support interoperability), accessing context from different programming languages and platforms and
separating models from implementation. RCSM middleware focuses on spontaneous interactions in ad
hoc networks (instead of structured networks), aiming to support autonomous collaboration among
peers. Pace middleware presents requirements closer to our service, such as offering support for
runtime evolution of context type. However, these middleware have some drawbacks when deploying
the context services in resource-limited devices because they use a common infrastructure that doesn't
consider differences among devices. For example, because they don't aim for efficiency and
scalability, they don't distinguish between local and nonlocal context.

To conform to device limitations, some middleware adopt an agent-based paradigm and use
techniques such as remote execution of mobile code to decrease the local resources required for
context management.4,5

Early work on context-aware middleware considered the evolutionary inclusion of context providers
of different types and technologies. For example, the Context Toolkit6 offers the abstraction of a
widget, which applies to context providers and context interpreters. To support an evolutionary use of
context, some middleware7 explore context discovery. A middleware that supports this concept lets
applications discover and use new context types at runtime.

However, you should still combine such an approach with the adoption of context models that enable
the modeling of complex context information. In this respect, ontologies are a powerful tool for
context modeling, offering both rich expressiveness and support for the evolutionary aspect of context
modeling. To process ontologies, the system architecture must provide an ontology engine that can
make inferences over ontologies. This requirement could impact local context management
performance with resource-limited devices because it requires the ontology engine to run on a server
instead of on the device. To address this limitation, some middleware use agents to transfer resource-
hungry computing (handling ontologies) to servers on a wired network.4,5

Through a similar approach, we complement heterogeneity management by adopting a dual approach
for context management in which we shape the distribution and behavior of context management
services to mobile and desktop (or server) computers. We believe that this approach enables
deployment and usage in more realistic scenarios because it focuses more on performance and
scalability. Additionally, our approach uses context meta-information to explore opportunities for
performance enhancement.

12
IEEE Distributed Systems Online April 2006

References

1. C. Mascolo , L. Capra, and W. Emmerich , "Middleware for Communications,"Principles of
Mobile Computing Middleware, Q. Mahmoud, ed., John Wiley & Sons, 2004, pp. 261-280.

2. S.S. Yau , et al., "Reconfigurable Context-Sensitive Middleware for Pervasive Computing,"
http://doi.ieeecomputersociety.org/10.1109/MPRV.2002.1037720, IEEE Pervasive
Computing , vol. 1, no. 3, 2002,pp. 33-40.

3. K. Henricksen , et al., "Middleware for Distributed Context-Aware Systems,"On the Move to
Meaningful Internet Systems 2005, LNCS 3760, Springer, 2005, pp. 846-863.

4. H. Chen , An Intelligent Broker Architecture for Pervasive Context-Aware Systems, doctoral
dissertation, Univ. of Maryland, Baltimore County, 2004.

5. M. Khedr and A. Karmouch, , "ACAI: Agent-Based Context-Aware Infrastructure for
Spontaneous Applications," J. Network and Computer Applications , vol. 28, no. 1, 2005pp. 19-
44.

6. A.K. Dey , "Providing Architectural Support for Building Context-Aware Applications,"
doctoral dissertation, College of Computing, Georgia Inst. of Technology, 2000.

7. G. Thomson , et al., "An Approach to Dynamic Context Discovery and Composition,"Proc.
System Support for Ubiquitous Computing Workshop (UbiComp 03), 2003; http://ubisys.cs.
uiuc.edu/papers/dynamic-context-discovery.pdf.

Related Links

 DS Online's Mobile and Pervasive Community, cms:/dsonline/topics/mobile/index.xml

 "MoCA: A Middleware for Developing Collaborative Applications for Mobile
Users" (pdf), http://csdl2.computer.org/comp/mags/ds/2004/10/ox002.pdf

 "Guest Editors' Introduction: Context-Aware Computing", http://doi.
ieeecomputersociety.org/10.1109/MPRV.2002.1037718

Cite this article: Ricardo Couto Antunes da Rocha and Markus Endler, "Context Management in
Heterogeneous, Evolving Ubiquitous Environments," IEEE Distributed Systems Online, vol. 7, no. 4,
2006, art. no. 0604-o4001.

13
IEEE Distributed Systems Online April 2006

