
Decat et al. Journal of Internet Services and Applications 2014, 5:1

http://www.jisajournal.com/content/5/1/1

RESEARCH Open Access

Middleware for efficient and confidentiality-aware
federation of access control policies
Maarten Decat*, Bert Lagaisse and Wouter Joosen

Abstract

Software-as-a-Service (SaaS) is a type of cloud computing in which a tenant rents access to a shared, typically

web-based application hosted by a provider. Access control for SaaS should enable the tenant to control access to

data that are located at the provider side, based on tenant-specific access control policies. Moreover, with the

growing adoption of SaaS by large enterprises, access control for SaaS has to integrate with on-premise applications,

inherently leading to a federated set-up. However, in the state of the art, the provider completely evaluates all policies,

including the tenant policies. This (i) forces the tenant to disclose sensitive access control data and (ii) limits policy

evaluation performance by having to fetch this policy-specific data. To address these challenges, we propose to

decompose the tenant policies and evaluate the resulting parts near the data they require as much as possible while

keeping sensitive tenant data local to the tenant environment. We call this concept policy federation. In this paper, we

motivate the need for policy federation using an in-depth case study analysis in the domain of e-health and present a

policy federation algorithm based on a widely-applicable attribute-based policy model. Furthermore, we show the

impact of policy federation on policy evaluation time using the policies from the case study and a prototype

implementation of supporting middleware. As shown, policy federation effectively succeeds in keeping the sensitive

tenant data confidential and at the same time improves policy evaluation time in most cases.

Keywords: Software-as-a-Service; Security; Access control; Policy-based access control; Federation; Performance

1 Introduction
Software-as-a-Service or SaaS is a type of cloud comput-

ing in which a tenant rents access to a shared application

hosted by a provider [1]. The tenant is an organization

representing multiple end-users, who use the applica-

tion through a thin client, typically a web browser. The

provider protects the data in the application, for example

by ensuring tenant isolation or preventing data leakage.

However, for the tenant, SaaS is a form of outsourcing:

while the SaaS application belongs to the provider, the

application data, although hosted by the provider, still

belongs to the tenant. Therefore, SaaS applications should

also enable the tenants to control access to their data in

the application, based on tenant-specific access control

policies.

Traditional SaaS applications such as Google Apps

(an office suite) and Salesforce (CRM) allow the ten-

ant to control access to the application by offering

*Correspondence: maarten.decat@cs.kuleuven.be

iMinds-DistriNet, KU Leuven, 3001 Leuven, Belgium

the tenants a dashboard for configuring access con-

trol. These SaaS applications are mainly targeted at

small and medium enterprises looking for a fully out-

sourced IT infrastructure and this approach fits them

well.

Recently however, large enterprises have started to

adopt SaaS as well, for example Cisco in the domain of

CRM [2] or large hospitals in the domain of e-health [3,4].

While these enterprises employ SaaS to outsource spe-

cific, non core-business functionality, the organization-

wide policies of the tenant still apply. These policies

reason about data that remain stored in on-premise

applications such as patient management or medical

record systems (illustrated in Figure 1). A federated setup

between tenant and provider is inherent to such a deploy-

ment context.

The federated set-up between tenant and provider poses

important challenges. While techniques for federated

authentication [5,6] allow user data to be securely shared

between tenant and provider, the provider still completely

evaluates the tenant policies. This approach causes two

© 2014 Decat et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

mailto: maarten.decat@cs.kuleuven.be
http://creativecommons.org/licenses/by/2.0

Decat et al. Journal of Internet Services and Applications 2014, 5:1 Page 2 of 15

http://www.jisajournal.com/content/5/1/1

Figure 1 Large organizations such as hospitals employ both SaaS applications and on-premise applications, leading to a federated setup.

main problems: (i) it forces the tenant to disclose sen-

sitive access control data, such as lists of patients being

treated by a physician. Although the tenant may trust

the provider with the data in the SaaS application, it

does not necessarily trust the provider with this sensi-

tive on-premise application data and wants to keep it

confidential. Moreover, stringent regulatory requirements

such as HIPAA [7] or the European DPD [8] even for-

bid the hospital to share this data. (ii) This approach

limits policy evaluation performance by having to fetch

the required data. Many of the access control policies

require large amounts of access control data and fetching

this data from the tenant takes a considerable amount of

time.

To address these challenges, we introduce policy fed-

erationa. In this process, the tenant policies are decom-

posed and the resulting parts are evaluated near the

data they require as much as possible while keeping

sensitive tenant data local to the tenant premises. As

shown, policy federation effectively succeeds in keep-

ing the sensitive tenant data confidential and at the

same time improves policy evaluation time in most

cases.

This paper first presents an in-depth case study analysis

in the domain of e-health motivating the need for policy

federation. The paper then describes a confidentiality-

aware policy federation algorithm for optimal policy

evaluation time using a widely-applicable attribute-based

policy model. Finally, the paper shows the impact of pol-

icy federation on policy evaluation time, using the poli-

cies from the case study and a prototype of supporting

middleware.

In summary, the contributions of this paper are:

1. An in-depth case study analysis in the domain of

e-health, showing the need for policy federation.

2. A full description of policy federation consisting of

(i) an attribute-based policy model, (ii) a policy

federation algorithm and (iii) a description of

supporting middleware.

3. A practical evaluation of the impact of policy

federation on policy evaluation time, using the

policies from the case study and a prototype of the

supporting middleware for policy federation.

The rest of this paper is structured as follows. Section 2

discusses the context of this work: access control for SaaS

applications. Section 3 describes the e-health case study

that motivates this work. Section 4 defines the attribute-

based policy model and Section 5 the policy federation

algorithm. Section 6 evaluates policy federation in terms

of performance and thereby elaborates on the design of

supporting middleware. Section 7 provides a discussion

of policy federation. Section 8 covers related work and

Section 9 concludes this paper.

2 Context: access control and SaaS applications
This section first discusses access control in the domain of

SaaS applications as background to this paper.

Access control is an important part of application-level

security that limits the actions (e.g., read, write) which

a subject (e.g., a physician) can take on an object in

the system (e.g., a patient file). Access control rules are

often externalized from the application they constrain and

expressed in modular, declarative access control policies

for reasons of separation of concerns and modifiability.

Policy-based access control fits SaaS applications well,

because it allows tenant-specific security logic to be exter-

nalized from the shared application and be bound at

run-time.

Multiple models have been proposed for expressing

access control policies, such as Mandatory Access Con-

trol (MAC, [9]), Discretionary Access Control (DAC, [9])

and Role-Based Access Control (RBAC, [10]). The more

recent Attribute-Based Access Control (ABAC, [11]) gen-

eralizes previous models and expresses access control

Decat et al. Journal of Internet Services and Applications 2014, 5:1 Page 3 of 15

http://www.jisajournal.com/content/5/1/1

policies in terms of key-value properties called attributes

of the subject (e.g., the subject id, username or roles),

the object (e.g., the object id, location or content) and

the environment (e.g., the time, physical location or usage

context). Attributes provide increased expressivity with

regard to previous models and offer a unit of data trans-

port between the different components or parties involved

in access control. For both reasons, this work builds upon

ABAC.

The reference architecture for policy-based access con-

trol infrastructures was defined by IETF and DMTF and

refined by the XACML standard [12]. In the reference

architecture (see Figure 2), the policy decision point (PDP)

makes the actual access control decision. The policy

enforcement point (PEP, e.g., an API or a reference mon-

itor) requests an access control decision from the PDP

through the context handler. An access control request

generally consists of information about the subject, the

object, the action and the environment. The context han-

dler gathers initially known attributes from one or more

policy information points (PIPs, e.g., a database), which

the PDP uses to evaluate the applicable policies loaded

from the policy administration point (PAP). Since the

required attributes for evaluating a policy depend on the

values of former attributes, it is generally impossible to

determine the set of required attributes up-front and the

PDP can request additional attributes from the context

handler if needed. Eventually, the PDP returns its decision

(permit or deny), which the PEP enforces.

3 Case study analysis: home patient monitoring
To show the need for policy federation, this section

describes the SaaS application that inspired this work: a

home monitoring system for patients of cardiovascular

diseases, provided to hospitals as a service. As stated in

the introduction, large enterprises and non-profit orga-

nizations have started to adopt SaaS, amongst others in

the domain of e-health. Health care organizations employ

on-premise applications for core-business functionality

such as patient data management, but outsource func-

tionality which is not core-business to SaaS applications,

such as the patient monitoring system. This section firsts

Figure 2 This work builds upon the XACML reference

architecture for policy-based access control infrastructures [12].

gives an overview of the system, then illustrates the hos-

pital’s access control policies for the SaaS application and

finally describes the problem statement of this paper in

detail.

3.1 Overview of the system

The home patient monitoring system (HPMS, see

Figure 3) allows patients of cardiovascular diseases to be

monitored continuously after leaving the hospital by wear-

ing sensors such as a chest band or a wrist band. These

sensors collect measurements such as the electric activ-

ity of the heart, the blood pressure or the temperature.

The measurements are sent from the patients to the appli-

cation back-end using a smart-phone as an intermediary

device and are then stored and processed by the provider.

In the first place, the provider employs telemedicine oper-

ators which continuously check upon their patients. For

this, the system offers an overview of the patient’s sta-

tus, showing recent measurements, health charts and an

estimated risk level. If medical assistance is required,

the patient’s physician at the hospital is notified. These

physicians can also check upon the status of the patient

proactively using a status overview similar to that of the

telemedicine operators. A patient’s status can also be

viewed by the patients themselves or by other physicians

and nurses at the hospital, for example when the patient

is admitted there. Finally, the system provides functional-

ity such as patient questionnaires and shared notes on a

patient overview.

The HPMS is a good example of a state-of-the-art SaaS

application. In this system, the hospital is the tenant of the

application and in itself manages multiple end-users, i.e.,

the patients, physicians and nurses. Next to the HPMS,

the hospital also employs other SaaS applications, e.g., for

medical imaging, and on-premise applications, e.g., for

patient records or employee management.

As for all e-health applications, security is paramount

for the HPMS. For example, it handles personal data and is

subject to stringent regulatory requirements (e.g., HIPAA

[7] or the European DPD [8]). Of these security require-

ments, this paper focuses on the sub-domain of access

control.

3.2 Access control policies from the case study

The hospital’s access control policies that apply to the

HPMS provide a good example of policies that apply

to current SaaS applications. This section first discusses

the general structure of the hospital policies and then

provides a part of these policies in detail.

3.2.1 Structure of the hospital’s policies

As mentioned in Section 2, this work builds upon

attribute-based access control, which structures policies

Decat et al. Journal of Internet Services and Applications 2014, 5:1 Page 4 of 15

http://www.jisajournal.com/content/5/1/1

Figure 3 The case study that inspired this work: a home patient monitoring system (HPMS) offered to hospitals as a SaaS application.

Next to the HPMS, the hospital also employs several on-premise applications (e.g., for employee management) and several other off-premise SaaS

applications (e.g., for medical imaging).

by making the distinction between the subject, the object,

the action and the environment. We apply the same struc-

ture in this discussion.

Objects and actions. The objects of the hospital policies

and the possible actions on them are determined by the

structure of the data in the HPMS. The previous section

mentioned five types of application data: (1) the raw mea-

surements, (2) the overview of the patient’s status, (3) the

notifications sent to physicians, (4) the notes added to

a patient’s status overview and (5) the patient question-

naires. The actions on these objects are as follows: The

raw measurements, the patient’s status overview and the

notifications are all created by the system and cannot

be altered; end-users can only view them. Notes on the

other hand can be created, viewed, updated and deleted.

Patient questionnaires can be created and assigned

to patients by physicians. Patients can view and fill in

open patient questionnaires and both patients and physi-

cians can view completed patient questionnaires. Next to

the five types of application data, the hospital can also

constrain access to the HPMS as a whole.

Subjects. The subjects of the hospital policies are deter-

mined by the structure of the hospital. The hospital

consists of multiple medical departments, such as car-

diology, oncology, elder care, general medicine and the

emergency department. Each department employs nurses

and specialist physicians, such as cardiologists, oncolo-

gists, surgeons and anesthetists. The general medicine

department also employs a number of general practition-

ers. Inside a department, the personnel is structured in

teams, for example, consisting of multiple cardiologists, a

head cardiologist and assisting nurses. Finally, the hospi-

tal also provides a number of supporting services, such as

general administration and finances.

Environment. The environment of the hospital policies

provides the current time and date.

3.2.2 Detailed policies

Following the general policy structure, this section illus-

trates a hospital policy from the case study in detail

by zooming in to the policies for viewing the status

overview of a patient. Of all the actions, this action can

be executed by the most types of subjects, leading to the

most extensive policies in the case study. Other actions

are constrained by similar rules. We start from broad

organization-wide policies and end with specific policies

for specific kinds of subjects. Notice that while we try to

be as specific as possible, the textual format is still infor-

mal and a translation step towards a more formal policy

language is necessary to remove all ambiguities. We pro-

vide the XACML encoding and an extensive overview of

the required attributes on-line [13].

The following organization-wide policies of the hospital

also apply to the HPMS:

P1. A member of the medical personnel can not access

any data about a patient who has explicitly

withdrawn consent for him or her, except in case of

emergency.

The following hospital policies apply to the HPMS as a

whole:

P2. Only physicians, nurses and patients can access the

HPMS.

Decat et al. Journal of Internet Services and Applications 2014, 5:1 Page 5 of 15

http://www.jisajournal.com/content/5/1/1

P3. Of the physicians, only general practitioners,

physicians of the cardiology department, physicians

of the elder care department and physicians of the

emergency department can access the HPMS.

P4. Of the nurses, only nurses of the cardiology and the

elder care department can access the HPMS.

P5. Nurses can only access the HPMS during their shifts.

P6. Nurses can only access the HPMS from the hospital.

P7. Of the nurses of the cardiology department, all

nurses can access the HPMS.

P8. Of the nurses of the elder care department, only

nurses who have been allowed to use the HPMS can

access the HPMS.

The following hospital policies apply to viewing the status

of a patient:

P9. Physicians of the cardiology department, physicians

of the elder care department and physicians of the

emergency department can always view a patient’s

status in case of emergency (triggered by the

physician, triggered by a telemedicine operator or

as indicated by the monitoring data).

P10. General practitioners can only view the status of a

patient who is currently on consultation or whom

they treated in the last two months or for whom

they are assigned the primary general practitioner

at the hospital or for whom they are assigned

responsible in the HPMS.

P11. Head physicians of the cardiology department can

view the patient status of any patient in the HPMS.

P12. Physicians of the cardiology department can view

the patient status of any patient treated by

themselves or by a physician in their team.

P13. Physicians of the elder care department can only

view the patient status of a patient who is currently

admitted to their care unit or whom they have

treated in the last six months.

P14. Physicians of the emergency department can only

view the status of a patient in case the status of that

patient is bad.

P15. Nurses can only view a patient’s status of the last 5

days.

P16. Nurses of the cardiology department can only view

the patient status of a patient admitted to their

nurse unit for whom they are assigned responsible,

up to three days after they were discharged.

P17. Nurses of the elder care department can only view

the patient status of a patient currently admitted to

their nurse unit for whom they are assigned

responsible.

P18. A patient can only access the HPMS if (still)

allowed by the hospital.

P19. A patient can only view his own status.

3.2.3 Analysis

In terms of attribute-based access control, the 19 poli-

cies given above require 30 different attributes in total,

such as the subject id, the department of the subject, the

list of patients treated by a physician, the owner of an

object, the current date etc (see [13]). Of these attributes,

19 are hosted by the hospital (e.g., the list of patients

treated by a physician), 7 are hosted by the provider (e.g.,

the owner of an object) and 4 are shared in the policy

evaluation process (e.g., the id of the subject making the

request). Of the 19 tenant attributes, 8 are sensitive, such

as the lists of patients. The number of policies required

to reach a decision for a single request ranges from 3 to 7

(with a mean of 4.79) and the number of attributes ranges

from 4 to 13 (with a mean of 7.65). The case study illus-

trates that the policies of a tenant of a SaaS application

require attributes from both the tenant and the provider.

This leads to a federated set-up, which is the focus of this

work.

3.3 Problem statement and solution

As discussed in the introduction, the hospital’s access con-

trol policies would be evaluated by the provider in tradi-

tional SaaS applications. This causes two main problems:

1. The hospital would be forced to share all required

attributes with the provider, including sensitive

attributes which the hospital does not want to share

for reasons of limited trust or even cannot share by

law. More precisely, we assume the provider to be

honest, but curious: the provider correctly

communicates with the tenant, but can analyze the

communication for the tenant’s sensitive data and

has an interest in this from a business point of view,

because of a malicious employee or because of an

external attacker. We do not directly take into

account third party attacks such as eavesdropping on

the channel between tenant and provider since other

solutions exist for those.

2. All required attributes would have to be fetched by

the provider during policy evaluation. While the

presented policies are only a subset of all hospital

policies and will also be much more detailed in

practice, the policies already require 30 different

attributes of which 19 are hosted by the hospital.

Given that a single attribute request can have a large

latency because of the complex data flows in

federated applications and the geographical distance

between tenant and provider, this approach would

limit the performance of policy evaluation.

Both issues can be addressed if the hospital evaluates parts

of its policies itself. For example, if the hospital evalu-

ates whether a user has treated the owner of the status

Decat et al. Journal of Internet Services and Applications 2014, 5:1 Page 6 of 15

http://www.jisajournal.com/content/5/1/1

overview in the last two months (P10), this data remains

confidential. Similarly, if the hospital evaluates whether a

user is a general practitioner (P3), this data does not have

to be fetched by the provider. In this approach, tenant and

provider will cooperate to achieve an access control deci-

sion, a concept we call federated authorization [14]. In this

paper, we describe how to decompose and distribute the

hospital policies over the provider and the hospital based

on the location and sensitivity of the attributes, a process

we call policy federation.

The complete solution presented in this paper consists

of three parts: (i) an attribute-based policy model which

allows us to reason about policy federation, (ii) the actual

policy federation algorithm and (iii) a description, proto-

type and evaluation of supporting middleware. In the next

sections, we discuss each of these.

4 Policy model
In order to reason about policy federation, this section

first defines an attribute-based policy model based on the

core features of current policy languages such as XACML

[12]. This minimal subset supports all the policies of the

case study, but remains generic in order to guarantee

its wide applicability. Several other authors have taken

similar approaches, e.g., Crampton and Huth [15]. With

respect to these, our model focuses on the aspects related

to policy federation, i.e., the general structure of a policy

and how a policy is evaluated.

4.1 Structure of a policy

The policy model used in this work represents policies

using the concept of a policy tree, similar to [15,16]. Each

policy in the tree states for which requests it is applicable

by means of a target. The leafs of the policy tree are called

atomic policies, the others are called composed policies.

4.1.1 Atomic policies

Atomic policies state in which conditions a certain request

is permitted and in which it is not. They therefore consist

of a target, an effect and a condition. The target deter-

mines whether the policy applies to the request or not.

The effect of a policy is either Permit or Deny, respec-

tively permitting or denying the request. The condition

determines whether the effect holds or not. Thus, the

result of evaluating a policy is either Permit, Deny or

NotApplicable.

As mentioned before, this work builds upon ABAC and

as a consequence, targets and conditions are expressions

on the attributes of the subject (s), the object (o), the

action (a) and the environment (e). Such expressions can

contain three kinds of elements: (i) functions, e.g., “and”,

“in” or “==”, (ii) attribute references, e.g., “s.roles” refer-

ring to the roles of the subject and (iii) literal values, e.g.,

“physician”. Possible attribute types are primitive types

such as integers, strings, booleans and dates, or lists of

these.

Using the notation PAtom= <Target, Effect, Condition>,

policy P1 as defined in Section 3.2 can be represented as

follows:

P1 = <a.id == “access” & “medical_personnel” in s.roles,

Deny, s.id in o.owner_withdrawn_consents & ... >

4.1.2 Composed policies

Composed policies combine the results of several other

policies, either atomic policies or other composed poli-

cies. They therefore consist of a target, a policy combi-

nation algorithm and an ordered list of sub-policies. The

target is defined the same as for atomic policies. The pol-

icy combination algorithm combines the effects of the

sub-policies into the effect of the composed policy. In

order to remain compatible to XACML, we limit ourselves

to three policy combination algorithms, which suffice to

express the policies from the case study: PermitOverrides,

DenyOverrides and FirstApplicable [12]. Notice that pol-

icy evaluation requires a single result, i.e., the access con-

trol decision. Since every set of policies can be combined

to a single combined policy using the policy combination

algorithms, we assume the policy tree to have a single root,

which applies to all requests.

Using the notation PComp = <Target, PolicyCombi-

nationAlgorithm, Sub-policies>, the example policies of

Section 3.2 can be combined into a single composed

policy as follows (illustrated in Figure 4):

P0 = <true, FirstApplicable, [P1, P2, <“physician” in

s.roles, DenyOverrides, [P3, P9, ..., P14]>, <“nurse” in s.roles,

DenyOverrides, [P4, ...]>, ...>

4.1.3 Sensitive elements

In the model, two elements of a policy can be declared

sensitive: (i) the attributes used in a policy and (ii) the poli-

cies themselves. For composed policies, confidentiality

applies to the whole policy tree below it. In practice, these

confidentiality constraints can be expressed by providing

a separate meta-policy or by annotating the access con-

trol policies themselves. Since attributes can be referenced

multiple times throughout a policy, using a separate meta-

policy provides the advantage of central management.

Policy elements on the other hand are best annotated in

the access control policies themselves. The result for the

policies of the case study is available on-line [13].

4.2 Policy evaluation

The evaluation of a policy structured as described above

also impacts policy federation. We here define two

Decat et al. Journal of Internet Services and Applications 2014, 5:1 Page 7 of 15

http://www.jisajournal.com/content/5/1/1

Figure 4 Representation of the example policies of Section 3.2 as a policy tree using our policy model.

aspects: (i) the order in which the elements of the policy

tree are evaluated and (ii) how attributes are fetched.

4.2.1 Evaluation order

A policy is evaluated by first evaluating its target. If

the policy does not apply to the request, NotApplica-

ble is returned. If the policy does apply, its condition

is evaluated (in case of an atomic policy) or its sub-

policies are evaluated (in case of a composed policy)

and the result is returned. For composed policies, the

sub-policies are evaluated in the given order; as a conse-

quence, the policy tree is evaluated depth-first. For now,

we assume all sub-policies and expressions to be evaluated

sequentially.

4.2.2 Fetching attributes

As mentioned in Section 2, the required attributes are

fetched from their respective policy information points

during policy evaluation. Because the required attributes

for evaluating a policy depend on the values of former

attributes, it is generally impossible to determine the set

of required attributes up-front and we generally assume

that an attribute is only fetched when it is required. To

enable this, the identifiers of the subject, the object and

the action are given by the policy enforcement point for

initiating the policy evaluation. We also make the real-

istic assumption that attribute values are cached during

the evaluation of a policy for a single request in order to

avoid unnecessary attribute fetches and to guarantee cor-

rect evaluation of policies that require the same attribute

multiple times in the presence of out-of-band attribute

updates. We do not take into account attribute caching

across multiple requests in order to avoid freshness

issues.

5 Policy federation algorithm
Based on the policy model described in the previous

section, this section defines the policy federation algo-

rithm, i.e., the algorithm that will decompose and deploy

the tenant policies across tenant and provider. We first

give an overview of the algorithm and then go into each of

the major steps. Finally, we discuss the correctness of the

algorithm in terms of policy equivalence.

5.1 Overview

The goal of the policy federation algorithm is to decom-

pose and distribute the tenant policies so that sensi-

tive attributes and policies remain confidential and the

evaluation performance is optimized, i.e., the evaluation

duration is minimized. For attribute-based policies, this

evaluation duration is mainly determined by the latency

of fetching the required attributes [17]. The latency of a

remote attribute fetch between tenant and provider will

be an order of magnitude larger than a local database call,

taking into account the complex data flows in federated

applications and the geographical distance between ten-

ant and provider. Therefore, the goal of the algorithm is

to minimize the number of requests between tenant and

provider.

An important design decision is the granularity of the

policy distribution. In theory, even internal parts of an

atomic policy could be distributed. However, we delib-

eratly limit the granularity to sub-policies in the policy

tree. As such, the decomposed policy remains compati-

ble with existing policy infrastructures and the existing

policy combination algorithms can be used for handling

the results. However, this approach also limits the gran-

ularity of policy decomposition. Therefore, the first step

in the algorithm is to normalize larger policies into an

equivalent set of smaller policies, which can then be sepa-

rately deployed. Afterward, the algorithm tries to combine

multiple remote policy references into a single reference

again, in order to minimize the number of remote policy

evaluation requests.

An overview of the resulting policy federation algo-

rithm is given in Algorithm 1. The algorithm requires

two inputs: (i) the policy P to be federated, annotated

with sensitivity labels in the policy tree and (ii) the list of

attributes, each having a location and sensitivity label. The

location of an attribute is either tenant-side or provider-

side, the sensitivity label of an attribute or policy is a

boolean that determines whether the attribute or policy

can be shared with the provider or not. The algorithm

Decat et al. Journal of Internet Services and Applications 2014, 5:1 Page 8 of 15

http://www.jisajournal.com/content/5/1/1

provides three outputs: (i) root: the policy at the root

of the new policy tree which can reference remote poli-

cies, (ii) SP : the set of referenced policies to be deployed

provider-side and (iii) ST : the set of referenced policies to

be deployed tenant-side. Throughout the algorithm, sev-

eral policy transformations are applied to the policy tree

(see Equations (T1–T9)). Of these transformations, T1,

T2, T3 and T4 allow policies to be split in an equivalent

set of smaller policies; T5, T6 and T7 allow sub-policies

of combined policies to be combined; T8 and T9 show the

commutativity of PermitOverrides and DenyOverrides.

The correctness of these rules can be proven using their

respective decision tables. The algorithm itself consists

of three major steps: normalization, decomposition and

combination. In the next sections, we go into detail about

each of these steps.

Algorithm 1Overview of the policy federation algorithm.

The methods normalize(), decompose() and combine()

are defined in Algorithms 2, 3 and 4.

Inputs: P: a policy, annotated with sensitivity labels (true

or false), A: a list of attributes, each having a location

(tenant-side or provider-side) and sensitivity label (true or

false).

Outputs: root: the policy at the root of the new policy tree

which can reference remote policies, SP : the set of refer-

enced policies to be deployed provider-side, ST : the set of

referenced policies to be deployed tenant-side.

SP , ST = []

// Step 1: Normalization

P = normalize(P)

// Step 2: Decomposition

root = decompose(P, “providerSide”)

// Step 3: Combination

root = combine(root)

for Policy p in ST : ST .replace(p, combine(p))

for Policy p in SP: SP .replace(p, combine(p))

5.2 Step 1: normalization

As said, the goal of the normalization step is to convert

larger policies into an equivalent set of smaller policies,

which can then be separately deployed. Therefore, the first

step of the federation algorithm iteratively applies trans-

formations T1, T2, T3 and T4 as defined in Equations

(T1–T4) to the given policy P until no more sub-policies

can be transformed, as shown in Algorithm 2.

Algorithm 2 Definition of the normalize()method.

def normalize(Policy p):

Policy p’ = p.applyTransformations([T1, T2, T3, T4])

if p’ != p:

// a transformation was applied

return normalize(p’)

else:

if p is AtomicPolicy: return p

else: // composed policy

for Policy sub in p.subpolicies:

p.subpolicies.replace(sub, normalize(sub))

return p

Notice that transformations T1 to T4 only utilize or

statements. The reason for this is that we want to remain

compatible to XACML and only employ FirstApplica-

ble, PermitOverrides and DenyOverrides, but converting

an and statement would require other policy combi-

nation algorithms. For example, the equivalents of T1

and T2 would require the policy combination algorithm

BothApplicable.

5.2.1 Results from the case study

When applying the federation algorithm to the policies

from the case study, P9 will be split into three times three

parts because both its target and condition consist of a

ternary term that can be split using T1 or T3. Similarly,

< T1|T2,E,C > ⇔ < true, FirstApplicable, [< T1,E,C >,< T2,E,C >]> (T1)

<T1|T2,PCA,[P1...Pn]> ⇔ < true, FirstApplicable, [<T1,PCA, [P1...Pn]>,<T2,PCA, [P1...Pn]>]>(T2)

< T ,Permit,C1|C2 > ⇔ < T ,PermitOverrides, [< true,Permit,C1 >,< true,Permit,C2 >]> (T3)

< T ,Deny,C1|C2 > ⇔ < T ,DenyOverrides, [< true,Deny,C1 >,< true,Deny,C2 >]> (T4)

< T ,PermitOverrides, [P1,P2,P3]> ⇔ < T ,PermitOverrides, [< true,PermitOverrides, [P1,P2]>,P3]> (T5)

< T ,DenyOverrides, [P1,P2,P3]> ⇔ < T ,DenyOverrides, [< true,DenyOverrides, [P1,P2]>,P3]> (T6)

< T , FirstApplicable, [P1,P2,P3]> ⇔ < T , FirstApplicable, [< true, FirstApplicable, [P1,P2]>,P3]> (T7)

< T ,PermitOverrides, [P1,P2]> ⇔ < T ,PermitOverrides, [P2,P1]> (T8)

< T ,DenyOverrides, [P1,P2]> ⇔ < T ,DenyOverrides, [P2,P1]> (T9)

Decat et al. Journal of Internet Services and Applications 2014, 5:1 Page 9 of 15

http://www.jisajournal.com/content/5/1/1

P10 will be split in four parts using T3, P12 in two parts

using T3 and P13 in two parts using T3.

5.3 Step 2: decomposition

After the policy tree has been normalized, step 2 of

the algorithm decomposes it so that every sub-tree is

deployed on its optimal location (see Algorithm 3). The

algorithm estimates the cost of evaluating a certain sub-

tree either provider-side or tenant-side in terms of eval-

uation time and minimizes the total evaluation cost as

follows: If the cost of evaluating a sub-policy of a com-

posed policy on the same side as the composed policy is

larger than the cost of evaluating it on the other side plus

the cost of making a policy evaluation request, the sub-

policy is deployed on the other side and it is replaced by

a remote policy reference to it. The algorithm applies this

reasoning recursively starting from the top policy, which

should always be deployed provider-side. For a policy that

handles sensitive attributes or is labeled sensitive itself,

the cost of evaluating it provider-side is infinite (i.e., it has

to be evaluated tenant-side). For the other cases, we here

define several cost functions, which focus on the number

of required attributes.

Algorithm 3 Definition of the decompose() method.

Ci,P, Ci,T and CPR are as defined in Section 5, ST and SP
are as defined in Algorithm 1.

def decompose(Policy p, Side parentSide):

if p is ComposedPolicy:

for Policy sub in p.subpolicies:

p.subpolicies.replace(sub, decompose(sub))

(Ci,P, Ci,T) = evaluationCost(p)

if parentSide == “tenantSide”:

if Ci,P + CPR < Ci,T :

SP.add(p)

return new RemotePolicyReference(p)

else: return p

else:

if Ci,T + CPR < Ci,P:

ST .add(p)

return new RemotePolicyReference(p)

else: return p

5.3.1 Cost functions for atomic policies

For atomic policies, the cost functions are as follows:

CAtom,P = NA,P ∗ CL + NA,T ∗ CR (CF1)

CAtom,T = NA,T ∗ CL + NA,P ∗ CR (CF2)

The cost functions determine the cost of the provider

(CAtom,P) and the tenant (CAtom,T) evaluating a certain

atomic policy based on the total number of required

provider attributes (NA,P) and tenant attributes (NA,T) and

the cost for fetching an attribute locally (CL) or remotely

(CR). The location of every attribute determines the cost

of fetching the attribute: CL will be much smaller than CR.

An important detail is the handling of cached attributes

(see Section 4.2). The cost of fetching an attribute from

the cache is assumed to be zero and the cost functions

should only take into account newly required attributes.

However, it is impossible to fully statically determine the

set of cached attributes, for example because previous

policies in the policy tree can be fully evaluated, but still

return NotApplicable. In order to come to a static estima-

tion, we assume the worst case and calculate the minimal

set of cached attributes by only taking into account the

attributes required by the targets of previously evalu-

ated policies, i.e., super-policies, previous policies on the

same level and previous policies on the same level as

super-policies. In case an atomic policy has a target that

matches all requests, the attributes in the condition are

taken into account as well. In case a composed policy has

a target that matches all requests, the required attributes

of the first policy are taken into account. For simplic-

ity, we assume that non-sensitive cached attributes are

shared between tenant and provider by adding them to

the policy evaluation requests. Notice that the cost func-

tions above also assume the worst case by taking into

account all attributes of the policy, while some attributes

may not be needed every time, e.g., the attributes

required by the condition if the policy is not applicable

(see Section 3.2.3).

5.3.2 Cost functions for composite policies

For composite policies, the cost functions are as follows:

CComp,P = NA,P ∗ CL + NA,T ∗ CR +
∑

Ki,P (CF3)

CComp,T = NA,T ∗ CL + NA,P ∗ CR +
∑

Ki,T (CF4)

NA,P ,NA,T ,CL andCR are defined similarly as for atomic

policies. Notice that composite policies only directly

require attributes because of their targets and that again,

cached attributes are not taken into account. Ki,P and

Ki,T represent the cost of evaluating the i’th sub-policy

Pi of composite policy PComp in case PComp is evaluated

provider-side or tenant-side respectively. In case Pi is eval-

uated on the other side than PComp, a policy evaluation

request is needed, which has a cost CPR ≃ CR. To take

this into account, we define Ki,P as the minimum of the

cost of evaluating Pi when evaluating PComp provider-

side, thereby actually deciding on the optimal evaluation

location of Pi:

Ki,P = min(Ci,P,Ci,T + CPR) (CF5)

Decat et al. Journal of Internet Services and Applications 2014, 5:1 Page 10 of 15

http://www.jisajournal.com/content/5/1/1

Ki,T is defined similarly:

Ki,T = min(Ci,P + CPR,Ci,T) (CF6)

For atomic policies, Ci,P and Ci,T are defined as CF1

and CF2; for composed policies, Ci,P and Ci,T are defined

recursively as CF3 or CF4.

5.3.3 Results from the case study

The policies from the case study all require more ten-

ant attributes than provider attributes, except for P9. As a

result, most of the policy tree will be deployed tenant-side,

starting from the root and only P9 (or more precisely, the

policy tree resulting from normalizing P9) is still deployed

provider-side. Because the root policy P0 is deployed

tenant-side, a provider-side policy reference is inserted as

new root.

5.4 Step 3: combination

Finally, the third step of the algorithm tries to combine

remote policy references in order to minimize the number

of policy evaluation requests between tenant and provider

(see Algorithm 4).More precisely, the algorithm combines

multiple policies referenced in a single composed policy

into a larger equivalent composed policy and combines

their remote policy references into a reference to the new

combined policy. For this, the algorithm employs transfor-

mations T5, T6 and T7 as defined in Equations (T5–T7).

In case of FirstApplicable, only consecutive remote pol-

icy references in the sub-policies can be combined; in case

of PermitOverrides or DenyOverrides, all remote policy

references can be combined since these algorithms are

commutative as shown by transformations T8 and T9 of

Equations (T8–T9).

Algorithm 4 Definition of the combine() method. ST
and SP are as defined in Algorithm 1.

def combine(Policy p):

if p is AtomicPolicy: return p

else:

Policy[][] groups = p.getCombinableSubpolicies()

for Policy[] group in groups:

ComposedPolicy cp =

new ComposedPolicy(p.target, p.pca, group)

SP.replace(group, cp) // no effect if group not in SP
ST .replace(group, cp) // no effect if group not in ST
p.subpolicies.replace(group,

new RemotePolicyReference(cp)

return p

5.4.1 Results from the case study

The policy tree resulting from normalizing and decom-

posing the policies from the case study does not allow

to combine multiple remote policy references. The final

policy tree is shown in Figure 5.

5.5 Discussion: policy equivalence

An important property of the policy federation algorithm

is that the federated policy gives the same results as the

original policy. To make this more concrete, we here

introduce the notion of policy equivalence.

Definition: Policy equivalence Two policies P1 and

P2 are equivalent iff for every request R and context Ctx,

evaluating P1 leads to the same decision as evaluating P2.

The context Ctx is a collection of attribute values of the

subject, the object, the action and the environment:Ctx =

(AS,AO,AA,AE). The request R is a subset of the context:

R ⊂ Ctx.

Our policy federation algorithmmaintains policy equiv-

alence because (1) only step 1 and step 3 transform

the policy tree and every applied transformation (see

Equations (T1–T9)) maintains policy equivalence and

(2) both the original policy and the federated policy share

the same context since the policies deployed provider-

side will only require provider attributes and non-sensitive

tenant attributes and all non-sensitive attributes are avail-

able to both tenant and provider. An equivalent decompo-

sition also leads to an equivalent distribution, except for

the fact that distributed policy evaluation can introduce

network exceptions.

6 Performance evaluation
In this section, we evaluate policy federation in terms

of performance. For the performance evaluation, we can

evaluate the impact of policy federation on policy eval-

uation time and the performance of the algorithm itself.

The policy federation algorithm is meant to be run at

policy deployment time, i.e., independently of the pol-

icy evaluation flow, and therefore does not introduce

run-time overhead. For the policies presented in the

case study, the algorithm takes about 11 ms; for poli-

cies of one order of magnitude largerb, the algorithm still

takes less than 2 seconds. Because these durations fit

the asynchronous execution of the federation algorithm,

we do not provide details about the algorithm and focus

on the impact of policy federation on policy evaluation

time.

6.1 Prototype

To measure the performance impact of policy federation,

we implemented a prototype of both the federation algo-

rithm (2KLOC) and a middleware system supporting pol-

icy federation (6KLOC). Both build upon the SunXACML

policy evaluation engine. The source code is publicly

available at [13].

Decat et al. Journal of Internet Services and Applications 2014, 5:1 Page 11 of 15

http://www.jisajournal.com/content/5/1/1

Figure 5 Final result of the applying the policy federation algorithm to P0. Grey policies are deployed provider-side, white policies are

deployed tenant-side. For readability reasons, the normalizations of P9 , P10 , P12 and P13 are not shown.

Figure 6 shows the architecture of the support-

ing middleware in terms of the XACML reference

architecture for policy-based access control infrastruc-

tures (see Section 2). As shown, both the provider and the

tenant have a PAP, a PDP, a context handler and one or

more PIPs since both will evaluate policies. The provider

hosts the SaaS application and therefore also the PEP. The

provider hosts the attributes concerning the objects in the

application (AO) and the provider part of the environ-

ment (AE,P) and the tenant hosts the attributes concerning

the subjects of the application (AS) and the tenant part

of the environment (AE,T). Non-sensitive attributes are

made available to the other party by means of an attribute

service, the PDPs by means of a Remote Policy Deci-

sion Point (RPDP). The RPDPs and attribute services are

published as SOAP web-services implemented on top of

Apache Tomcat 7 using the Apache CXF services frame-

work. The Policy Federation Layer shown in Figure 6 is the

focus of this work. This layer cooperates with the tenant

and provider PAP in order to deploy the tenant policies

after the initial decomposition step. For more information

about the supporting middleware, we refer to [14].

6.2 Test set-up

The performance impact of policy federation can be

expected to depend on the characteristics of the pol-

icy, e.g., its size, the number of required attributes, the

location of these attributes etc. Thus, in order to give a

realistic view of the performance impact of policy fed-

eration, we employ the policies from the case study and

measure (i) the number of remote requests (i.e., attribute

requests or policy evaluation requests) between tenant

and provider needed for evaluating the policies and (ii) the

total policy evaluation time. In the first place, we com-

pare two cases: (i) provider-side evaluation: in this case

the policies are completely evaluated provider-side and

Figure 6 Architecture of the supporting middleware for policy federation in terms of the XACML reference architecture (see Section 2).

The Policy Federation Layer is the focus of this work.

Decat et al. Journal of Internet Services and Applications 2014, 5:1 Page 12 of 15

http://www.jisajournal.com/content/5/1/1

(ii) federated evaluation: in this case, the policies are

deployed across tenant and provider as resulting from

the federation algorithm. For completeness, we also com-

pare the results to (iii) tenant-side evaluation: in this

case the policies are completely evaluated tenant-side. We

employ 26 different access requests that together cover

every branch of the original policy tree. Notice that in the

provider-side case, sensitive attributes are fetched from

the tenant.

Each of the main components of the prototype runs on

a separate machine with 1GiB RAM and a single core

of 2.40GHz running Ubuntu 12.04. Attributes are stored

locally on the machine that requires them. Using fixed

network delays, the round-trip time of a request between

tenant and provider is set to 10 ms. Tests are run sequen-

tially and PDP evaluation is done in a single thread. Each

test starts with 500 warm-up requests and is repeated

until the confidence interval lies within 2% of the sampled

mean for a confidence level of 95%.

6.3 Results

Figure 7 shows the results of the performance tests.

Because the federation algorithm does not take into

account the frequency of each request, we do not state

means over all requests, but list the results for each access

request separately.

We can make several observations from the figure. First,

provider-side evaluation requires the same or larger num-

ber of remote requests than tenant-side and federated

evaluation in all cases, leading to longer evaluation times

in most cases. This is caused by the fact that the poli-

cies from the case study require more tenant attributes

than provider attributes. Request 13 is the most extreme

case, where all required attributes are stored tenant-side

and 7 attribute requests are replaced by a single policy

evaluation request.

Second, in most cases, federated evaluation leads to the

same or smaller number of remote requests than tenant-

side evaluation. The same number is achieved if P9 (i.e.,

the part of the policy tree that is deployed provider-side)

is not required to reach an access control decision, e.g.,

for requests 13 to 16. Smaller numbers are achieved in

the other cases, e.g., requests 4 to 7. In these cases, multi-

ple attribute fetches from tenant to provider are replaced

by a single policy evaluation request. This shows the

intended results of the federation algorithm. However,

the smaller number of remote requests does not lead to

proportionally shorter evaluation times, e.g., for requests

4, 5 and 6. This is caused by the larger overhead of a

policy evaluation versus an attribute fetch, while the fed-

eration algorithm assumed both to be equal. In requests

24 and 25, tenant-side and federated evaluation even

perform worse than provider-side evaluation because

of this.

Finally, for requests 8 and 22 to 26, federated eval-

uation leads to larger numbers of remote request and

longer evaluation times than tenant-side evaluation. This

is caused by the fact that P9 is evaluated, but all attributes

required to come to a decision are already cached. Thus,

federated evaluation requires a policy evaluation request,

while tenant-side evaluation does not require any attribute

fetches.

7 Discussion
In the previous sections, we presented the technique of

policy federation, which aims to decompose access con-

trol policies over multiple parties for confidentiality and

improved performance. In this section, we discuss the

Figure 7 Results of the performance tests. The upper chart shows the number of remote requests needed for evaluating the policies (lower is

better), the lower chart shows the resulting policy evaluation time in milliseconds (lower is better). For each access request, we show the results for

provider-side evaluation, tenant-side evaluation and federated evaluation. As shown, the federated policy provide the best results for most access

requests.

Decat et al. Journal of Internet Services and Applications 2014, 5:1 Page 13 of 15

http://www.jisajournal.com/content/5/1/1

results of this work and in which ways it can be refined

and extended.

7.1 Confidentiality

Policy federation effectively succeeds in keeping the sen-

sitive tenant attributes and policies confidential. However,

two potential threats to this work are (i) the increased

attack surface of the tenant by the introduction of the

RPDP service and (ii) possible inference of policies or

attributes by the provider using the complete set of access

requests and decisions. For the former, we argue that

the risk of the increased attack surface is low since only

the provider should be given access to the RPDP service.

For the latter, we argue that the possibly inferred knowl-

edge is limited since both the tenant policies and the

required attributes remain confidential and the provider

can only request the tenant to evaluate the policies

resulting from the federation algorithm. However, future

work is required to answer this question more quan-

titatively, for example using techniques such as logical

abduction.

Towards the future, the employed confidentiality model

can be refined. The algorithm now assumes that an

attribute or policy is labeled sensitive or non-sensitive. In

a more extensive case, a sensitivity policy could express

more complex rules, for example, limiting attribute release

to some parties based on their identity or defining a

certain combination of multiple attributes as confidential.

7.2 Performance

The performance evaluation showed that policy feder-

ation has the ability to improve policy evaluation per-

formance. With the maturation of policy-based and

attribute-based access control, access control policies will

only grow in both size and complexity and the per-

formance gain of policy federation can be expected to

increase as well.

In order to achieve further improved results, the algo-

rithm can be refined in several ways. First, remote policy

references can be extended with local targets in order

to avoid the unnecessary policy requests mentioned in

Section 6.3. Second, the algorithm achieves sub-optimal

results because of the overhead of a policy evaluation ver-

sus an attribute fetch. While policy evaluation engines

are expected to provide improved performance towards

the future (e.g., [18]), the cost functions in the algo-

rithm can be refined to take into account this overhead.

As a further extension, performance properties of the

provider and tenant infrastructures can be taken into

account as well. Finally, the algorithm now only stati-

cally reasons about policies. In order to further opti-

mize towards common access requests, the algorithm can

be applied at run-time, thereby incorporating run-time

statistics.

7.3 Obligations and attribute updates

Another part of future work is to incorporate obligations,

i.e., actions which should be performed in conjunction

with enforcing the access control decision [12]. For exam-

ple, obligations can be used to specify that the user should

agree to a license agreement or that the policy infras-

tructure should write out a log, send an e-mail to an

administrator or update an attribute value. In [14], the

impact of incorporating obligations in federated autho-

rization is described. However, similar to attributes and

policies in the policy tree, the tenant can regard cer-

tain obligations as sensitive and thus, obligations should

be incorporated in the process of policy federation as

well.

An interesting subset of obligations are attribute

updates. Attribute updates can be used to model history-

based policies [19], e.g., a separation-of-duty policy that

states that a member of the help desk cannot view both

insurance and financial documents of a single organiza-

tion or a policy that limits the number of views of a doc-

ument. Both attribute updates and history-based policies

introduce extra complexity in policy federation because

(1) attribute updates require concurrency control in case

of distributed policy evaluation [17] and (2) history-based

policies are known to have a large impact on perfor-

mance [19]. Both are therefore interesting tracks for future

research.

7.4 Generalization to N > 2 parties

A final possible extension of this work is a generalization

to more than two parties. This paper focused on a ten-

ant renting access to a SaaS application and that tenant

wanting to enforce tenant-specific access control poli-

cies on that application. This situation can be extended

to more than two parties, e.g., a patient monitoring sys-

tem provided to multiple hospitals which collaboratively

provide care to the same patient. In our experience, this

situation reduces to each hospital applying its specific

policies to the shared application, in which case the algo-

rithm can separately be applied to each hospital policy

without change. Should a situation arise that does not

show this pattern (i.e., a federation in which a single pol-

icy reasons about data of more than two parties), the

algorithm should be extended. However, we do expect

the techniques in this paper to apply to this situation as

well.

8 Related work
This work describes rewriting and optimizing access

control policies. In general, it has been inspired by

the work on query optimization in database systems,

which similarly discusses transformation rules, heuristic-

based optimization and cost-based optimization for dis-

tributed execution. In essence, this work applies these

Decat et al. Journal of Internet Services and Applications 2014, 5:1 Page 14 of 15

http://www.jisajournal.com/content/5/1/1

techniques to the domain-specific tree-structured policy

model described in Section 4. For an overview of this large

body of work, we refer to [20]. Specifically in the domain

of policy-based access control, several other authors have

also focused on the problem of policy decomposition and

distribution. Bauer et al. [21] describe a distributed system

for constructing formal proofs, aimed at access control.

Amongst others, they also briefly discuss tactics to take

into account confidentiality of input data and to improve

performance based on the location of the input data. This

work extends and applies the general principles discussed

in their work on practical policy trees to achieve an algo-

rithm for policy federation. Ardagna et al. [16] focus on

controlled disclosure of sensitive access control policies

and also discuss policy decomposition and transforma-

tion rules. However, their goal is to provide a limited view

on sensitive policies. Therefore, their approach does not

maintain policy equivalence and does not directly apply

to our goal. Finally, the work of Lin et al. [22] sketches

a theoretical framework for policy decomposition and

distribution based on performance and confidentiality

requirements. Their goal is similar to ours and their

work has been an important influence. However, they

describe a theoretical approach based on a simplified pol-

icy model, limiting applicability. Thus, this work extends

theirs with a more widely-applicable policy model, a

description of supporting middleware and a real-life

evaluation.

Several other authors have also investigated the prob-

lem of confidentiality-aware access control for outsourced

applications and other solutions exist. For example,

Asghar et al. [23] employ attribute and policy encryption,

extending the work of di Vimercati et al., e.g., [24]. This

approach is dual to policy federation and should allow

all tenant data to be securely shared with the provider,

but also introduces performance overhead and is still lim-

ited in policy expressivity, for example only being able to

compare attributes with literal values.

Finally, this work fits in a growing collection of

performance-enhancing tactics for policy-based and

attribute-based access control. This work builds upon the

idea of improving policy evaluation performance by focus-

ing on attribute fetching, as first introduced by Brucker

and Petritsch [25]. Policy federation can be complemented

with the work of several other authors, e.g., Wei et al. [26],

who focus on decision caching and Gheorghe et al. [27],

who focus on infrastructure reconfiguration for optimal

attribute retrieval and cross-request attribute caching.

9 Conclusions
In this paper we described access control for SaaS appli-

cations and focused on the challenges of confidentiality-

aware and efficient policy evaluation, as motivated by

an e-health case study. We proposed to address these

challenges by decomposing and distributing the tenant-

specific policies across tenant and provider in order to

keep sensitive tenant data local while evaluating parts of

the policies near the data they require as much as possi-

ble. This process, we call policy federation. We defined a

widely-applicable attribute-based policy model, described

an algorithm for policy federation in detail and elaborated

on the design of supporting technology. Our approach

succeeds in keeping the sensitive tenant data confidential

and has the ability to improve policy evaluation time as

well. This work fits in a growing collection of performance

techniques for policy-based and attribute-based access

control. With the maturation of these technologies and

the growing ecosystem of service-oriented business coali-

tions, we believe that the need for federated access con-

trol and for policy federation in particular will only

grow.

Endnotes
aWe first discussed this concept in [28].
bFor this, we randomly constructed an artificial policy

tree of five levels, each composed policy having a

branching factor of three and each policy requiring five

random attributes.

Abbreviations

ABAC: Attribute-based access control; HPMS: Home patient monitoring

system; PAP: Policy administration point; PDP: policy decision point; PEP: Policy

enforcement point; PIP: Policy information point; RPDP: Remote policy

decision point.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MD carried out the definition of the policy model and the implementation of

the prototype. MD and BL collaboratively carried out the design of the policy

federation algorithm and the performance evaluation. MD, BL and WJ

collaboratively carried out the case study analysis and the the conceptual and

architectural design of our solution. All authors read and approved the final

manuscript.

Acknowledgements

This research is partially funded by the Research Fund KU Leuven, by the EU

FP7 project NESSoS and by the Agency for Innovation by Science and

Technology in Flanders (IWT). With the financial support from the Prevention

of and Fight against Crime Programme of the European Union (B-CCENTRE).

Received: 10 May 2013 Accepted: 13 January 2014

Published: 11 February 2014

References

1. Mell P, Grance T (2009) The NIST definition of cloud computing. Natl Ins

Standards Tech 53(6): 50

2. Centralizing Information on a Global Scale: Cisco Deploys Salesforce to

15,000 Users with Siebel Integration and PRM Capabilities. http://www.

salesforce.com/uk/customers/hi-tech-hardware/cisco.jsp (2009)

3. E-Health Information Platforms (E-HIP). http://distrinet.cs.kuleuven.be/

research/projects/E-HIP (December 2013)

4. Healthcare professional’s collaboration Space (Share4Health). http://

distrinet.cs.kuleuven.be/research/projects/Share4Health

(December 2013)

http://www.salesforce.com/uk/customers/hi-tech-hardware/cisco.jsp
http://www.salesforce.com/uk/customers/hi-tech-hardware/cisco.jsp
http://distrinet.cs.kuleuven.be/research/projects/E-HIP
http://distrinet.cs.kuleuven.be/research/projects/E-HIP
http://distrinet.cs.kuleuven.be/research/projects/Share4Health
http://distrinet.cs.kuleuven.be/research/projects/Share4Health

Decat et al. Journal of Internet Services and Applications 2014, 5:1 Page 15 of 15

http://www.jisajournal.com/content/5/1/1

5. Security Assertion Markup Language (SAML) v2.0. http://www.oasis-

open.org/standards#samlv2.0 (March 2005)

6. OpenID Authentication 2.0 - Final. http://openid.net/specs/openid-

authentication-2_0.html (December 2013)

7. U. S. Department of Health and Human Services (1996) Health insurance

portability and accountability act (HIPAA). Retrieved from http://www.

hhs.gov/ocr/privacy/hipaa/understanding/index.html

8. European Commision (1995) Directive 95/46/EC of the European

Parliament and of the Council of 24 October 1995 on the protection of

individuals with regard to the processing of personal data and on the free

movement of such data. Retrieved from http://old.cdt.org/privacy/

eudirective/EU_Directive_.html

9. Latham D (1985) Department of Defense Trusted Computer System

Evaluation Criteria. Tech. rep., US Department of Defense

10. Ferraiolo DF, Sandhu R, Gavrila S, Kuhn DR, Chandramouli R (2001)

Proposed NIST standard for role-based access control. ACM Trans Inf Syst

Secur 4(3): 224–274. http://doi.acm.org/10.1145/501978.501980

11. Jin X, Krishnan R, Sandhu R (2012) A unified attribute-based access

controls model covering DAC, MAC and RBAC. In: Data and applications

security and privacy XXVI. Springer, Berlin, Heidelberg, pp 41–55. http://

dx.doi.org/10.1007/978-3-642-31540-4_4

12. Moses T (2005) eXtensible Access Control Markup Language (XACML)

Version 2.0. OASIS Standard. https://www.oasis-open.org/committees/

tc_home.php?wg_abbrev=xacml

13. Maarten Decat - Policy Federation. https://distrinet.cs.kuleuven.be/

software/policy-federation/

14. Decat M, Lagaisse B, Van Landuyt D, Crispo B, Joosen W (2013) Federated

authorization for software-as-a-service applications. In: On the move to

meaningful internet systems: OTM 2013 Conferences. Springer, Berlin,

Heidelberg, pp 342–359

15. Crampton J, Huth M (2010) An authorization framework resilient to policy

evaluation failures. In: Proceedings of the 15th European Conference on

Research in Computer Security. Springer-Verlag, Berlin, Heidelberg,

pp 472–487. http://dx.doi.org/10.1007/978-3-642-15497-3_29

16. Ardagna C, Capitani di Vimercati S, Foresti S, Neven G, Paraboschi S, Preiss

FS, Samarati P, Verdicchio M (2010) Fine-grained disclosure of access

policies. In: Soriano M, Qing S, Lopez J (eds) Information and

communications security. lecture notes in computer science, vol. 6476.

Springer, Berlin, Heidelberg, pp 16–30. http://dx.doi.org/10.1007/978-3-

642-17650-0_3

17. Decat M, Lagaisse B, Crispo B, Joosen W (2013) Introducing concurrency

in policy-based access control. In: Proceedings of the 8th workshop on

middleware for next generation internet computing. ACM, New York,

pp 3:1–3:6

18. Liu AX, Chen F, Hwang J, Xie T (2008) Xengine: a fast and scalable xacml

policy evaluation engine In: Proceedings of the 2008 ACM SIGMETRICS.

SIGMETRICS ‘08. ACM, Annapolis, MD, USA, pp 265–276. http://doi.acm.

org/10.1145/1375457.1375488

19. Gama P, Ribeiro C, Ferreira P (2006) A scalable history-based policy

engine. In: Policies for Distributed Systems and Networks, 2006. Policy

2006. Seventh IEEE International Workshop on. IEEE, pp 100–112. http://

doi.ieeecomputersociety.org/10.1109/POLICY.2006.8

20. Elmasri RA, Navathe SB (1999) Fundamentals of database systems, 3rd

edn. Addison-Wesley Longman Publishing Co., Inc., Boston

21. Bauer L, Garriss S, Reiter M (2005) Distributed proving in access-control

systems. In: Security and Privacy, 2005 IEEE Symposium on. IEEE

Computer Society, Los Alamitos, pp 81–95

22. Lin D, Rao P, Bertino E, Li N, Lobo J (2008) Policy decomposition for

collaborative access control. In: Proceedings of the 13th ACM SACMAT.

ACM, New York, pp 103–112

23. Asghar M, Ion M, Russello G, Crispo B (2011) Espoon: Enforcing encrypted

security policies in outsourced environments. In: Availability, Reliability

and Security (ARES), 2011 Sixth International Conference on. IEEE

Computer Society, Los Alamitos, pp 99–108

24. di Vimercati SDC, Foresti S, Jajodia S, Paraboschi S, Samarati P (2007) A

data outsourcing architecture combining cryptography and access

control. In: Proceedings of the 2007 ACM workshop on computer security

architecture, CSAW ‘07. ACM, Fairfax, Virginia, USA, pp 63–69. http://doi.

acm.org/10.1145/1314466.1314477

25. Brucker A, Petritsch H (2010) Idea: efficient evaluation of access control

constraints. In: Engineering Secure Software and Systems. Springer,

pp 157–165. http://dx.doi.org/10.1007/978-3-642-11747-3_12

26. Wei Q (2009) Towards improving the availability and performance of

enterprise authorization systems. Ph.D. thesis, University of British

Columbia

27. Gheorghe G, Crispo B, Carbone R, Desmet L, Joosen W (2011) Deploy,

adjust and readjust: Supporting dynamic reconfiguration of policy

enforcement 7049: 350–369. http://dx.doi.org/10.1007/978-3-642-25821-

3_18

28. Decat M, Lagaisse B, Joosen W (2012) Toward efficient and

confidentiality-aware federation of access control policies. In:

Proceedings of the 7th Workshop on Middleware for Next Generation

Internet Computing. ACM, Montreal, Quebec, Canada, pp 4:1–4:6. http://

doi.acm.org/10.1145/2405178.2405182

doi:10.1186/1869-0238-5-1
Cite this article as:Decat et al.:Middleware for efficient and confidentiality-
aware federation of access control policies. Journal of Internet Services and
Applications 2014 5:1.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.oasis-open.org/standards#samlv2.0
http://www.oasis-open.org/standards#samlv2.0
http://openid.net/specs/openid-authentication-2_0.html
http://openid.net/specs/openid-authentication-2_0.html
http://www.hhs.gov/ocr/privacy/hipaa/understanding/index.html
http://www.hhs.gov/ocr/privacy/hipaa/understanding/index.html
http://old.cdt.org/privacy/eudirective/EU_Directive_.html
http://old.cdt.org/privacy/eudirective/EU_Directive_.html
http://doi.acm.org/10.1145/501978.501980
http://dx.doi.org/10.1007/978-3-642-31540-4_4
http://dx.doi.org/10.1007/978-3-642-31540-4_4
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://distrinet.cs.kuleuven.be/software/policy-federation/
https://distrinet.cs.kuleuven.be/software/policy-federation/
http://dx.doi.org/10.1007/978-3-642-15497-3_29
http://dx.doi.org/10.1007/978-3-642-17650-0_3
http://dx.doi.org/10.1007/978-3-642-17650-0_3
http://doi.acm.org/10.1145/1375457.1375488
http://doi.acm.org/10.1145/1375457.1375488
http://doi.ieeecomputersociety.org/10.1109/POLICY.2006.8
http://doi.ieeecomputersociety.org/10.1109/POLICY.2006.8
http://doi.acm.org/10.1145/1314466.1314477
http://doi.acm.org/10.1145/1314466.1314477
http://dx.doi.org/10.1007/978-3-642-11747-3_12
http://dx.doi.org/10.1007/978-3-642-25821-3_18
http://dx.doi.org/10.1007/978-3-642-25821-3_18
http://doi.acm.org/10.1145/2405178.2405182
http://doi.acm.org/10.1145/2405178.2405182

	Abstract
	Keywords

	1 Introduction
	2 Context: access control and SaaS applications
	3 Case study analysis: home patient monitoring
	3.1 Overview of the system
	3.2 Access control policies from the case study
	3.2.1 Structure of the hospital's policies
	Objects and actions.
	Subjects.
	Environment.

	3.2.2 Detailed policies
	3.3.3 Analysis

	3.3 Problem statement and solution

	4 Policy model
	4.1 Structure of a policy
	4.1.1 Atomic policies
	4.1.2 Composed policies
	4.1.3 Sensitive elements

	4.2 Policy evaluation
	4.2.1 Evaluation order
	4.2.2 Fetching attributes

	5 Policy federation algorithm
	5.1 Overview
	5.2 Step 1: normalization
	5.2.1 Results from the case study

	5.3 Step 2: decomposition
	5.3.1 Cost functions for atomic policies
	5.3.2 Cost functions for composite policies
	5.3.3 Results from the case study

	5.4 Step 3: combination
	5.4.1 Results from the case study

	5.5 Discussion: policy equivalence

	6 Performance evaluation
	6.1 Prototype
	6.2 Test set-up
	6.3 Results

	7 Discussion
	7.1 Confidentiality
	7.2 Performance
	7.3 Obligations and attribute updates
	7.4 Generalization to N > 2 parties

	8 Related work
	9 Conclusions
	Endnotes
	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	References

