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Abstract. Modern storage systems are often faced with complex trade-offs be-
tween the confidentiality, availability, and performance they offer their users. Se-
cret sharing is a data encoding technique that provides information-theoretically
provable guarantees on confidentiality unlike conventional encryption. Addition-
ally, secret sharing provides quantifiable guarantees on the availability of the en-
coded data. We argue that these properties make secret sharing-based encoding
of data particularly suitable for the design of increasingly popular and important
distributed archival data stores. These guarantees, however, come at the cost of
increased resource consumption during reads/writes. Consequently, it is desirable
that such a storage system employ techniques that could dynamically transform
data representation to operate the store within required confidentiality, availabil-
ity, and performance regimes (or budgets) despite changes to the operating envi-
ronment. Since state-of-the-art transformation techniques suffer from prohibitive
data transfer overheads, we develop a middleware for dynamic data transforma-
tion. Using this, we propose the design and operation of a secure, available, and
tunable distributed archival store called FlexArchive. Using a combination of
analysis and empirical evaluation, we demonstrate the feasibility of our archival
store. In particular, we demonstrate that FlexArchive can achieve dynamic data
re-configurations in significantly lower times (factor of 50 or more) without any
sacrifice in confidentiality and with a negligible loss in availability (less than 1%).

Keywords: Secret sharing, archival storage, confidentiality, performance,
availability.

1 Introduction

The last decade has witnessed a deluge of digital data that need to be safely archived
for future generations [9]. Rapid increase in sensitive online data such as health-care,
customer, and financial records has contributed to this unprecedented growth. The chal-
lenges facing such archival data stem from the need to ensure their long-term con-
fidentiality and availability. Many factors mandate these requirements, ranging from
preservation, retrieval, and security properties demanded by legislation to long lifetimes
expected for cultural and family heritage data. To address data confidentiality, modern
storage systems typically employ encryption-based techniques (see survey paper [20]).
The use of data encryption for archival lifetimes, however, introduces problems that
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have been well-documented [22,21]. The primary drawback is that data secured using
keyed cryptography are only computationally secure—they are decipherable via crypt-
analysis given sufficient computing power/time.

Secret sharing is a data encoding technique that offers the promise of overcoming
these shortcomings of an encryption-based archival storage. Secret sharing with pa-
rameters (m, n) breaks a data block into n fragments (each of the same size as the
original data block) in such a manner that at least m fragments must be obtained to
re-construct the original block. These fragments are stored in n different storage nodes
and an adversary has to obtain access to at least m fragments to decipher the original
data - any set of fewer than m fragments provides no information about the original
block. This property provides a quantitative notion of data confidentiality. Additionally,
the original data item is resilient to the loss of fragments in the following manner: it can
be re-constructed even when (n − m) fragments are lost. This provides a quantitative
measure of the availability properties of encoded data.

In this paper, we address the important problem of dynamically re-configuring the
secret sharing parameters (m, n) used to encode data in a distributed archival store. The
need to re-configure could arise as a result of one or more of the following scenarios.
First, a subset of the storage nodes comprising the archival store might become un-
available or unreliable due to some form of security compromise or component failure.
The data fragments at affected nodes must be considered lost and the archival system
must be reverted back to its original settings. Second, there could be infrastructural
changes to the storage network (e.g., addition of new nodes) which are likely to happen
quite frequently relative to the lifetime of the archival data. Finally, the secrecy, avail-
ability, or performance needs of an archival store might change with time (e.g., due to
changes in regulations or societal changes resulting in the stored data becoming more
sensitive). Existing archival systems that have incorporated secret sharing to achieve
the goals of secure long-term preservation of data have either (i) neglected this problem
of re-configuration (e.g., Potshards [22]), or (ii) proposed inefficient techniques (e.g.,
PASIS [24]). Whereas some key aspects of the problem of dynamically re-configuring
secret sharing parameters have been studied [4,6,2,3], the approaches emerging out of
this body of work have severe drawbacks when used to build a practical archival storage
system. In particular, they suffer from the following two main drawbacks:

• High data access overhead. Existing re-configuration techniques require access to
m fragments for every data object stored using a (m, n) configuration. Many archival
storage systems store data across wide-area networks (often with components that
need to be accessed via congested or inherently slow links) and use cheap storage
media technologies wherein reads to the original data can be quite slow. As we will
observe later in this paper, for archival storage, it is desirable for the value of m to
be close to n. Thus, the data traffic resulting from a re-configuration can become a
limiting factor.

• High computational overhead. Existing re-configuration techniques suffer from
high computational overheads. These overheads could be prohibitive in the context
of archival systems that deal with very large volumes of data. It is desired that a re-
configuration technique complete fast enough so the archival system spends a small
amount of time in an unstable (and hence, potentially vulnerable) configuration.
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1.1 Research Contributions

Our contribution is twofold.

• We propose a re-configuration technique called Multi-share Split that is both
lightweight in terms of (i) the computational and I/O overheads it imposes on the
archival storage system as well as (ii) tunable in terms of the trade-offs it offers be-
tween confidentiality, availability, and performance. We expect that Multi-share Split
would enable administrators of archival stores to make appropriate choices to best
satisfy the requirements (e.g, completion time targets, network resource constraints)
of their systems.

• Using our re-configuration technique, we design and implement a middleware that is
used by nodes comprising a distributed archival storage system called FlexArchive.
We analyze the security and availability properties offered by FlexArchive and con-
duct an empirical evaluation of the feasibility and efficacy of FlexArchive using a
prototype networked storage system.

1.2 Road-Map

The rest of this paper is organized as follows. We discuss some background material in
Section 2. We introduce the proposed FlexArchive system in Section 3 and describe the
re-configuration algorithm employed by FlexArchive in Section 4. We develop analyt-
ical techniques for characterizing the availability offered by FlexArchive in Section 5.
We conduct an empirical evaluation of the efficacy of FlexArchive in Section 6. Finally,
we present concluding remarks in Section 7.

2 Background and Related Work

In this section, we provide basic background on secret sharing and its appropriateness
for archival storage.

2.1 Basics of Secret Sharing

An (m, n) secret sharing scheme, where m ≤ n, m > 0, creates n fragments from a
data item with the following properties: given any m fragments, one can re-construct
the data item; however, fewer than m fragments provide no information about the orig-
inal data item. Such classes of secret sharing techniques are “perfectly secure” in the
sense that they exhibit information-theoretic security. The size of each fragment for se-
cret sharing schemes is provably the same as that of the original data item. Hence, the
storage needs are n times the size of the original data.

A number of secret sharing techniques have been proposed that differ very slightly
in their computational complexity. We use a secret sharing scheme due to Shamir (of-
ten called “Shamir’s threshold scheme” [19]). The key idea behind Shamir’s thresh-
old scheme is that m points are needed to define a polynomial of degree (m − 1)
(e.g., two points for a line, three points for a hyperbola, four points for a third-degree
polynomial, and so forth). Shamir’s threshold scheme, for representing a data item S
with secret sharing parameters (m, n), chooses uniformly random (m− 1) coefficients
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a1, · · · , am−1, and lets a0 = S. It then builds the polynomial f(x) = a0 + a1x +
a2x

2 + a3x
3 + · · · + am−1x

m−1. Finally, it computes the values taken by this poly-
nomial for n distinct values of x comprising the set {x1, · · · , xn}. The n shares of the
secret S are now given by the pairs (xi, f(xi)). Given any m of these pairs, one can
find the coefficients of the polynomial f(.) by interpolation, and then evaluate the secret
S = a0. Geometrically, on a X − Y plane, one can think of the secret S as being the
Y -intercept of the curve defined by the polynomial f(.); the shares are the Y -values at
x1, · · · , xn. Note that since we are dealing with finite values (the secret and the shares
are data values and represented by say, q bits), the X − Y plane is a finite field with
the range of values 0 to 2q − 1. Since the participants holding the shares could implic-
itly define the n indices for which the shares are computed (e.g., based on their unique
names/identities), each share is simply the value f(xi) and hence can be represented
using q bits, same as those needed for the secret S.

2.2 Long Term Data Confidentiality

Two fundamental classes of mechanisms for enforcing data secrecy are those based on
encryption and secret sharing, respectively. Many systems such as OceanStore [17],
FARSITE [5], SNAD [14], Plutus [11], and e-Vault [10] address file secrecy, but rely
on the explicit use of keyed encryption. Keyed encryption may work reasonably well
for short-term secrecy needs but it is less than ideal for the long-term security problem
that the current work addresses. Keyed cryptography is only computationally secure,
so compromise of an archive of encrypted data is a potential problem regardless of the
encryption algorithm used. An adversary who compromises an encrypted archive need
only wait for cryptanalysis techniques to catch up with the encryption used at the time
of the compromise. If an insider at a given archive gains access to all of its data, he
can decrypt any desired information even if the data is subsequently re-encrypted by
the archive, since the insider will have access to the new key by virtue of his internal
access. Encrypted data can be deciphered by anyone, given sufficient CPU cycles and
advances in cryptanalysis. Furthermore, future advances in quantum computing have
the potential to make many modern cryptographic algorithms obsolete. For long-lasting
applications, encryption also introduces the problems of lost keys, compromised keys,
and even compromised crypto-systems. Additionally, the management of keys becomes
difficult because data might experience many key rotations and crypto-system migra-
tions over the course of several decades. This must all be done without user intervention
because the user who stored the data may be unavailable.

Moving away from encryption to secret sharing enables an archival storage system
to rely on the more flexible and secure authentication realm. Unlike encryption, au-
thentication need not be done by a computer and authentication schemes can be easily
changed in response to new vulnerabilities. Secret sharing improves the security guar-
antees by forcing an adversary to breach multiple archival sites to obtain meaningful
information about the data. Several recently proposed archival systems such as POT-
SHARDS [22], PASIS [25,7], and GridSharing [23] employ secret sharing schemes for
this reason.



Middleware for a Re-configurable Distributed Archival Store Based on Secret Sharing 111

2.3 Long Term Data Availability

Recovering from disk failures to large-scale site disasters has long been a concern for
storage systems. The long lifetimes of archival data make them prone to latter type of
scenarious. Keeton et al. [12] highlighted the importance of efficient storage system
design for disaster recovery by providing automated tools that combine solutions such
as tape backup, remote mirroring, site fail-over, etc. These tools strive to select de-
signs that meet the financial and recovery objectives under specified disaster scenarios.
Totalrecall [1], Glacier [8] and Oceanstore [17] are examples of distributed storage sys-
tems where high availability is an explicit requirement. These systems use RAID-style
algorithms or more general erasure coded redundancy techniques along with data distri-
bution to guard against node failures. Erasure coded techniques could be thought of as
similar to secret sharing minus the “secrecy” gaurantees, in the following sense: similar
to secret sharing, an (m, n) erasure coding divides a data block into n fragments such
that at least m fragments are needed to re-construct the original block. However, unlike
secret sharing, access to less than m data fragments might reveal partial information
about the data block.

3 FlexArchive: A Re-configurable Secret Sharing-Based Archival
Store

We assume a distributed archival system called FlexArchive consisting of multiple
storage nodes that are spread across various sites. Each site in FlexArchive could be
professionally managed with internal redundancy mechanisms to protect data against
component failures. In Figure 1 an “archival site” refers to an SSP-managed (SSP stands
for Storage Service Provider) or an internal-to-enterprise storage site. A representative
example of the system we assume is Safestore [13], which consists of multiple sites,
each owned by a different SSP. Each SSP provides storage services in return for fees
based on some agreed-upon contract. The contract might also include penalties for los-
ing data. We assume these penalties to be such that it is in the best interests of the SSPs
to provide internal redundancy mechanisms. However, large-scale component failures
like disasters and correlated site failures [12,15] are harder to protect against. Consid-
ering the increased probability of such events during the lifetime of archival data, the
secret distribution algorithm employed by FlexArchive must provide for inter-site re-
dundancy as well. FlexArchive employs a secret distribution scheme where each frag-
ment encoding a data unit goes to a different storage node. Assuming secret sharing
parameters (m, n) for a data item under discussion, the value (n − m) captures the
archival system’s resilience against node failures. Even though SSPs can be employed
to safely store and retrieve data, they cannot be trusted to preserve data privacy—e.g.,
multiple sites can collude to obtain the original data. The parameter m captures the
difficulty of accessing data in FlexArchive.

For digital data that must last for decades or even centuries, the original writer of
a data item must be assumed to be unavailable when it is read. We assume that sites
comprising FlexArchive implement access control policies to identify and verify the
permissions of the reader/writer. Another important security property is data integrity,
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Fig. 1. FlexArchive system model. We show the middleware at a client that facilitates data encod-
ing and placement on servers part of the FlexArchive archival store as well as re-configuration.
We show an illustrative system with N = 4 storage sites and data being encoded using a config-
uration confirming to (m ≤ 3, n = 3).

which refers to the ability of the system to identify modifications to the data while at
rest or in transit. In short-lived storage systems, data integrity is ensured by storing
secure hashes along with the data using one-way hash functions such as MD5, SHA1.
We assume the problems of user authorization/authentication and data integrity beyond
the scope of our current work and focus only on data confidentiality.

We assume that FlexArchive provides an interface to its clients to create data in
the form of archival “objects.” An object could be a file in a server file system or it
could be a smaller granularity unit like a disk block or an extent of blocks. As shown
in Figure 1, we assume that each client employs a middleware that implements two
units: (i) the secret sharing module and (ii) the fragment distributor. The secret sharing
module is responsible for encoding/decoding data and is completely local to the client
system. The fragment distributor is responsible for determining the placement of frag-
ments encoded by the secret sharing unit on FlexArchive sites (and decoding fragments
read from FlexArchive) and relies on certain information about the current state of
FlexArchive for its decision-making. The placement strategy employed by the fragment
distribution unit could vary depending on the actual storage structure. For example, in
WAN-based distributed storage, it is often the case that the storage nodes across sites (or
certain subsets of them) are independent of each other in terms of security breaches and
failures. Therefore, a desirable way of assigning fragments representing a data object to
sites is to store each fragment on a node within a different site. This would render data
fragments independent with respect to failures/compromises and utilize well the prop-
erties of secret sharing. Typically, the value of n used for secret sharing is in the range
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5-20, significantly smaller compared to the number of participating storage sites, N ,
that could be in the hundreds or even a few thousands spread across a WAN. We assume
that the fragment distributor would use some form of load balancing when distributing
the fragments across these sites.

3.1 Re-configuration in FlexArchive: Key Concerns

The usage scenario of FlexArchive is write-once, read-maybe, and thus stresses through-
put over low-latency performance. Within each FlexArchive site, writes are assumed to
be performed as part of a background process in a way that the accompanying latencies
do not affect the foreground system performance. The key factors affecting archival
I/O performance are (i) CPU computation at the secret sharing and the fragment dis-
tribution units, (ii) network latency between the client and FlexArchive nodes, and (iii)
storage access latency at FlexArchive nodes. The choice of secret sharing parameters
m and n is dictated by the confidentiality and availability guarantees desired by the
client. For example, if it is well understood that the simultaneous occurrence of (i)
m or more nodes being compromised and (ii) more than k nodes becoming unavail-
able simultaneously are extremely unlikely scenarios, a good rule-of-thumb would be
to employ an (m, m + k) secret sharing scheme. Selecting the number of shares re-
quired to re-construct a secret-shared value involves a trade-off between availability
and confidentiality—the higher the number of sites that must be compromised to steal
the secret, the higher the number of sites that must remain operational to provide it le-
gitimately. Clearly, no single data distribution scheme is right for all systems. The right
choice of these parameters depends on several factors, including expected workload,
system component characteristics, and the desired levels of availability and security.
PASIS [25,7,24] proposes analytic techniques to ascertain the right secret sharing pa-
rameters for a given system. FlexArchive builds upon the insights provided by this body
of work for determining appropriate values for these parameters.

We use the term security budget to denote the minimum number of fragments that
need to be compromised to constitute an attack. For an (m, n) configuration, the se-
curity budget is equal to m. Similarly, we use the term availability budget to denote
the maximum number of sites that can fail while still allowing the reconstruction of
a stored data item. Since a preserved data item is available under the loss of at most
(n − m) fragments, this number represents its availability budget. After the archival
objects have been initially written onto n FlexArchive sites, intermediate changes to
the configuration are necessitated by one or a combination of the following.

• Scenario 1: Node Compromise. If one of the storage nodes suffers a security breach
resulting in the potential exposure of all the data it stores, all affected objects would ex-
perience a decrease in their security budgets by one. To revert the system to its original
security settings, the system administrator would need to initiate a re-configuration of
the remaining fragments of the affected objects to restore their security budgets, i.e.,
a transformation of a set of fragments belonging to an (m − 1, n − 1) configuration
to (m, n− 1). In general, a compromise of k nodes would require a re-configuration
of an affected object from a rendered (m−a, n−a) to (m, n−a), where 1 ≤ a ≤ k.
The parameter a is the number of fragments belonging to the affected object that were
stored at the k nodes.
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• Scenario 2: Data Loss. Permanent loss of data at a storage node reduces the config-
uration of all affected objects to (m, n − 1). To recuperate, the administrator might
wish to deploy a spare storage node or alternate storage space at the affected node.
In either case, a re-configuration from (m, n − 1) to (m, n) for all affected objects
is required. In general, permanent data loss will require reconfigurations of the form
(m, n − a) to (m, n).

• Scenario 3: Infrastructure Changes. Due to the lengthy periods of time for which
the archival data are stored, they will witness plenty of changes to the underlying
storage infrastructure. As a result, the objects may need to be moved to a different
configuration to accommodate the new infrastructure. This might mean changes to
m or n or both.

Since storage systems retire data slowly compared to the rate of their expansion due
to the rapidly decreasing costs of storage and increasing storage densities over time,
scenario 3 would often require increasing m or n or both. Scenario 1 would always
require increasing the value m, whereas scenario 2 would require increasing the value
of n. We focus only on re-configuration techniques that perform up-scaling (increasing
m or n or both). A “naive” (m, n) to (m′, n′) re-configuration technique is as follows:
(i) reconstruct the secret by accessing and combining any m fragments, (ii) split the
secret into n′ fragments using an (m′, n′) configuration, and (iii) delete the original n
fragments and replace them with the n′ fragments constructed in the last step. The ob-
vious problem with this approach is the reconstruction of the original secret during the
reconfiguration process. The node performing the re-configuration becomes a central
point of attack as it can expose the secret. The fact that a secret was originally stored as
a (m, n) configuration indicates that an adversary must compromise at least m different
entities to obtain a secret. This security property needs to be preserved at all times, even
during the re-configuration process.

3.2 Re-configuration in FlexArchive: A Baseline Technique

We now briefly describe a technique by Jajodia et al. [4] to perform an (m, n) to (m′, n′)
re-configuration that preserves the above property. We will use this scheme as a baseline
against which we will compare our techniques. To the best of our knowledge, this is the
only significant body of work that re-configures secret sharing-encoded data without
exposing the original secret during the process. A threshold subset m original share-
holders perform a (m′, n′) secret splitting on each of their shares to obtain n′ sub-shares
each. Following this, each of the n′ sub-shares from an original shareholder is sent to
a target shareholder. The m sub-shares at each target shareholder are combined via the
associated secret construction algorithm to obtain a resultant share. The resultant n′

shares at the target shareholders are of a (m′, n′) configuration for the original secret.
The baseline technique is illustrated in Figure 2. The main drawbacks of the baseline
technique lie in its high resource consumption.

• Storage I/O Needs. This reconfiguration technique consumes excessive storage re-
sources. Accessing m original shares to perform the reconfiguration for each object
is a significant system bottleneck. Since the archival storage nodes are designed for
write once and read rare type of workloads (typically tapes or log structured storage
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Fig. 2. Baseline re-configuration technique: from starting configuration of (m,n) to (m’,n’)

on disks [16,18]), the random read access to stored data is quite tedious. Under such
conditions, reads to existing data for background tasks such as reconfiguration might
bottleneck the actual foreground jobs of archiving. This is further compounded by the
fact that re-configurations are typically done as batch jobs for millions of objects at a
time. This is because they are triggered by node compromise/failure events causing all
objects in the affected nodes to be re-configured. Another important factor is that, at
the time of re-configuration, a subset of nodes containing the shares may not be avail-
able. In most distributed systems spread over wide geographic sites, nodes experience
temporary failures because of various reasons (link failure, remote maintenance etc).
There is usually a default churning of nodes, i.e nodes go down temporarily and join
the network again at a later time. It is desirable that the re-configuration protocol pro-
ceeds with the alive subset of nodes (possibly, with subset of shares < m) instead of
waiting an indefinite amount of time for m nodes to be available.

• Network Access. In addition to the storage access, the baseline technique involves
approximately m ∗n′ network messages amongst storage nodes. This can bottleneck
a typical archival storage system where all the storage nodes reside in geographically
distant locations. The high latency and low bandwidth properties of network links
connecting the nodes slows down the completion time of the re-configuration. There
is a high possibility that many of the links towards the storage servers would be
congested as a result, thereby affecting the foreground archiving jobs.

• Computational Needs. The computational requirements of the baseline technique
are high: it requires m different instances of (m′, n′) secret splitting and n′ instances
of (m, m) secret reconstructions. As we shall observe in the evaluation section, the
Shamir secret sharing operations are computationally intensive. These operations are
performed in a distributed manner at the various archival sites. Depending on the
computing resources available at the various storage sites to perform these operations,
the CPU cycles required could become a heavy bottleneck during re-configuration.
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4 Re-configuration in FlexArchive

We categorize re-configurations of secret shares as belonging to one of the following
three types: (a) Improving only the availability budget (b) Improving only the secu-
rity budget and (c) Improving both budgets simultaneously. In the remainder of this
section, we describe our proposed approach for type (b) reconfiguration - to increase
the security budget of a set of secret shares. It is desired that the security budget of a
data item represented using a (m, n) Shamir encoding be increased by k with access to
minimal number (denoted by L) of original shares. The resultant configuration requires
an adversary to compromise k more nodes to obtain additional fragments than with
the original configuration. It can be seen that any re-configuration technique requires
at least (n − m + 1) fragments to be modified. In other words, if m or more origi-
nal fragments are left unmodified, the security budget remains unchanged. Therefore,
L = n − m + 1.

4.1 Multi-share Split: FlexArchive Re-configuration Technique

At the heart of our technique, called “Multi-share Split,” lies a subroutine called “Multi-
transform” that leverages Shamir encoding to create additional (or “secondary”)
fragments from a subset of the original (or “primary”) fragments. In the following dis-
cussion, we first describe how Multi-transform works. We then describe the working of
the Multi-share Split technique.

How Multi-transform Operates. Multi-transform operates on a set of x primary frag-
ments to produce y secondary fragments (y > x, 1 ≤ c ≤ (y − x)) with the following
property: to retrieve a subset of size x1 of the x primary fragments, at least (x1 + c)
of the y secondary fragments must be acquired. We call this the c-increment prop-
erty, which has the following implication: access to any (x1 + c) secondary fragments
may not result in an exposure of the x1 primary fragments. Trivially, for x = 1, the
(1 + c, y) Shamir encoding satisfies the above property. We refer to this special case of
Multi-transform as “Uni-transform.” Multi-transform is a general technique that works
for any values of x, y and c.

We first show the working of Multi-transform(x, y, c) using a couple of examples. In
the first example, let x = 2, y = 3, c = 1, i.e., we would like to transform two primary
fragments p1, p2 into three secondary fragments s1, s2, s3 in such a manner that the fol-
lowing holds: (i) at least two secondary fragments must be acquired to obtain any of the
primary fragments, and (ii) all three secondary fragments must be acquired to obtain
both the primary fragments. Figure 3(a) illustrates how the secondary fragments can
be generated. The primary fragments p1, p2 are now secrets themselves and represent
the Y -intercepts of a finite field. First, Multi-transform randomly generates a secondary
fragment s1 in the finite field at index 1. The points (p1, s1) uniquely define a line in
the finite field. Next, Multi-transform evaluates the Y -intercept of this line at index 2 to
obtain the secondary fragment s2. Finally, the line defined by the points (p2, s2) is used
to generate the secondary fragment s3 at index 3. Clearly, the three secondary fragments
satisfy the desired increment property and hence can be used to replace the two primary
fragments. Figure 3(b) shows another example for x = 3, y = 6, c = 2. Instead of lines,
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Fig. 3. Graphical illustration of the Multi-transform(x,y,c) technique for small values of x, y,
and c

we now have three second-degree polynomials in the finite field. In the general trans-
formation of x primary fragments to y secondary fragments, there are x polynomials of
cth degree. Multi-transform(x, y, c) is described formally in Algorithm 1.

The operation of Multi-transform(x, y, c) comprises several phases. In the first phase,
using the first primary fragment, (c + 1) secondary fragments are created by construct-
ing a random polynomial of cth degree. This, in fact, amounts to a (c+1, c+1) Shamir
splitting of the first primary fragment. Note that this ensures the c-increment property
for the first primary fragment. In the second phase, using the second primary fragment
and a portion of the c + 1 secondary fragments generated so far, additional secondary
fragments are created. Similarly, for the third primary fragment and so on till the xth

primary fragment. After the first phase, since at each additional phase, at least one new
secondary fragment is created (y ≥ x + c), the c-increment property is preserved in
an inductive fashion. The algorithm strives to balance the dependence of primary frag-
ments on the secondary fragments by doing a couple of things. The number of new sec-

ondary s at each additional phase after the first phase is determined as

(
y − (c + 1)

x − 1

)
.

Also, the subset of already generated secondary fragments chosen at each phase (for
constructing the random polynomial) is the one with those secondary fragments that
have been least utilized so far in the generation of random polynomials. These two
heuristics are crucial to ensuring that the y secondary fragments are equally loaded in
the sense that the number of primary fragments affected by a loss of a set of secondary
fragments depends solely on the cardinality of the set and not on the actual members
within the set.

How Multi-share Split Employs Multi-transform. Let us now turn our attention back
to the re-configuration problem of improving the security budget of a (m, n) Shamir
encoding by k with access to L original shares. Multi-share Split groups a set of L pri-
mary fragments into v sets of x primary fragments and applies Multi-transform(x, y, c)
on each of these v sets. We set the input parameters for the Multi-transform as fol-
lows. For the security budget to be increased by k, we set c = k. To reduce the ratio
of secondary fragments as compared to Uni-share Split, the values must satisfy x ≥ a
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Algorithm 1. The Multi-transform(x,y,c) Algorithm
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and y = x + c. Therefore, there are different ways of employing the Multi-share Split
for a given input, each differing in the choice of x. It can be seen that the encoding
offered by Multi-share Split improves the security budget by k. The proof is easily
derived from the aforementioned increment property of Multi-transform. We formally
describe Multi-share Split in Algorithm 2. The secondary fragments obtained from the
v applications of Multi-transform are used to replace the L primary fragments.

Algorithm 2. The Multi-share Split Algorithm

Fig. 4. Increasing the security budget of a data item represented using a (8, 11) Shamir encoding
from 8 to 9 using Multi-share Split. We use Multi-transform(3,4,1).

Figure 4 shows an example invocation of Multi-share Split. It is instructive to com-
pare this with the special case corresponding to x = 1 that we call “Uni-share Split.”
With Uni-share Split, two primary fragments would be permanently erased and two
of them would be used for the generation of secondary fragments. On the other hand,
the Multi-share Split shown in Figure 4 involves three primary fragments in generating
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secondary fragments and permanently erases only one of them. We denote the configu-
ration resulting from Multi-share Split by (m + k, n)M(L,k,x). Thus, Multi-share Split
can results in fewer instances of permanent loss of primary fragments by controlling
the number of secondary fragments generated per participating primary fragment. The
value of x to be used in a Multi-share Split re-configuration method would be cho-
sen based on the availability properties desired from the resultant configurations. We
investigate this issue in the following sections.

5 FlexArchive Availability Characterization

In a regular (m, n) secret sharing configuration (e.g., Shamir’s), all the n fragments are
equivalent in the following sense: the configuration can tolerate the loss of up to any
(n − m) fragments to recover the secret. We refer to this as the fragment-equivalence
property. As seen at the end of last section, Multi-share Split yields configurations that
violate this property. This is because the resultant configurations have a mixture of pri-
mary and secondary shares. A loss of a set of secondary shares could render some other
set of secondary shares useless for the secret construction. On the other hand, the loss of
a primary share does not affect the reconstruction potency of any of the other shares. We
attempt to analytically characterize the availability properties of configurations offered
by Multi-share Split.

The heterogeneity in fragments introduced by Multi-share Split renders the estima-
tion of the availability more complex than for configurations with fragment-equivalence.
We quantify the availability for a Multi-share Split configuration using a function
CFT (R) defined as the (conditional) probability that the data item can be recovered
given that R out of the total of N FlexArchive nodes have failed. In the current analy-
sis, we assume that the failures of all nodes are governed by independent and identical
stochastic processes. Consequently, any combination of R failed nodes among the total
N shares is equally likely. It is easy to enhance this to incorporate different failure be-
haviors but we omit such analysis here. Furthermore, we assume that each fragment is
equally likely to be placed on any of the N nodes. This is likely to correspond closely
to a well load-balanced FlexArchive system. For an (m, n) fragment-equivalent config-
uration of an archival object stored on a system of N nodes, CFT (.) is given by

CFT(R) =

{
1 if R ≤ n − m∑n

i=m

( i
N−R)×(n−i

R )
(n

N)
otherwise

where
(

i
j

)
is the combinatorial function. For a set of fragments obtained by Multi-share

Split, a closed expression for CFT (.) is less straightforward. For the sake of simplic-
ity, we focus on the special case of Uni-Share Split (which offers a lower bound on the
availability for Multi-share Split in general). Furthermore, we assume that the number
of system nodes N = n. Let us denote by (m, n)U(L,k) (same as (m, n)M(L,k,1)) the
configuration obtained from an (m − k, n) Shamir configuration via Uni-share split by
increasing the security budget by k. It consists of v sets of secondary fragments obtained
by (t, t) splitting. Without loss of generality, we assume L mod t = 0 and therefore, we
ignore the cases where some sets of the secondary fragments are obtained by (t, t + r)
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splitting. The secondary fragments can be used to reconstruct any of the v original pri-
mary fragments belonging to the original (m − k, n) Shamir configuration. Note that
(L−v) primary fragments are permanently deleted, i.e., they can never be reconstructed
from the secondary fragments. We refer to the deleted (albeit only temporarily) v frag-
ments as imaginary primary fragments. The number of primary fragments that were
retained, denoted as retained primary fragments, is w = n − L. Clearly, if the number
of lost fragments is greater than (n − m), the data can not be recovered—the resultant
configurations from Multi-share Split can not tolerate more fragment failures than the
maximum limit allowed by the corresponding Shamir configuration.

We enumerate the possible failure scenarios of (m, n)U(L,k), when the number of
lost fragments i ≤ (n − m). Suppose the loss of i fragments in the resultant configura-
tion has effectively rendered a loss of z fragments amongst the combined set of retained
and imaginary primary fragments. Only if z ≥ (n − m + k) does it contribute to the
loss of the data. For each such value of z, there are multiple possibilities of the number
of fragments lost amongst the retained and imaginary primary fragments. For example,
one fragment could be lost from the set of retained primary fragments and (z − 1) from
imaginary primary fragments, or 2 from retained primary fragments and (z − 2) from
imaginary primary fragments, and so on. In general, j fragments being lost from the set
of retained primary fragments could occur in

(
w
j

)
ways. The other (i−j) lost fragments

are then secondary which have effectively resulted in the loss of (z − j) imaginary pri-
mary fragments (the number of possible combinations of the lost imaginary primary
fragments is

(
v

z−j

)
). For a fixed set of (z − j) lost imaginary primary fragments, let us

denote the possible number of combinations by which (i − j) secondary shares could
have resulted it by a function called c(z−j, t, i−j). The function c(.) can be recursively
defined as follows:

c(A,B,C) =
{ (

B
C

)
if A = 1∑B

i=1

(
B
i

) × c(A − 1, B, C − i) otherwise

We, therefore, have:

1-CFT(R) =
1(
n
i

) ×
n∑

z=n−m+k+1

z∑
j=0

(
w

j

)
×

(
v

z − j

)
× c(z − j, t, i − j).

6 Empirical Evaluation of FlexArchive

6.1 Experimental Setup

We implement the baseline technique and Multi-share Split in our prototype LAN-based
archival storage system. The LAN consists of 41 machines with little outside contention
for computing or network resources. We use a dedicated machine to host a client with
the rest serving as archival stores. All machines have dual Hyper-threaded Intel Xeon
processors clocked at 3.06 GHz and 1 GB RAM. The operating system running on the
machines is Linux v2.6.13-1.1532. For the computations using Shamir’s secret sharing
algorithm, we use the ssss tool. In all our experiments, we use GF (216), i.e., the size of
the finite field used for Shamir’s polynomial interpolation is 16 bits.



122 S. Chaitanya et al.

6.2 Performance Evaluation

We consider re-configurations where the security budget of archival objects is increased
by 1, 2, or 3 starting from three different configurations (6,10), (12,20) and (15,20). We
consider a varying number of objects in a batch job of re-configuration where each
object size is assumed to be 1MB. We vary the batch size from 1 up to 500 objects to
understand the scalability with job size and processing parallelism of the different re-
configuration approaches. We set the value of L, the number of original shares allowed
to be accessed for Multi-share Split to its minimum value, i.e., L = n − m + 1.
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Fig. 5. Comparison of completion time (in minutes) offered by Baseline, Uni-share Split, and
Multi-share Split. Recall that Uni-share Split is a special case of Multi-share Split. We use * to
denote a non-fragment-equivalent configuration resulting from Multi-share Split. We report the
average of several runs with the 95% confidence intervals small enough to be omitted in this
figure.

We first consider re-configurations starting from (6,10). We observe that in our LAN
setting when the batch size is 100 objects, the completion times of Uni-share Split for
moving to (7,10)*, (8,10)*, and (9,10)* are 0.09, 0.15, and 0.22 minutes, respectively.
We report these in Figures 5(a)-(d). We use “*” to indicate the non-fragment-equivalent
configurations resulting from Multi-share Split. (Recall that these configurations have
inferior availability properties than the corresponding fragment-equivalent configura-
tion; we study this degradation in availability in Section 6.3). The corresponding val-
ues for Multi-share Split with the aggregation parameter x = 2 are 0.12, 0.18, 0.36
minutes. As seen, the completion time increases with the aggregation parameter. Most
importantly, we find that Multi-share Split completes by an order of magnitude sooner
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than the state-of-the-art Baseline technique. The corresponding values for the Baseline
technique are 30.5, 31.4, and 32.6 minutes, respectively. As the batch size increases
from 100 to 500 objects, the completion times of Uni-share Split for moving from
(6,10) to (7,10)*, (8,10)* and (9,10)* increase by 0.38, 0.61, and 0.92 minutes, re-
spectively. For Multi-share Split with x = 2, the corresponding increase in values are
0.49, 0.73, and 1.48 minutes, respectively. On the other hand, the completion times for
Baseline increase by 122.0, 125.6, and 130.4 minutes, respectively. We observe that
Baseline also scales very poorly with the batch size. This supports our proposition that
our Multi-share Split can be deployed to achieve significantly faster re-configuration
times compared to the Baseline. Multi-share Split exhibits increased parallelism com-
pared to Baseline and is not limited by the additional synchronization phase of fragment
reconstruction required by Baseline.

Finally, we conduct measurements of completion time for starting configurations of
(12,10) and (15,20) and make similar observations about the significant speedup offered
by Multi-share Split. Due to space constraints, we only mention two salient observations
here. First, our experiments yield similar observations as above about the significant
speedup offered by Multi-share Split. Second, we find that the completion times for the
starting configuration of (12,20) are much larger compared to that of (15,20) for Multi-
share Split, whereas the opposite is true for Baseline. This is because Multi-share Split
operates only on (n − m + 1) original fragments whereas Baseline uses m fragments.
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Fig. 6. Comparison of availability of configurations obtained using Baseline, Uni-share Split, and
Multi-share Split. We use the CFT (.) as our measure of availability. Recall that Uni-share Split
is a special case of Multi-share Split. We use * to denote a non-fragment-equivalent configuration
resulting from Multi-share Split.

6.3 Availability Evaluation: Conditional Fault Tolerance

We evaluate the availability resulting after a re-configuration using CFT (.) as defi-
nition in Section 5. We measure the CFT (.) of resultant configurations obtained by
incrementing the security budget of three fragment-equivalent configurations (6,10),
(12,20) and (15,20). As before, due to limited space, we present the results for only
(6,10). Figures 6(a)-(c) show CFT (.) for configurations obtained by incrementing the
security budget of (6,10) configuration. In all the cases, we assume the stringiest budget
in terms of the number of original fragments that are permitted to be accessed during
the re-configuration, i.e., L = n − m + 1. In Figure 6(a), we compare the CFT (.)
of (7,10)* configuration achieved using Uni- and Multi-share Split techniques with
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Table 1. Three failure traces used in our study

Trace Duration Nature of nodes No. of nodes Probe interval

WS 09/2001 to 12/2001 Public Web servers 130 10 mins
PL 03/2003 to 06/2004 PlanetLab nodes 277 on avg 15 to 20 mins

RON 03/2003 to 10/2004 RON testbed 30 on avg 1 to 2 mins

the (7,10) configuration achieved using Baseline when the security budget increment
k = 1. Figures 6(b),(c) report CFT (.) for final configurations (8,10)* and (9,10)*,
respectively.

As expected, we observe that the CFT (.) of configurations using Multi-share Split
lag behind those using Baseline. The gap initially increases when the security budget
increment k is raised from 1 to 2 but it tends to become smaller for k ≥ 3. We also
observe that CFT (.) using Multi-share Split improves with the aggregation parameter
x. In particular, CFT (.) using Multi-share Split with x > 1 are superior to those using
Uni-share Split. One might argue that a FlexArchive administrator should always prefer
Multi-share Split with the largest possible x as it provides the best CFT. However,
as already seen this improvement in availability comes with an increased completion
time for re-configurations. For example, the completion times for Multi-share Split with
x > 1 are larger than those for Uni-share Split. In fact, the completion time increases
with x in general. This is because of the following reasons. In Uni-share Split, there is
inherent parallelism in the sense that the (t, t) splittings are done in parallel on the nodes
storing the primary shares. The amount of parallelism is reduced as we move to Multi-
share Split with larger values of x. Also, the computation involved in transforming
primary fragments to secondary fragments is higher in Multi-share Split than in Uni-
share Split.

6.4 Availability Evaluation: Failure Traces

In our availability characterization so far, we have assumed failure independence of
nodes. However, the failure correlation between nodes may not be completely absent
in real world systems, e.g., due to nodes being managed using common management
strategies, system software bugs, DDos attacks, etc. We study three real-world traces
with failure information (described in Table 1) to evaluate the impact of realistic fail-
ure patterns. WS trace [15] is intended to be representative of public-access machines
that are maintained by different administrative domains, while PL and RON traces [15]
potentially describe the behavior of a centrally-administered distributed system that is
used mainly for research purposes as well as for a few long-running services. A probe
interval is a complete round of all pair pings; a node is declared as failed if none of the
other nodes can ping it during that interval.

We estimate the “availability of data,” for a given configuration as follows. First we
assume that the nodes used to store the fragments of an object are chosen uniformly
at random from among the nodes associated with the trace. We then determine the
probability that the object can be recovered within every probe interval. Availability of
data is then expressed using the average of these probability values over the entire trace.
With our assumption on placement of fragments, availability of data is given by

∑N
R=1
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Fig. 7. Availability of configurations resulting from various re-configuration techniques. The
initial configuration is fragment-equivalent (6,10). Confidence intervals, found to be very small,
have been omitted in the figures.
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Fig. 8. Availability of configurations resulting from various re-configuration techniques. The
initial configuration is fragment-equivalent (12,20). Confidence intervals, found to be very small,
have been omitted in the figures.
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Fig. 9. Availability of configurations resulting from various re-configuration techniques. The
initial configuration is fragment-equivalent (15,20). Confidence intervals, found to be very small,
have been omitted in the figures.

(CFT (R) × FSF (R)). Here, CFT (.) is the conditional fault tolerance computed for
a resultant configuration with the number of system nodes N set to the total number of
nodes in a given failure trace. The function FSF (R) represents “failure size frequency”
and is the fraction of instances in the trace where exactly R nodes fail. Figures 7- 9 show
the availability for different resultant reconfigurations and traces. The “Num Nines” on
the y-axes indicate that the availability values are extremely close to one, hence we
use the number of leading nines after the decimal point in our presentation. From these
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figures, we observe results similar to those seen in Section 6.3 where as we move from
Uni-share Split to Multi-share Split with higher values of the aggregation parameter,
the availability of data increases and approaches that for the corresponding fragment-
equivalent configuration.

7 Concluding Remarks

The motivation for this work stems from the complex trade-offs between the confi-
dentiality, availability, and performance that modern storage systems need to address.
We argued that secret sharing-based encoding of data offers two desirable properties—
(i) information-theoretically provable guarantees on data confidentiality unlike conven-
tional encryption, and (ii) quantifiable guarantees on the availability of encoded data—
that make it particularly suitable for the design of increasingly popular and important
distributed archival data stores. These guarantees, however, come at the cost of increased
resource consumption during reads/writes and hence could degrade the performance of-
fered to clients. Consequently, we argued, it is desirable that such a storage system em-
ploy techniques that could dynamically transform data configuration to operate the store
within required confidentiality, availability, and performance regimes (or budgets) de-
spite changes to the operating environment. Since state-of-the-art transformation tech-
niques suffer from prohibitive data transfer overheads, we developed a middleware that
facilitates dynamic data re-configuration. at significantly lower overheads. Using this,
we proposed the design and operation of a secure, available, and tunable distributed
archival store, called FlexArchive, spanning a wide-area network. Using a combination
of analysis and empirical evaluation, we demonstrated the feasibility of FlexArchive.
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