
IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, JANUARY 201X 1

Middleware for Internet of Things: a Survey
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Abstract—The Internet-of-Things (IoT) envisages a future in
which digital and physical things or objects (e.g., smartphones,
TVs, cars) can be connected by means of suitable information and
communication technologies, to enable a range of applications
and services. The IoT’s characteristics, including an ultra large-
scale network of things, device and network level heterogeneity,
and the large number of events generated spontaneously by
these things, will make development of the diverse applications
and services a very challenging task. In general, middleware
can ease the development process by integrating heterogeneous
computing and communications devices, and supporting interop-
erability within the diverse applications and services. Recently,
there have been a number of proposals for IoT middleware.
These proposals mostly addressed Wireless Sensor Networks
(WSNs), a key component of IoT, but do not consider Radio-
Frequency IDentification (RFID), Machine to Machine (M2M)
communications, and Supervisory Control and Data Acquisition
(SCADA), other three core elements in the IoT vision. Taking a
holistic view, in this article, we outline a set of requirements
for IoT middleware, and present a comprehensive review of
the existing middleware solutions against those requirements. In
addition, open research issues, challenges and future research
directions are highlighted.

Index Terms—Mobile Adhoc Networks, Vehicular Adhoc Net-
works, Adaptive Composition, Dynamically Adaptive, Scalability

I. INTRODUCTION

With the advance of numerous technologies including sen-

sors, actuators, embedded computing and cloud computing,

and the emergence of a new generation of cheaper, smaller

wireless devices, many objects or things in our daily lives are

becoming wirelessly interoperable with attached miniature and

low-powered or passive wireless devices (e.g., passive RFID

tags). The Wireless World Research Forum predicts that by

2017, there will be 7 trillion wireless devices serving 7 billion

people [1], one thousand devices per person. This ultra large

number of connected things or devices will form the Internet

of Things (IoT) [2], [3].

By enabling easy access of, and interaction with, a wide

variety of physical devices or things such as, home appliances,

surveillance cameras, monitoring sensors, actuators, displays,

vehicles, machines and so on, the IoT will foster the devel-

opment of applications in many different domains, such as

home automation, industrial automation, medical aids, mobile

healthcare, elderly assistance, intelligent energy management

and smart grids, automotive, traffic management, and many

others [4]. These applications will make use of the potentially

enormous amount and variety of data generated by such
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objects to provide new services to citizens, companies, and

public administrations [3], [5].

In a ubiquitous computing environment like IoT, it is

impractical to impose standards and make everyone comply.

An ultra large-scale network of things and the large number

of events that can be generated spontaneously by these things,

along with heterogeneous devices/technologies/applications of

IoT bring new challenges in developing applications, and make

the existing challenges in ubiquitous computing considerably

more difficult [2], [3]. In this context, a middleware can offer

common services for applications and ease application devel-

opment by integrating heterogeneous computing and commu-

nications devices, and supporting interoperability within the

diverse applications and services running on these devices.

Complementary to middleware are programming language

approaches [6], [7]. These approaches tackle some of the

challenges (such as discovery, network disconnections, and

group communication) posed by the IoT, but are limited

in their support for others such as context-awareness (e.g.,

context-aware service discovery) and scalability.

WSNs, RFID, M2M communications, and SCADA are the

four essential components of IoT [8], [9]. A fully functional

IoT middleware needs to integrate WSNs, RFID, M2M, and

SCADA technologies to support the envisioned diverse ap-

plication domains [8]. Existing proposals and surveys [10]–

[14] for IoT middleware do not consider these technologies

in a holistic manner. Moreover, the majority of the existing

IoT middleware proposals [13], [15]–[18] are WSNs centric.

Many surveys have been conducted on WSNs middlewares

[19]–[25], which are either not comprehensive [23]–[25] or do

not report more recent work [19]–[21]. From these surveys,

it is evident that no single existing middleware can support

all the necessary functional and non-functional requirements

for WSNs as well as IoT applications. For instance, Perera

et al. [9] identified that most existing WSN middleware and

IoT-focused solutions do not support context-awareness. In

addition, unlike WSNs, the number of middleware proposals

for RFID as well as M2M communications, and SCADA is

limited [8], [26]–[30].

Research into IoT, especially in IoT middleware is still in its

early stage. Nonetheless, IoT-specific middlewares are emerg-

ing [8], [14], [31]–[35] as are some surverys [8], [13], [36].

Bandyopadhyay et al. [36] have highlighted the importance

of a middleware system in IoT. They also presented a survey

on IoT middlewares in [13]. However, this is already dated,

and does not include most IoT-specific middlewares [8], [14],

[33]–[35]. Zhou has presented an overview of the existing

middlewares for WSNs, RFID, M2M and SCADA [8], and

a unified framework for IoT middleware based on service

orientation. However, this work does not include recent, and

IoT-specific middlewares [14], [35].
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Considering the importance of IoT in various domains, this

article takes a holistic view of middleware for IoT and (i)

identifies the key characteristics of IoT, and the requirements

of IoT’s middleware (section 2), (ii) based on the identified

requirements, presents a comprehensive review of the existing

middleware systems focusing on current, state-of-the-art re-

search (section 3), and (iii) outlines open research challenges,

recommending future research directions (section 4).

II. BACKGROUND

A. IoT and its Characteristics

In recent years, the IoT has gained significant attention in

academia and industry [37]. IoT enables a world where all the

objects around us will be connected to the Internet and interact

with each other with very little or no human intervention [38].

The eventual goal is to make a better world for humans, where

things or objects around us know what we like, what we want,

and what we need and act accordingly without our explicit

instructions [39].

Research into IoT is still in its early stage, and a standard

definition of IoT is not yet available. IoT can be viewed from

three perspectives: Internet-oriented, things-oriented (sensors

or smart things) and semantic-oriented (knowledge) [37]. Also,

the IoT can be viewed as either supporting consumers (human)

or industrial applications and indeed could be named as the

Human Internet of Things (HIoT) or the Industrial Internet

of Things (IIoT) [8], [40]–[42]. Even though these different

views have evolved because of the interdisciplinary nature of

the subject, they are likely to intersect in an application domain

to achieve the goals of IoT.

The first definition of IoT was from a “things-oriented”

perspective, where RFID tags were considered as things [37].

According to the RFID community, IoT can be defined as,

“The worldwide network of interconnected objects uniquely

addressable based on standard communication protocols” [43].

Figure 1 illustrates the European Research Cluster of IoT

(IERC) definition, where “The Internet of Things allows

people and things to be connected Anytime, Anyplace, with

Anything and Anyone, ideally using Any path/network and

Any service” [44], [45]. The International Telecommunication

Union (ITU) views IoT very similarly: “From anytime, any-

place connectivity for anyone, we will now have connectivity

for anything” [46]. Semantically, IoT means “a world-wide

network of interconnected objects uniquely addressable, based

on standard communication protocols” [43].

Most definitions of IoT do not explicitly highlight the

industrial view of IoT (IIoT). World leading companies are

giving special attention and making significant investments in

the IoT for their industrial solutions (IIoT). Even though they

use different terms such as “Smarter Planet” by IBM, “Internet

of Everything” by Cisco and “Industrial Internet” by GE, their

main objective is to use IoT to improve industrial production

by reducing unplanned machine downtime and significantly

reducing energy costs along with number of other potential

benefits [8], [40]–[42], [47]. The IIoT refers to industrial

objects, or “things”, instrumented with sensors, automatically

communicating over a network, without human-to-human or

IoTs

Anytime
Any context

Anyone
Anybody

Any Service
Any Business

Any path
Any Network

Any place
Anywhere

Anything
Any device

Fig. 1. Definition of IoT [44].

human-to-computer interaction, to exchange information and

take intelligent decisions with the support of advanced analyt-

ics [42].

The definition of “things” in the IoT vision is very wide and

includes a variety of physical elements. These include personal

objects we carry around such as smart phones, tablets and

digital cameras. It also includes elements in our environments

(e.g. home, vehicle or work), industries (e.g., machines, motor,

robot) as well as things fitted with tags (e.g., RFID), which

become connected via a gateway device (e.g., a smart phone).

Based on this view of “things”, an enormous number of

devices will be connected to the Internet, each providing data

and information, and some, even services.

Sensor Networks (SNs), including wireless sensor networks

(WSNs) and wireless sensor and actuator networks (WSANs),

RFID, M2M communications and Supervisory Control and

Data Acquisition (SCADA) are the essential components of

IoT. As described in more detail in this section, a number

of the IoT’s characteristics are inherited from one or more

of these components. For instance, “resource-constrained” is

inherited from RFID and SNs, and “intelligence” is inherited

from WSNs and M2M. Other characteristics (e.g., ultra large-

scale network, spontaneous interactions) are specific to the

IoT. The main characteristics of the IoT are presented from

infrastructure and application perspectives.

1) Characteristics of IoT Infrastructure:

• Heterogeneous Devices: The embedded and sensor com-

puting nature of many IoT devices means that low-cost

computing platforms are likely to be used. In fact, to

minimise the impact of such devices on the environment

and energy consumption, low-power radios are likely to

be used for connection to the Internet. Such low-power ra-

dios do not use WiFi, or well established cellular network

technologies. However, the IoT will not be composed

only of embedded devices and sensors, it will also need

higher-order computing devices to perform heavier duty

tasks (routing, switching, data processing, etc.). Device

heterogeneity emerges not only from differences in ca-

pacity and features, but also for other reasons including

multivendor products, application requirements, etc. [4],

[46]. Figure 2 illustrates 6 different types of IoT devices.
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Fig. 2. Examples of Device Heterogeneity in IoT.

• Resource-Constrained: Embedded computing and sensors

need a small device form factor, which limits their pro-

cessing, memory, and communication capacity. As shown

in Figure 2, resource capacity (e.g., computational, con-

nectivity capabilities, memory requirements) decreases

moving from left to right. For example, RFID devices or

tags (in the right-most side of the figure) may not have

any processing capacity or even battery to power them.

On the other hand, in Figure 2 devices become expensive

and larger in form-factor when moving to the left.

• Spontaneous Interaction: In IoT applications, sudden

interactions can take place as objects move around, and

come into other objects’ communication range, leading

to the spontaneous generation of events. For instance,

a smartphone user can come in close contact with a

TV/fridge/washing machine at home and that can gen-

erate events without the user’s involvement. Typically, in

IoT, an interaction with an object means that an event

is generated and is pushed to the system without much

human attention.

• Ultra Large-Scale Network and Large Number of Events:

In an IoT environment, thousands of devices or things

may interact with each other even in one local place

(e.g., in a building, supermarket, university), which is

much larger scale than most conventional networking

systems. Globally, the IoT will be an ultra large-scale

network containing nodes in the scale of billions and

even in trillions. Gartner has predicted [48] that there

will be nearly 26 billion devices on the IoT by 2020.

Similarly, ABI Research [49] estimated that more than 30

billion devices will be wirelessly connected (Internet of

Everything) by 2020. In the IoT, spontaneous interactions

amongst an ultra large number of things or devices,

will produce an enormous number of events as normal

behaviour. This uncontrolled number of events may cause

problems such as event congestion and reduced event

processing capability.

• Dynamic Network and No Infrastructure: As shown in

Figure 2, IoT will integrate devices, most of which will be

mobile, wirelessly connected, and resource constrained.

Many nodes within the network may be mobile, and can

leave or join anytime they want. Also, nodes can be

disconnected due to poor wireless links or battery short-

age. These factors will make the network in IoT highly

dynamic. Within such an ad hoc environment, where there

is limited or no connection to a fixed infrastructure, it will

be difficult to maintain a stable network to support many

application scenarios that depend on the IoT. Nodes will

need to cooperate to keep the network connected and

active.

• Context-aware: Context is key in the IoT and its appli-

cations. A large number of sensors will generate large

amounts of data, which will not have any value un-

less it is analysed, interpreted, and understood. Context-

aware computing stores context information related to

sensor data, easing its interpretation. Context-awareness

(especially in temporal and spatial context) plays a vital

role in the adaptive and autonomous behaviour of the

things in the IoT [9], [50]. Such behaviour will help

to eliminate human-centric mediation in the IoT, which

ultimately makes it easier to perform machine-to-machine

communication, a core element of the IoT’s vision.

• Intelligence: According to Intel’s IoT vision, intelligent

devices or things and intelligent systems of systems are

the two key elements of IoT [51]. In IoT’s dynamic and

open network, these intelligent entities along with other

entities such as web services (WS), Service-Oriented

Architecture (SOA) components, and virtual objects will

be interoperable and able to act independently based on

the context, circumstances or environments [52], [53].

• Location-aware: Location or spatial information about

things (objects) or sensors in IoT is critical, as location

plays a vital role in context-aware computing. In a large-

scale network of things, interactions are highly dependent

on their locations, their surroundings, and presence of

other entities (e.g., things and people).

• Distributed: The traditional Internet itself is a globally

distributed network, and so also is the IoT. The strong

spatial dimension within the IoT makes the network IoT

distributed at different scales (i.e., both globally like the

Internet, and also locally within an application area).

2) Characteristics of IoT Applications:

• Diverse Applications: The IoT can offer its services to a

large number of applications in numerous domains and

environments. These domains and environments can be

grouped into (non-exhaustive) domain categories such as:

(i) Transportation and logistics, (ii) Healthcare, (iii) Smart

environment (home, office, plant), (iv) Industrial and (v)

Personal and social domain. Figure 3 highlights some key

application domains for the IoT. Different applications are

likely to need different deployment architectures (e.g.,

event-driven, time-driven) and have different require-

ments, which have to date generally been handled using

a proprietary implementation. However, since the IoT is

connected to the Internet, most of the devices comprising
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IoT services will need to operate using standardised

technologies.

• Real-time: Applications using the IoT can be broadly

classified as real-time and non real-time. For instance,

IoT for healthcare, transportation, etc. will need on-time

delivery of their data or service. Delayed delivery of data

can make the application or service useless and even

dangerous in mission critical applications.

• Everything-as-a-service (XaaS): An everything-as-a-

service model is very efficient, scalable, and easy to

use [54]. The XaaS model has inspired the Sensing as

a Service approach in WSNs [55], [56], and this may

inevitably lead IoT toward an everything-as-a-service

(XaaS) model. As more things get connected, the collec-

tion of services is also likely to grow and as they become

accessible online, they will be available for use, and re-

use.

• Increased Security Attack-surface: While there is huge

potential for the IoT in different domains, there are also

concerns for the security of applications and networks.

The IoT needs global connectivity and accessibility,

which means that anyone can access it anytime and

anyway. This tremendously increases the attack surfaces

for the IoT’s applications and networks. The inherent

complexity of the IoT further complicates the design

and deployment of efficient, interoperable, and scalable

security mechanisms.

• Privacy Leakage: Using the IoT, applications may collect

information about people’s daily activities. As informa-

tion reflecting users’ daily activities (e.g., travel routes,

buying habits, daily energy usage and so on) is considered

by many individuals as private, exposure of this informa-

tion could impact the privacy of those individuals. The

use of cloud computing makes the problem of privacy

leakage even worse. Any IoT application not compliant

with privacy requirements could be prohibited by law

(e.g., in the EU [57]) because they violate citizens’

privacy.

IoT

Fig. 3. Potential applications of IoT [58].

B. Middleware in IoT and its requirements

Generally, a middleware abstracts the complexities of the

system or hardware, allowing the application developer to

focus all his effort on the task to be solved, without the

distraction of orthogonal concerns at the system or hardware

level [59]. Such complexities may be related to communication

concerns or to more general computation. A middleware

provides a software layer between applications, the operating

system and the network communications layers, which facil-

itates and coordinates some aspect of cooperative processing.

From the computing perspective, a middleware provides a

layer between application software and system software. In

the IoT, there is likely to be considerable heterogeneity in

both the communication technologies in use, and also the

system level technologies, and a middleware should support

both perspectives as necessary. In this section, we draw on the

previously described characteristics of the IoT’s infrastructure

and the applications that depend on it, to identify a set

requirements for a middleware to support the IoT. As follows,

we have grouped these requirements into two sets: first, the

services such a middleware should provide, and second, the

system architecture it should support.

1) Middleware Service Requirements: Middleware service

requirements for the IoT can be categorised as both functional

and non-functional. Functional requirements capture the ser-

vices or functions (e.g., abstractions, resource management)

a middleware provides and non-functional requirements (e.g.,

reliability, security, availability) capture QoS support or per-

formance issues.

The view of a middleware in this paper is one which

provides common or generic services to multiple different

application domains. In this section, no attempt is made to

capture domain or application-specific requirements, as the

focus is on generic or common functional ones, as follows:

• Resource Discovery: IoT resources include heterogeneous

hardware devices (e.g., RFID tags, sensors, sensor mote,

smartphones), devices’ power and memory, analogue

to digital converter devices (A/D), the communications

module available on those devices, and infrastructural

or network level information (e.g., network topology,

protocols), and the services provided by these devices.

Assumptions related to global and deterministic knowl-

edge of these resources’ availability are invalid, as the

IoT’s infrastructure and environment is dynamic. By

necessity, human intervention for resource discovery is

infeasible, and therefore an important requirement for

resource discovery is that it be automated. Importantly,

when there is no infrastructure network, every device

must announce its presence and the resources it offers.

This is a different model to the traditional distributed

systems one, where resource publication, discovery and

communication are generally managed by a dedicated

server. Discovery mechanisms also need to scale well,

and there should be efficient distribution of discovery

load, given the IoT’s composition of resource-constrained

devices.

• Resource Management: An acceptable QoS is expected
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Fig. 4. Relationships between the IoT Applications and Infrastructure and its Middleware Requirements.

for all applications, and in an environment where re-

sources that impact on QoS are constrained, such as the

IoT, it is important that applications are provided with

a service that manages those resources. This means that

resource usage should be monitored, resources allocated

or provisioned in a fair manner, and resource conflicts re-

solved. In IoT architectures, especially in service-oriented

or virtual machine-based architectures, middleware needs

to facilitate potentially spontaneous resource (service)

(re)composition, to satisfy application needs.

• Data Management: Data is key in IoT applications. In

the IoT, data refers mainly to sensed data or any net-

work infrastructure information of interest to applications.

An IoT middleware needs to provide data management

services to applications, including data acquisition, data

processing (including pre-processing), and data storage.

Pre-processing may include data filtering, compression,

and data aggregation.

• Event Management: There are potentially a massive

number of events generated in IoT applications, which

should be managed as an integral part of an IoT mid-

dleware. Event management transforms simple observed

events into meaningful events. It should provide real-

time analysis of high-velocity data so that downstream

applications are driven by accurate, real-time information

and intelligence.

• Code Management: Deploying code in an IoT environ-

ment is challenging, and should be directly supported

by the middleware. In particular, code allocation and

code migration services are required. Code allocation

selects the set of devices or sensor nodes to be used

to accomplish a user or application level task. Code

migration transfers one node/device’s code to another

one, potentially reprogramming nodes in the network.

Using code migration services, code is portable, which

enables data computation to be re-located.

Key non-functional requirements of IoT middleware follow:

• Scalability: An IoT middleware needs to be scalable to

accommodate growth in the IoT’s network and applica-

tions/services. Considering the size of the IoT’s network,

IPv6 is a very scalable solution for addressability, as

it can deal with a huge number of things that need

to be included in the IoT [60]. Loose coupling and/or

virtualisation in middleware is useful in improving scala-

bility, especially application and service level scalability,

by hiding the complexity of the underlying hardware or

service logic and implementation.

• Real-time or Timeliness: A middleware must provide real-

time services when the correctness of an operation it sup-

ports depends not only on its logical correctness, but also

on the time in which it is performed. As the IoT will deal

with many real-time applications (e.g., transportation,

healthcare), on-time delivery of information or services

in those applications is critical. Delayed information or

services in such applications can make the system useless

and even dangerous.

• Reliability: A middleware should remain operational for

the duration of a mission, even in the presence of failures.

The middleware’s reliability ultimately helps in achieving

system level reliability. Every component or service in a

middleware needs to be reliable to achieve overall relia-

bility, which includes communication, data, technologies

and devices from all layers.

• Availability: A middleware supporting an IoT’s applica-
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tions, especially mission critical ones, must be available,

or appear available, at all times. Even if there is a failure

somewhere in the system, its recovery time and failure

frequency must be small enough to achieve the desired

availability. The reliability and availability requirements

should work together to ensure the highest fault tolerance

required from an application.

• Security & Privacy: Security is critical to the operation of

IoT. In IoT middleware, security needs to be considered in

all the functional and non-functional blocks including the

user level application. Context-awareness in middleware

may disclose personal information (e.g., the location of

an object or a person). Like security, every block of

middleware, which uses personal information, needs to

preserve the owner’s privacy.

• Ease-of deployment: Since an IoT middleware (or more

likely, updates to the middleware) is typically deployed

by the user (or owner of the device), deployment should

not require expert knowledge or support. Complicated

installation and setup procedures must be avoided.

2) Architectural Requirements: The architectural require-

ments included in this section are designed to support appli-

cation developers. They include requirements for programming

abstractions, and other implementation-level concerns.

• Programming Abstraction: Providing an API for applica-

tion developers is an important functional requirement for

any middleware. For the application or service developer,

high-level programming interfaces need to isolate the

development of the applications or services from the

operations provided by the underlying, heterogeneous IoT

infrastructures. The level of abstraction, the programming

paradigm, and the interface type all need to be considered

when defining an API. The level of abstraction refers

to how the application developer views the system (e.g.,

individual node/device level, system level). The program-

ming paradigm (e.g., Publish/Subscribe) deals with the

model for developing or programming the applications or

services. The interface type defines the style of the pro-

gramming interface. For instance, descriptive interfaces

offer SQL-like languages for data query [61], XML-based

specification files for context configuration [62].

• Inter-operable: A middleware should work with hetero-

geneous devices/technologies/applications, without addi-

tional effort from the application or service developer.

Heterogeneous components must be able to exchange

data and services. Interoperability in a middleware can

be viewed from network, syntactic, and semantic per-

spectives, each of which must be catered for in an IoT.

A network should exchange information across differ-

ent networks, potentially using different communication

technologies. Syntactic interoperation should allow for

heterogeneous formatting and encoding structures of any

exchanged information or service. Semantic interoper-

ability refers to the meaning of information or a service,

and should allow for interchange between the ever-

growing and changing set of devices and services in IoT.

Meaningful information about services will be useful for

the users in composing multiple services as semantic

data can be better understood by “things” and humans

compared to traditional protocol descriptions [63], [64].

• Service-based: A middleware architecture should be

service-based to offer high flexibility when new and

advanced functions need to be added to an IoT’s middle-

ware. A service-based middleware provides abstractions

for the complex underlining hardware through a set

of services (e.g., data management, reliability, security)

needed by applications. All these and other advanced

services can be designed, implemented, and integrated in

a service-based framework to deliver a flexible and easy

environment for application development.

• Adaptive: A middleware needs to be adaptive so that it

can evolve to fit itself into changes in its environment

or circumstances. In the IoT, the network and its en-

vironment are likely to change frequently. In addition,

application-level demands or context are also likely to

change frequently. To ensure user satisfaction and effec-

tiveness of the IoT, a middleware needs to dynamically

adapt or adjust itself to fit all such variations.

• Context-aware: Context-awareness is a key requirement

in building adaptive systems and also in establishing

value from sensed data. The IoT’s middleware architec-

ture needs to be aware of the context of users, devices,

and the environment and use these for effective and

essential services’ offerings to users.

• Autonomous: Autonomous means self-governed. De-

vices/technologies/applications are active participants in

the IoT’s processes and they should be enabled to interact

and communicate among themselves without direct hu-

man intervention [65], [66]. Use of intelligence including

autonomous agents, embedded intelligence [67], predic-

tive and proactive approaches (e.g., a prediction engine)

in middleware can fulfil this requirement [68].

• Distributed: A large-scale IoT system’s applica-

tions/devices/users (e.g., WSNs, VANETs) exchange

information and collaborate with each other. Such

applications/devices/users are likely to be geographically

distributed, and so a centralised view or middleware

implementation will not be sufficient to support many

distributed services or applications. A middleware

implementation needs to support functions that are

distributed across the physical infrastructure of the IoT.

Figure 4 presents the relationships between the IoT’s mid-

dleware requirements and its infrastructural and application

characteristics. As shown in the figure, most of the require-

ments are directly related (red colour text) to one or more char-

acteristics of the IoT. A few of them are also indirectly linked

(black text) to one or more characteristics of the IoT. For in-

stance, the real-time behaviour requirement is directly related

to the application’s real-time characteristics and indirectly to

the large number of events. Also, a few of the middleware

requirements (e.g., resource discovery, resource management)

jointly capture the same set of IoT characteristics.
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III. OVERVIEW OF EXISTING WORK

Middleware in IoT is a very active research area. Many

solutions have been proposed and implemented, especially in

the last couple of years. These solutions are highly diverse

in their design approaches (e.g., event-based, database), level

of programming abstractions (e.g., local or node level, global

or network level), and implementation domains (e.g., WSNs,

RFID, M2M, and SCADA).

In this survey, the existing middleware solutions are grouped

for discussion based on their design approaches, as below:

• Event-based

• Service-oriented

• Virtual Machine-based

• Agent-based

• Tuple-spaces

• Database-oriented

• Application-specific

Some middleware use a combination of different design

approaches. For instance, many service-oriented middlewares

(e.g., SOCRADES, Servilla) also employ VMs in their design

and development. Typically, hybrid approach-based middle-

wares perform better than their individual design categories

by taking the advantages of those approaches.

In the interest of space, the discussion of each work

highlights only key points, without exhaustively capturing its

performance against all requirements. See Tables I, II, and III

for a comprehensive summary.

A. Event-Based Middlewares

<Subscribe>

<Publish>

Application Layer

Middleware Layer

Physical Layer

Subscribers

IoT Infrastructure (Publishers)

Topic TopicTopic

Fig. 5. General design model for Event-Based Middleware.

In event-based middleware, components, applications, and

all the other participants interact through events. Each event

has a type, as well as a set of typed parameters whose specific

values describe the specific change to the producer’s state.

Events are propagated from the sending application compo-

nents (producers), to the receiving application components

(consumers). An event system (event service), may consist of

a potentially large number of application components (entities)

that produce and consume events [69]. Message-oriented mid-

dleware (MOM) is a type of event-based middleware. In this

model, the communication relies on messages, which include

extra-metadata compared to events. Generally, messages carry

sender and receiver addresses and they are delivered by a

particular subset of participants, whereas events are broadcast

to all participants.

Typically, the event-based middleware use the pub-

lish/subscribe pattern. This model contains a set of subscribers

and a set of publishers (as shown in Fig. 5). Subscribers can

have access to publishers’ data streams through a common

database and they are registered for events. The notifica-

tions about the events created by publishers are subsequently

and asynchronously sent through a topic to the subscribers

[70], [11]. This design approach addresses non-functional

requirements, such as reliability, availability, real-time perfor-

mance, scalability and security [71].

Prisma [18], [72] is a resource-oriented event-based mid-

dleware for WSN. By providing a high-level and standardised

interface for data access, Prisma supports interoperability of

the heterogeneous network technologies. The Prisma design

deploys a layered architecture, composed of three layers:

Access, Service and Application. The Access layer manages

communication, data acquisition, verification of QoS require-

ments and reconfiguration. Reconfiguration is supported in

several cases (e.g., device failure). The service layer pro-

vides a resource discovery service. The Application layer

offers support for programming abstraction and is responsible

for receiving and managing applications messages Prisma

assumes a heterogeneous and hierarchical WSN, with three

levels: Gateway, Cluster Head, and Sensor Node. However,

this centralised approach creates bottlenecks in the sink nodes.

Prisma is ongoing work. The current version does not support

real-time or dynamic behaviour. Future work aims to re-design

the architecture of Prisma to enable support for dynamic

reconfiguration at runtime.

Emma [16] is an adaptation of Java Message Service (JMS)

for mobile ad hoc environments. It is designed for multi-

party video communication systems such as video chatting,

where multiple video streams are distributed simultaneously

on overlay networks [73]. Emma is available, reliable and

autonomous due to the quick recovery mechanism, which

makes it fault-tolerant. Moreover, Emma offers multiple styles

of messaging. In order to implement different levels of re-

liability, Emma treats persistent and non-persistent messages

differently. Emma provides very good performance in terms

of delivery ratio and latency. However, the trade-off between

application-level routing and resource usage are not taken into

consideration. Also, because of its design approach, Emma is

not energy-efficient.

Hermes [74] is an event-based middleware created for

large-scale distributed applications. Hermes events can be

either type-based or attribute-based. It uses a scalable routing

algorithm and fault-tolerance mechanisms that can tolerate

different kinds of failures in the middleware. Apart from

scalability, features like interoperability, reliability, usability

and expressiveness have been addressed. Hermes has two com-

ponents, event clients and event brokers. In its architecture,

Hermes has the following layers: the middleware layer, event-

based layer, type-based and attribute-based Pub/Sub layer,
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overlay routing network layer and network layer. The event-

based middleware layer provides an API that programmers

use to implement applications. The middleware layer consists

of several modules that implement functionalities such as

fault-tolerance, reliable event delivery, event type discovery,

security, transactions, mobility support etc. Hermes does not

support composite events. Also, it does not provide persistent

storage for events. Moreover, it does not support dynamic

behaviour, adaptiveness, security, privacy or resource manage-

ment.

Green [75] is a runtime, highly configurable and recon-

figurable Pub/Sub middleware developed to support perva-

sive computing applications that use heterogeneous networks

and heterogeneous devices. Green is developed to operate

in diverse network types and under different environmental

conditions. In particular, Green can be configured to operate

over MANETs and WANs. It also supports pluggable Pub/Sub

interaction types such as, topic-based, content-based, context,

composite events. As a QoS, the high event flow in the system

is provided by replacing the content-based interaction with a

topic-based interaction. Green follows Lancaster’s approach

[?] to building re-configurable middleware platforms. It is built

a using well-founded non-distributed lightweight component

model. Green’s strengths are that it is runtime reconfigurable

and it can operate over heterogeneous network types. Its com-

ponent structure is lightweight and enables dynamic behaviour.

However, Green is not autonomous and has limited support for

interoperability. It does not support privacy or security.

Steam [69], PSWare [76], MiSense [77], [78], TinyDDS [79]

are other examples of event-based middlewares. Steam is

an event-based middleware service, designed for the mobile

computing domain. It uses different types of events to address

the problems related to the dynamic reconfiguration of the

network, scalability of a system and the real-time delivery

of events. PSWare is a event-based middleware for WSN,

developed to support composite events. It provides high-level

abstractions. It achieves high expressiveness and availability.

PSWare is also a real-time middleware developed on sensor

nodes. MiSense is a cluster-based lightweight layered middle-

ware that separates application semantics from the underlying

hardware, operating system, and network infrastructure. It uses

a low-power communication model and an energy-efficient

resource allocation technique to achieve application flow and

latency requirements for WSNs. TinyDDS [79] middleware en-

ables interoperability between WSNs and access networks. It

provides programming language and protocol interoperability

based on the standard Data Distribution Service (DDS) spec-

ification. The TinyDSS framework allows WSN applications

to have control over application-level and middleware-level

non-functional properties. Simulation and empirical evaluation

results showed that TinyDDS is lightweight and small memory

footprint. However, TinyDDS does not provide a holistic view

of IoT requirements and does not address key IoT require-

ments such as adaptation. Also, TinyDDS does not offer a

topology control mechanism. However, Steam, PSWare, MiS-

ense, and TinyDDS do not address the heterogeneity of an IoT

infrastructure. These middleware solutions have been designed

only for WSNs or mobile devices.

Mires [80] is a MOM. It supports environment-monitoring

applications and a data aggregation service for WSN appli-

cations. Environment-monitoring applications usually require

that collected data from sensor nodes be aggregated in order

to reduce the number of transmissions in the network. Mires

performs the aggregation at each sensor node, by allowing

sensors to conduct in-network data reduction, which reduces

the number of message transmissions and power consumption.

Mires has been designed to facilitate the development of ap-

plications over WSNs. It does not support a dynamic network

topology and it is not fault tolerant. It also does not support

security and privacy.

SensorBus [81] is another MOM for WSNs. It allows free

exchange of more than one communication mechanism among

sensor nodes. To answer service request from applications

in several contexts, SensorBus provides customisable services

through metadata. Its architecture has three layers, developed

for application, message and context services. The applica-

tion service layer provides an API simplifying application

development. This layer also deploys application filters to

aggregate internal data. This service reduces data flow in the

network, leading to the reduction of power consumption in

sensor nodes. The message service layer is responsible for

providing communication and coordination for the distributed

components, abstracting the developer from these issues. The

context service layer manages the heterogeneous sensors that

collect information from the environment.

Alongside MOMs, there are MQ brokers, which offer

support for matching and routing communications between

services, or service providers and service subscribers, conver-

sion between different transport protocols and homogenisa-

tion of message streams between subscribers and providers.

WebSphere MQ [82] and Mosquitto [83] are examples of this

approach. WebSphere MQ, currently known as IBM MQ [84],

maintains the messages queues, the relationships between

programs and queues, handling network restarts and moving

messages around the network. The resource management is

focused on queue management, which establishes communica-

tion between multiple queue managers. The events are treated

as uninterpreted data, which implies that it is not developed to

support context-awareness. Also, it does not support composite

events or complex messages handling. Mosquitto is a MQTT

broker that enables communication between subscribers and

publishers through a topic subscription. Its main purpose is to

create communication channels and does not address to the

IoT requirements. Recently, many MQ broker solutions have

been proposed. However, these do not address IoT middleware

requirements.

Event-based middlewares are appropriate in systems in

which mobility and failures are common. A main advantage of

this approach is support for strong decoupling of producers and

subscribers. Although many challenges are addressed by most

of the event-based middlewares, their support is not totally

satisfactory, in particular, interoperability, adaptability, time-

liness and context-awareness are not adequately addressed.

Event-based middlewares are also rarely autonomous. The

programming paradigm in event-based middlewares is not

sufficiently flexible in many cases. Appropriate protocols and
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models for security and privacy need to be developed.

B. Service-Oriented Middlewares

Cloud

Application Layer

Middleware Layer

Physical Layer

Service 
Consumers

Service Producers (IoT Infrastructure)

<Query>

Service Management Service

Service Discovery

Data Management Service

QoS Management

Distributed Registry
Fig. 6. General design model for a Service-Oriented Middleware.

The service-oriented design paradigm builds software or

applications in the form of services. Service-oriented comput-

ing (SOC) is based on Service-Oriented Architecture (SOA)

approaches and has been traditionally used in corporate IT

systems. The characteristics of SOC, such as technology

neutrality, loose coupling, service reusability, service com-

posability, service discoverability [85], are also potentially

beneficial to IoT applications. However, IoT’s ultra large-scale

network, resource-constrained devices, and mobility character-

istics make service discovery and composition challenging.

A service-oriented middleware (SOM) has the potential to

alleviate these challenges through the provision of appropriate

functionalities (as shown in Fig. 6) for deploying, publish-

ing/discovering and accessing services at runtime. SOM also

provides support for adaptive service compositions when ser-

vices are unavailable.

A large number of service-oriented IoT middlewares are

available. These middlewares can be categorised as standalone

SOM for IoT [86]–[91] or middleware services provided by

cloud computing’s platform as a service (PaaS) model [92]–

[94].

Hydra [86], [95], which is currently known as LinkS-

mart [96], is a middleware for ambient intelligence (AmI)

services and systems. It is built on a SoA and model-

driven architecture. Its architecture consists of a number of

management components, including a service manager, event

manager, device manager, storage manager, context manager,

and security manager. These components are grouped into

application and device elements, each of which has a semantic

layer, service layer, network layer, and security layer. Hydra

provides syntactical and semantic level interoperability using

semantic web services. In addition to a number of functional

requirements (e.g., data management, event management, re-

source management), it supports dynamic reconfiguration and

self-configuration. Hydra’s resource, device, and policy man-

agers make it lightweight by optimising energy consumption

in resource-constrained devices. Distributed security and social

trust components offer secure and trustworthy communication

within devices. Its security and privacy solution uses virtual-

isation and an implementation of WS-based mechanisms en-

riched by semantic resolution [97]. However, its virtualisation

may introduce security concerns (e.g., side channel attacks).

Also, ontology-based semantic security and interoperability

solutions are likely to be unsuitable in IoT because, currently,

there are no standard ontologies for ultra large-scale IoT.

The SOCRADES [87], [98] middleware abstracts physical

things as services using Devices Profile for Web Services

(DPWS). It has extended two earlier works [99], [100].

SOCRADES simplifies the management of underlying de-

vices or things for enterprise applications (e.g., industrial

automation). Its architecture consists of a layer for appli-

cation services (e.g., event storage) and a layer for device

services (e.g., device manager and monitor, service discovery,

service lifecycle management). Different components in the

two layers fulfil different requirements of SOM. For instance,

the device services layer’s service discovery component, a

key contribution of SOCRADES middleware, discovers the

services provided by real-world devices or things, while its

device manager handles resource management (e.g., device

access). It also offers device and service discovery. The appli-

cation services layer provides event management and storage.

The SOCRADES middleware’s Cross-layer Service Catalogue,

which sits between the device and applications layers, supports

service composition, which may not be fully dynamic, as

composition relies on predefined building blocks. Role-based

access control of devices communication to middleware and

back end services, and vice versa, works as a security solution,

but it is limited to only authentication. Moreover, direct access

to devices or their offered services through this middleware

raises the risk of privacy violations.

The SenseWrap [101] middleware combines the Zero-

conf [102] protocols with hardware abstraction using virtual

sensors. A virtual sensor provides transparent discovery of

resources, mainly sensors, through the use of Zeroconf pro-

tocols, which applications can use to discover sensor-hosted

services. SenseWrap also provides a standardised commu-

nication interface to hide the sensor-specific details from

the applications. This interface depends on sensor modeling

and custom wrappers (drivers) for each sensor model. Also,

virtualisation is applied only to sensors, not to actuators or

computing resources. These issues makes it unsuitable for IoT

environments, which are ultra large-scale, with heterogeneous

network and diverse applications.

The MUSIC [62] middleware provides a self-adaptive

component-based architecture to support the building of sys-

tems in ubiquitous and SoA environments, where dynamic

changes may occur in service providers and service con-

sumers contexts. In particular, MUSIC focuses on changes in

a service provider site, to interchange components and ser-

vices providing the functionalities defined by the component

framework. To support QoS-aware and context-based dynamic

adaptation, its architecture contains a context manager, QoS

manager, adaptation manager, plan repository, SLA negotiator

and monitoring, service discovery and these components pro-

vide different functionalities for the middleware. For instance,

in planning-based adaptation, planning (available in a plan
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repository) is typically triggered by context changes detected

by the context manager. With the support of these components,

the dynamic adaptations work automatically to optimise the

application’s utility in a given context. Context may contain a

lot of private and sensitive data (e.g., location or interests of

a user) and thereby increases the risk of privacy leakage.

TinySOA [103] is a SOM that offers a high-level abstraction

of the infrastructure for the development of WSN appli-

cations. It provides a simple service-oriented API through

which application developers can access WSN resources from

their applications. It handles WSN device and communication

level heterogeneity, and offers easy integration of Internet

applications with WSNs allowing them to collect information

from the sensors. TinySOA employs simple and deterministic

mechanisms for WSN resource (e.g., sensor node) registration

and discovery. It supports only a few basic functional require-

ments (e.g., abstraction, resource discovery and management).

SensorsMW [104] is an adaptable and flexible SOM for

QoS configuration and management of WSNs. It abstracts

WSNs as a collection of services for seamless integration

into an enterprise information system. This allows easy and

efficient configuration of WSNs for information gathering

using web services. Resources in a WSN are managed to

comply with certain QoS requirements, according to SLAs.

Importantly, it offers an abstract way to access these resources

for high-level applications to reconfigure and maintain the

network during their lifetime. Thus, applications can control

and make trade-offs between conflicting issues (e.g., lifetime

and sampling rate). Resource reconfiguration and management

need resource discovery, especially in mobile IoT, where

resources are dynamic, and these are not addressed here. Also,

in critical applications, this reconfiguration may fail as their

strict QoS requirements may not allow any trade-off between

the necessary resources.

The SENSEI [105] middleware develops an architecture

for the future and real world Internet including IoT. It is

one of the earliest proposals that included a context model,

context services, actuation tasks, and dynamic service com-

position of both primitive and advanced services for the real

world Internet. The main component of this middleware is

the resource layer, which sits between the application layer

and communication services layer. Resources in SENSEI use

ontologies for their semantic modeling. Currently, there are no

standard ontologies for ultra large-scale IoT, which is likely

to make SENSEI inadequate for IoT.

ubiSOAP [88] is a SOM that provides seamless networking

of web services. The architecture’s resource layer contains

the necessary functions, including unified abstraction for sim-

ple devices (e.g., sensors, actuators, processors or software

components) to facilitate the interaction of applications and

services with the resources. A support services component

enables discovery and dynamic composition of resources

(e.g., services). Dynamic composition and instantiation of new

services are facilitated by the semantically-rich models and

descriptions of sensors, actuators and processing elements. The

resource layer also contains functions for privacy and security

(e.g., authentication). Its multi-radio networking layer manages

heterogeneous network resources using a network-agnostic

addressing scheme and offers network-agnostic connectivity to

services. This layer also offers the functionality for QoS-aware

(e.g., energy consumption, availability) network selection. In

general, UbiSOAP is a lightweight SOM that offers resource

management and network level interoperability by supporting

heterogeneous networking devices and technologies. The lack

of context-awareness in ubiSOAP could be an issue, as this is

key in adaptive and autonomous behaviour of the things. Also,

its focus only on authentication for security and privacy is a

concern for many IoT applications.

Servilla [89] facilitates application development in hetero-

geneous WSNs. It uses SOC to decouple platform-specific

code from platform-independent applications. It structures ap-

plications as platform-independent tasks that are dynamically

bound to platform-specific services. Servilla’s architecture

consists of a virtual machine (VM) and a service provision-

ing framework (SPF) and runs on individual sensor nodes

in a WSN. The VM executes application tasks while the

SPF-consumer discovers and accesses services, and the SPF-

provider advertises and executes services. It exploits dynamic

service binding and binding semantics to support dynamic

task deployment and task mobility. Dynamic service binding

provides energy efficient in-network collaboration among het-

erogeneous devices. A specialised service description language

facilitates flexible matching between applications and services

residing on the same or different devices, but this specialised

language requirements could limit the wider adoption of this

middleware. Moreover, individual sensor level access could

introduce privacy violations and security threats.

KASOM [106] is a Knowledge-Aware and Service-Oriented

Middleware (KASOM) for pervasive embedded networks,

especially for WSANs. Its architecture consists of three ma-

jor subsystems: framework services (e.g., security, runtime

manager), communication services (e.g., resource monitor),

and knowledge management services (e.g., service compo-

sition rules, context resources). These services offer a SOA

for pervasive environments through registration, discovery,

composition, and orchestration of services. Most of these

services are established on complex reasoning mechanisms

and protocols based on the WSAN’s contextual model, which

represents a semantic description of low and high level re-

sources of the WSANs. Real life implementations in hospital

and health management show its potential in terms of response

time, efficiency and reliability. However, KASOM does not

provide dynamic service composition in mobile and resource

constrained IoT infrastructures because of predefined service

composition rules provided by in-network agents. Moreover,

the proposed security solution by access control is limited to

authentication only.

CHOReOS [107], [108] enables large scale choreographies

or compositions of adaptable, QoS-aware, and heterogeneous

services in IoT. It addresses scalability, interoperability, mo-

bility, and adaptability issues in through approaches like

scalable probabilistic thing-based service registries and discov-

eries [91], [109]. CHOReOS is composed of four components:

eXecutable Service Composition (XSC) to coordinate the

composition of services and things, eXtensible Service Access

(XSA) to access services and things, eXtensible Service Dis-
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covery (XSD) to manage protocols and processes for discovery

of services and things, and the Cloud and Grid middleware to

manage computational resources and drives the deployment of

choreographies. MobIoT, a key component of CHOReOS [91],

[109], is a thing-based SOM for the Mobile IoT. Unlike most

existing SOMs [88], [106], its thing-based probabilistic service

discovery, registration and look-up protocols and algorithms

scale well in dynamic mobile IoT. Moreover, semantic thing-

based service compositions are transparently and automatically

executable by MobIoT and CHOReOS, with no involvement

from end-users, which is highly desirable in IoT, especially

in M2M communications. However, ontology-based semantic

support will be very challenging in heterogeneous IoT envi-

ronments.

MOSDEN (Mobile Sensor Data Processing Engine) [35]

supports a sensing as a service model [110], built on top

of GSN [10]. The use of a plugin architecture improves the

scalability and user friendliness of the middleware, as plugins

for heterogeneous devices are easier to build and available in

easily accessible places (e.g., Google play). MOSDEN added

a plugin manager and a plugin layer to GSN to support

and manipulate plugins. It also replaced sensor-dependent

individual wrappers from GSN with a single generic wrapper

to handle communications. GSN employs a decentralised P2P

architecture [111] and predefined composition rules available

in the virtual sensors, which may not work well in IoT’s

dynamic and ultra large networks. Like GSN, MOSDEN will

suffer in an IoT environment because of its predefined re-

source/service discovery and service composition mechanisms.

Many cloud-based IoT platforms are available [112]. To

provide an impression of the field, we summarise a few of

these in the following and for others, readers are referred

to [112] and references therein.

Xively [93] is a PaaS that provides middleware services

to create products and solutions for IoT. Public cloud-based

Xively offers developers a standards-based directory, data, and

business services. Directory services help to find appropriate

objects with appropriate permission. Data management ser-

vices, using a high performance and time-series database, store

and retrieve data reliably. Its web-based tools simplify data,

control and other application complexities of IoT development.

Business services include a device lifecycle management ser-

vice including device provisioning. Xively’s device lifecycle

management and real-time message bus supports large-scale

and real-time deployments in IoT. Importantly, it offers support

for end-to-end security over the entire platform to ensure IoT

solutions’ integrity. The lack of storage security [113] can be

an issue in many IoT applications. It supports multiple data

formats, however, it does not homogenise the incoming data

so data processing must be done individually for each source

or it needs a prior mapping process to standardize it. This

creates an overhead in the system. Also, it supports a list of

software and hardware combinations needed to develop IoT

applications, but its support for interoperability is limited.

CarrIoTs [92] is a cloud-based service-oriented middleware

for IoT, especially for M2M communications, and focuses

on: cost effective M2M application development, scalability,

and ease of use. The main advantage of CarrIoTs is that it

supports network level scalability. Users can put triggers on

various stages of the data processing cycle to push data to an

external system. Like Xively, CarrIoTs does not standardise

the incoming data. It also does not guarantee storage security,

and offers limited support for interoperability [113].

Echelon [114] is an IIoT platform with a full suite of chips,

stacks, modules, interfaces, and management software for

developing devices, and P2P communities. Unlike consumer

IoT platforms, it addresses the core requirements for the IIoT,

including autonomous control, industrial-strength reliability,

support for legacy evolution and exceptional security. Similar

to Xively, CarrIoTs and other cloud platforms, its interoper-

ability is limited within Echelon’s and a specific list of other

hardware. Being a private cloud, its security is better than

Xively, but trust is still an issue for sensitive IIoT applications.

The middleware presented in [115] is especially designed

for multimedia sensor networks and supports scalability, and

network level heterogeneity, and WhereX [116] is designed

for RFID and mainly supports data management, and its

implementation detail is not available. This section does not

cover an exhaustive set of the available SOMs for IoT. A

number of recent (since 2009) representative works have been

covered to present the state-of-the-art of service-oriented IoT

middlewares. A survey of the WSN-specific SOMs (dated

mostly pre 2009) is available in [117].

As SOC by nature supports abstraction and does not explic-

itly deal with code, existing SOMs do not explicitly consider

abstraction and code management. Most existing SOMs are

WSNs-centric and their scale is limited to WSNs, which

is typically in the range of thousands, much less than the

ultra large-scale (billions) of IoT. Most of these middlewares’

resource discovery and management, and their predefined and

deterministic composition mechanisms, will not scale well

in ultra large and dynamic IoT environments. The lack of

global and standard ontologies, and of semantic interoperabil-

ity between the existing SOMs will not suit the IoT. Most

existing standalone SOMs offer only limited security through

authentication. Also, cloud platform storage security and trust

could be a concern for many IoT applications.

C. Virtual Machine-Based Middlewares

Virtual machine (VM) oriented middleware design provides

programming support for a safe execution environment for

user applications by virtualising the infrastructure. The appli-

cations are divided into small separate modules, which are

injected and distributed throughout the network. Each node

in the network holds a VM, which interprets the modules

(as shown in Fig. 7). This approach is commonly used to

address a lack of architectural support such as high-level

programming abstractions, self-management and adaptivity,

while supporting transparency in distributed heterogeneous

IoT infrastructures [118], [119]. VMs can be divided into

two categories: (i) Middleware Level VMs (VMs are placed

between the OS and applications) and (ii) System Level VMs

(substitute or replace the entire OS) [11], [118]. Middleware

Level VMs add capabilities (e.g., concurrency) to the under-

lying OSs [120]. System Level VMs free up resources that

would otherwise be consumed by the OS.
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Fig. 7. General design model for VM-based middleware.

Maté [121] is a VM-based middleware for resource-

constrained sensor nodes. Maté addresses limitations in pre-

vious projects (e.g., Scylla [122]), which have been focused

only on bytecode verification and on-the-fly compilation, and

introduces a byte code interpreter that runs on TinyOS. Maté

effectively handles resource management for sensor network

(e.g., bandwidth or energy) and provides support for adapt-

ability [24]. Another key goal of Maté is code management,

achieved by allowing updates to VM applications. Maté’s

execution model inherits from the TinyOS synchronous event-

based model. According to Maté’s developers, it simplifies the

development at the application layer by making it less prone

to bugs than dealing with asynchronous eventing notification.

However, this makes Maté not suitable for event-based WSN

applications [123], which require a non-blocking approach.

Also, the VM itself does not support re-programmability

after deployment [124]. Moreover, Maté cannot run multiple

applications concurrently in one node [125].

VM* [124] and Melete [126] are based on Maté and extend

its code management capabilities by enabling fine-grained

updates to both the VM applications and the system software.

VM* adds a service layer, which improves resource man-

agement and eases application deployment. However, VM*

does not offer support for adaptability. Melete enhances the

support for concurrent applications. Furthermore, Melete adds

a code dissemination mechanism to distribute code selectively

and reactively [127]. However, it assumes that the network

topology is a connected graph, which means it cannot handle

a dynamic network topology.

MagnetOS [128], Squawk [129] and Sensorware [125] are

other examples of traditional VM solutions. MagnetOS is a

distributed OS for sensor networks that abstracts the entire

network as a single, unified Java VM, which makes the

applications written for MagnetOS portable. The main goal

of this solution is to reduce energy consumption and increase

network longevity. Similar to MagnetOS, Squawk is a small

Java VM that supports multiple applications, provides point-

to-point connection types, and uses optimised code in order to

reduce the memory footprint. Sensorware is another solution

that implements a script interpreter in order to provide a way

to program WSNs based on mobile scripts. However, Mag-

netOS, Squawk and Sensorware are unsuitable for resource-

constrained devices (i.e., they have a large code base and use

RMI, which is a Java-based, heavyweight mechanism [118]

for inter-component communication).

The resource-constrained characteristics of WSNs surface

an important limitation: virtual machines require significant

memory and processing power resources, which makes virtual-

isation feasible only on resource-rich devices [11]. Code inter-

pretation introduces a significant runtime overhead compared

to native binary code [130]. Moreover, the new languages and

tools that need to be adopted create a steep learning curve for

users and developers [131].

ASVMs (Application-Specific Virtual Machines) [120]

solve the problems imposed by traditional VM solutions by

limiting the generality of the VMs to subsets relevant to

application domain(s) [132]. This type of VM minimises

overhead by reducing the size of the interpreted code and by

using an on-the-fly compiler to native code. On the hardware

side, the interpretation overhead is minimized using CPU-

specific bytecode.

Maté has been extended into a framework for building

ASVMs. The new version addresses code management re-

quirements and improves code execution and code propagation

by reducing the size of the interpreted code [133]. Also, a

security system component was added to avoid propagation

of malicious programs through the network [118].

SwissQM [134] is another ASVM and simplifies WSN

programming by increasing the programming abstraction level

through a gateway system that accepts programs and queries

written in a high-level language. The main design concern

of SwissQM is to offer better support for data management

compared to previous middleware solutions. The other de-

sign considerations include support for adaptability, resource

management (by providing a dynamic, multi-user, multi-

programming environment through execution of concurrent

queries) and support for code management (by offering the

ability to dynamically re-program SwissQM). However, only

a subset of Java VM bytecode is available. Functionalities like

arrays or multiple data types are missing.

DVM [135] and DAViM [136] are based on the concepts

introduced by Maté. Both take a similar approach for dy-

namically updating sensor VMs. Like VM*, DVM does not

offer support for adaptability. Compared to DVM, DAViM is

designed as a lightweight adaptable service platform for sensor

networks [119]. Also, DAViM enables concurrent execution of

multiple applications. However, DAViM is aimed at resource-

rich devices. Also, re-programmability introduces an extra

overhead since it requires updates to all the nodes in the

network. DAViM uses a coordinator to perform the necessary

code management tasks, and this component can become a

bottleneck in the system.

TinyReef [119] and TinyVM [137] are other examples

of ASVMs, which reduce interpretation cost. TinyReef is

a register-based VM for WSNs, which has a smaller code

size and higher processing speed compared with stack-based

VM. However, the data processing unit used by the stack
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machine interacts only with the top elements of the stack. This

workflow improves code processing speed and simplifies the

hardware design significantly [138]. TinyVM uses compressed

machine code, which avoids the CPU-intensive and memory-

intensive decompression on motes. However, TinyVM does not

provide a holistic view of IoT middleware requirements. The

work undertaken is focused mainly on design and evaluation

of code compression and the performance of the interpreter.

The workflow used by ASVMs is not a viable solution for

supporting the heterogeneity of IoT infrastructure because it

is heavyweight, which is not compatible with a vision for

smaller and cheaper hardware [139]. Also, trading portability

for performance reduces flexibility and the possibility of re-

tasking [11]. Further research to address the heavyweight

issues is on-going, with Folliot et al. [140] proposing to

virtualise the virtual machine (i.e., VVM) [133].

D. Agent-Based Middlewares
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Fig. 8. General design model for agent-based middleware.

In the agent-based approach to middleware, applications

are divided into modular programs to facilitate injection and

distribution through the network using mobile agents. While

migrating from one node to another, agents maintain (as shown

in Fig. 8) their execution state. This facilitates the design

of decentralised systems capable of tolerating partial fail-

ures [141]. Previous research [142] in this area has presented

a number of advantages for using mobile agents in generic

distributed systems. In the context of the IoT middleware

requirements, these are: resource management (network load

reduction and network latency reduction), code management

(asynchronous and autonomous execution and protocol en-

capsulation), availability and reliability (robustness and fault-

tolerance), adaptiveness and heterogeneity [143]. Moreover, an

agent can engage in dialogues with other software agents to

proactively gather data and update only parts of the applica-

tion. Additionally, agent-based approaches consider resource-

constrained devices [130].

Ubiware [144] directly addresses the IoT requirements

and domains. This middleware supports the creation of au-

tonomous, complex, flexible and extendible industrial sys-

tems. The main principles of Ubiware are to support au-

tomatic resource discovery, monitoring, composition, invo-

cation and execution of different applications. A Ubiware

agent is distributed over three layers: a behaviour engine

implemented in Java, a declarative middle-layer (behaviour

models corresponding to agent roles), and a third layer, which

contains shared and reusable resources interpreted as Java

components (sensors, actuators, smart machines and devices,

RFIDs, web-services, etc.). Interoperability is achieved by

semantic adaptation and by assigning a proactive agent to each

of the resources. This is supported by using metadata and

ontologies. However, support for interoperability is limited.

For example, it does not cover the interoperability between

different resource discovery protocols.

Impala [145] is a middleware solution for WSNs that

enables application modularity, adaptivity, and repairability in

WSNs. This middleware solution was part of the ZebraNet

project, a mobile sensor network system for improving track-

ing technology via energy-efficient tracking nodes and P2P

communication techniques. Impala adopts OTAP (i.e., Over-

The-Air Programming) for code management and describes a

software architecture best suited for improving resource effi-

ciency of resource-constrained nodes. Resource management,

mobility, openness, and scalability requirements are supported

by switching between different protocols and modes of oper-

ation depending on the applications and network conditions.

However, Impala does not support data pre-processing, which

is an important component of data management.

Smart Messages [146] proposes an autonomous network

architecture for large-scale embedded systems (NESs). NESs

support restriction of resources, heterogeneity, and volatile

nodes. Smart Messages overcomes these limitations by mi-

grating agents to nodes of interest, using application-controlled

routing, instead of end-to-end communication between nodes.

The main contribution of this middleware is high-flexibility

in the presence of dynamic network configurations. However,

Smart Messages does not support multiple applications. Also,

it considers only nodes with limited resources, and does not

provide support for more complex computations possible in

more resource-rich devices.

AFME [147], MAPS [148], MASPOT [149] and

TinyMAPS [150] are Java-based solutions that enable

agent-oriented programming of WSN applications. AFME

is a middleware solution designed for wireless pervasive

systems to tackle the performance and code management

issues associated with executing agents only on mobile

devices. MAPS is based on a lightweight agent architecture

and offers a set of services to support agent management.

MASPOT extends the generality of MAPS and improves its

code migration capabilities. However, the service discovery

mechanism used in MASPOT employs a broadcast protocol,

which introduces an extra overhead in the network. TinyMAPS

ports MAPS onto devices much more resource-constrained

than the ones used by MAPS. TinyMAPS is an ongoing

effort to optimize the communication and code migration

mechanisms. However, TinyMAPS does not consider mobility,

which is an important characteristic of an IoT infrastructure.

Agilla [17] and ActorNet [151] are also agent-based WSN
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middleware examples. Agilla reduces its code size and offers

support for self-adaptiveness within the WSN by deploying

multiple autonomous mobile agents in each node when specific

events are triggered. Each agent uses a tuple space structure to

ensure consistency and scalability in a dynamic environment

and to enable resource discovery. However, Agilla does not

support a federated tuple space because of energy and band-

width constraints. Like Smart Messages, Agilla considers only

nodes with limited resources, and does not provide support for

more complex computations possible in more resource-rich

devices. Also, programmability and code management pose a

challenge because of the low level of language abstraction.

Moreover, the mobile agents are susceptible to message loss,

which interferes with code migration tasks. ActorNet is a mo-

bile agent platform for WSNs designed to improve code migra-

tion and offer support for interoperability. ActorNet introduces

services like virtual memory, context switching and multi-

tasking to enable the execution of complex, highly dynamic

mobile agent applications in severely resource-constrained

environments. A drawback of ActorNet comes from the service

discovery mechanism used, which is a broadcast protocol that

introduces an extra overhead in the network.

The Agent-based middleware solutions presented (i.e.,

Impala, Smart Messages, Agilla, AFME, ActorNet, MAPS,

MASPOT, TinyMAPS) do not address the heterogeneity of an

IoT infrastructure. These solutions have been designed only

for WSNs or mobile devices. All have been tested on a spe-

cific hardware/software platform (e.g., Mica2, MicaZ, TelosB

running TinyOS, Hewlett-Packard/Compaq iPAQ Pocket PC

running Linux, Sun SPOTs).

The IoT vision is to support the connection of various

physical world objects to a common infrastructure, and de-

signing a system that will enable this, is a complex process.

The use of agent-based systems can reduce the complexity of

designing such systems by defining some higher-level policies

rather than direct administration. However, the autonomous

characteristic of agents can lead to unpredictability in the

system at runtime. The patterns and the effects of their

interactions are uncertain [152]. Moreover, mobile agents are

susceptible to message loss, especially in resource-constrained

environments [153]. This imposes many limitations for an IoT

middleware solution, including the ability to perform code

management tasks.

E. Tuple-Space Middlewares

In tuple-space middlewares, each member of the infrastruc-

ture holds a local tuple space structure. A tuple space is a

data repository [154] that can be accessed concurrently. All

the tuple spaces form a federated tuple space (shown in Fig. 9)

on a gateway (i.e., base station). This approach suits mobile

devices in an IoT infrastructure, as they can transiently share

data within gateway connectivity constraints. Applications

communicate by writing tuples in a federated tuple space, and

by reading them through specifying the pattern of the data

they are interested in.

Lime [155], TinyLime [156] and TeenyLime [157] are tuple-

space middleware solutions, each tailored for a specific en-

vironment, ranging from mobile ad-hoc networks to sensor
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Fig. 9. General design model for tuple-space-based middleware.

networks. Lime is a middleware for MANETs developed to

address mobile devices’ energy limitations. Lime borrows and

adapts the coordination model from Linda [158], and breaks up

the centralised tuple space on the gateway into multiple tuple

spaces, each permanently attached to a mobile component.

Access to the tuple space is carried out using an extended set of

tuple space operations, including several constructs designed

to facilitate flexible and real-time responses to changes. Lime

supports good programming abstractions for exploiting a dy-

namically changing context. However, the context-awareness

is limited (e.g, it is not aware of the system configuration). It

does not support resource management or event-management,

and it is not scalable, secure or private. Another limitation

is that an application can access only the federated tuple-

space of the sensors in proximity. TinyLime builds on Lime by

adding specialised components for sensor networks. However,

TinyLime is not scalable, as it does not support adaptability

and does not have any built in security support. TeenyLIME is

an extension of Lime and TinyLime. It provides a more general

programming abstraction model by deploying both proactive

and reactive operations. It limits the number of application-

level uses by controlling a device’s one-hop neighbourhood.

This is done to reduce power usage and improve collection

context-sensitive data. A drawback of Lime, TinyLime and

TeenyLime is that they are designed for environments in which

clients typically only need to query data from local sensors.

The sensed data is collected only if the devices are within

connectivity limits of a gateway (i.e., base station). In an

IoT environment, this approach is not sufficient to support

distributed services or applications.

TS-Mid [159] is another tuple-space middleware for WSNs,

which deploys an asynchronous and decoupled communication

style in both time and space. Like in Lime, TinyLime and

TeenyLime, TS-Mid follows the same approach of collecting

data on a gateway. However, TS-Mid improves the hierarchy

of node structure by creating logical regions (or groups) for

nodes in proximity. The tasks that were performed previously

on the gateway are now performed on an elected leader node in

the group. Each leader node is responsible for data aggregation

and forwarding to the sink node. The sink node is the node that
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will be queried by clients. This model is heterogeneous with

respect to programming languages, network and operating sys-

tems. It supports data management through data aggregation

and storage. However, it does not support real-time, dynamic

behaviour, scalability, security or privacy. Moreover, the leader

node becomes a bottleneck in the group and does not provide

uniformity of power usage.

UbiROAD [160] is a semantic middleware for context-aware

smart road environments. It deals with the interoperability

between in-car and roadside heterogeneous devices. Semantic

interoperability is achieved by two layers: data-level interoper-

ability and functional protocol-level interoperability and coor-

dination. UbiROAD is a specialised platform for smart traffic

environments, but can also serve as an intelligent protocol be-

tween the smart road device layer and future service-oriented

architectures. It is heterogeneous with respect to components,

standards, data formats and protocols. It is self-adaptive by de-

ploying distributed agents and ensures context-awareness, and

adaptive/reconfigurable composition. These requirements are

achieved by customisation, personalisation, dynamic behaviour

and autonomy of services. Autonomous trust management is

achieved via semantic annotation. UbiROAD guarantees a high

level of safety.

The tuple-spaces middleware solutions presented here (i.e.,

Lime, TinyLime, TeenyLime, TS-Mid) have been designed

only for WSNs or mobile devices. Tuple-space middlewares

were originally proposed to address the problem of frequent

disconnections, and to improve asynchronous communication.

Although they have a flexible architecture that allows middle-

ware to be used in different environments, the overheard due

to its cross-layer design may be prohibitive in the IoT. Their

programming model generally is not reprogrammable and they

provide limited support for adaptability or scalability.

F. Database-Oriented Middlewares
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Fig. 10. General design model for database-oriented middleware.

In database-oriented middleware, a sensor network is

viewed as a virtual relational database system (as shown in

Fig. 10). An application can query the database using SQL-

like query language, which enables the formulation of complex

queries [11]. Research in this area has been focused on

developing a distributed database approach to interoperating

systems.

Sina [161], provides support for both SQL-like queries and

SQTL (Sensor Query and Tasking Language). Sina handles

events and can also cope with the mobility of the querying

(sink) node [162]. Sina allows sensor applications to issue

queries and command tasks into, collect replies and results

from, and monitor changes within the networks. Sina supports

resource management though resource monitoring, but does

not support resource discovery. It supports data preprocessing

aggregation, but does not deal with any events. Sina modules,

running on each sensor node, provide adaptive organisation of

sensor information, and facilitate query, event monitoring, and

tasking capabilities. Sensor nodes are autonomously clustered,

which supports energy-efficiency and scalable operations. Al-

though adaptive and autonomous, interoperability and context-

awareness requirements are not resolved in Sina. Sina is not

secured or private.

IrisNet [163] is a database-oriented platform, which deploys

heterogeneous services on WSNs. IrisNet supports the control

of a global, wide-area sensor network by performing internet-

like queries on this infrastructure. Each query operates over

data collected from the global sensor network, and supports

simple and more complex queries involving arithmetic and

database operators. It is distributed and lightweight. It uses

a database centric approach to publish generated data. The

architecture of IrisNet is two-tiered. Heterogeneous sensors

implement a common shared interface and are called sensing

agents (SA). The data produced by sensors is stored in a

distributed database that is implemented on organising agents

(OA). Different sensing services run simultaneously on the

architecture. As the processing nodes are always powered,

IrisNet is not optimised for energy usage. Many architectural

challenges are not resolved, such as: interoperability, context-

awareness, autonomous behaviour, adaptiveness.

HyCache [164] is a application-level caching middleware

for distributed file systems based on database-oriented design.

Distributed file systems are deployed on top of HyCache on all

data nodes. HyCache’s strategy is to achieve straightforward

high, and scalable, writing flow. This is achieved if the client

only writes data to its local storage, which provides data

storage management. HyCache supports data preprocessing

aggregation and achieves an optimal flow by associating all

the writes with the local I/O flow. HyCache supports resource

distributed discovery and resource monitoring management. It

provides dynamic programming abstractions. It uses heteroge-

neous storage devices for distributed file systems and works

completely in the user space. It does not deal with security and

privacy issues, or with code management. However, it does not

provide real-time services.

GSN [165] uses virtual sensors to control processing prior-

ity, management of resources and stored data. Using declar-

ative specifications, virtual sensors can be deployed and re-

configured in GSN containers at runtime. GSN creates highly

dynamic processing environments and allows the system to

quickly react to changing processing needs and environmental

conditions. Dynamic resource management accomplishes three
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main tasks: resource sharing, failure management and explicit

resource control. As the number of clients increases, the

average processing time for each client decreases, which caters

for scalability [15]. GSN provides simple and uniform access

to the host of heterogeneous technologies available and is easy

to deploy. GSN is adaptive, but it is not autonomous and it

does not offer support for interoperability, security or privacy.

KSpot+ [166] is a data-centric distributed middleware archi-

tecture for WSN. It is network-aware and supports advanced

query semantics for data aggregation. KSpot+ is an open-

source middleware framework that can be used in numer-

ous application domains including environmental monitoring,

structural monitoring, urban monitoring and health monitoring.

KSpot+ provides a decentralised resource discovery mecha-

nism. Several challenges have been taken into consideration,

such as modularity, energy-efficiency, availability, distributed

and autonomous behaviour, scalability and failure tolerance.

Special attention was given to scalability, to ensure that the

performance of KSpot+ maintains acceptable QoS standards

regardless of increasing network size. It does not support

privacy, or code or event management. It is not real-time,

context-aware, dynamic or adaptive.

Cougar [167], [168], is another database-oriented mid-

dleware. It is an extension to the Cornell Predator object-

relational database system. In Cougar, there are two types

of data: stored data and sensor data. Signal processing func-

tions in each sensor node generate sensor data, which is

communicated or stored as relations in a database system.

Signal processing functions are modelled by using abstract

data types. Long-running queries are formulated in SQL with

small modifications made to the language. Data aggregation

refers to delivering data from distributed source sensor nodes

to a central node for computation. Cougar provides flexible

and scalable access to large collections of sensors. From the

functional and non-functional requirements aspect, it does not

support event or code management.

DsWare [19] is both database-oriented and event-based in

its handling of sensor networks. It consists of several modules:

data storage, data caching, group management, event detection,

data subscription and scheduling. It uses SQL to manage

the events. It has real-time execution performance and is

considered to be very reliable [19] because it can handle

dynamic sensor network data. DsWare reliability relies on the

fact that it can be serviced by a group of geographically-

close sensor nodes. DsWare does not support heterogeneity

or mobility.

Sensation [169] is database-oriented middleware developed

for WSN applications, and designed to provide support for

different sensors, network infrastructures and middleware tech-

nologies. This level of heterogeneity is supported through an

abstraction layer. Sensation provides a high-level and intuitive

programming model for context-aware pervasive applications.

It supports energy-awareness and scalability. Through its syn-

chronous requests (queries), it retrieves requested data, and

returns the corresponding responses in real-time. Sensation is

designed for periodic monitoring of sensor values. Context-

aware applications use event-driven programming to trigger

actions after events have been generated from the WSN.

TinyDB [61], [170] is a distributed query processing mid-

dleware system based on TinyOS. TinyDB provides power-

efficiency in network query processing systems that collect

data from individual sensor nodes. Reduced energy consump-

tion is enabled through the reduced number of messages that

must be exchanged. While TinyDB provides programming

abstraction support and a data aggregation model, it does not

provide much middleware service functionality, so applications

must handle such functions themselves. It has good data man-

agement, minimising expensive communication by applying

aggregation and filtering operations inside the sensor network.

It supports event-based processing and its processes can be

optimised for energy usage.

A database approach to middleware views the whole net-

work as a virtual database system. Easy-to-use interfaces sup-

port user queries to sensor networks to extract data of interest.

However, only approximate results are returned. Most IoT

applications are real-time, where time and space are important.

Database middlewares do not support timeliness. Energy con-

sumption is reduced by collecting data from individual nodes.

While database middlewares can provide good programming

abstraction support and have good data management support,

the rest of IoT middleware requirements are mostly ignored.

Moreover, database middleware approach uses a centralised

model, which makes it difficult to handle large-scale sensor

networks dynamics.

G. Application-Specific Middlewares
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Fig. 11. General design model for application-specific middleware.

An application-specific (i.e., application-driven) approach

to middleware focuses on resource management support (i.e.,

QoS support) for a specific application or application domain

by implementing an architecture that fine-tunes the network or

infrastructure (as shown in Fig. 11) based on the application

or application domain requirements.

AutoSec [171] and Adaptive Middleware [172] are some

examples of this approach. AutoSec uses a dynamic service

broker for resource management in a distributed system. This

is done by appropriate combination of information collection

and resource provisioning policies based on current system

conditions and application requirements. AutoSec does not

support multiple applications concurrently, since the under-

lying network is configured for only one application at a time.
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Adaptive Middleware explores the trade-off between resource

spending and quality during information collecting. The main

goal is to decrease the transmissions between sensor nodes

without compromising the overall result. Adaptive middleware

is autonomous and offers support for adaptation, though has

been designed particularly for smart-home context-aware ap-

plications.

MiLAN [173] is similar to Adaptive Middleware, though

MiLAN explores the concept of proactive adaptation in order

to respond to application needs. MiLAN allows applications

to specify their QoS requirements and adjust the network

configuration at runtime. The adjustments are made based

on information collected from the application, the user, the

network and the overall system. Both Adaptive Middleware

and MiLAN require knowledge about the exact sensors. In

dynamic and pervasive computing environments, the number

and types of sensors available to the applications may vary.

It is impractical to include knowledge about all the available

sensor nodes that an application can potentially use. Moreover,

MiLAN does not consider the information acquisition cost.

Also, it does not address mobility. MiLAN was designed for

medical advising and monitoring.

MidFusion [174] builds on the concepts presented in MiLAN

and Adaptive Middleware. The purpose of this middleware

solution is to avoid maintaining knowledge about the exact

sensors available by using Bayesian and Decision theory to

provide a portable abstraction of the infrastructure to the

application. In addition to MiLAN and Adaptive Middleware,

MidFusion uses the cost of information acquisition as the

selection criterion of the best set of sensors or sensor agents.

MidFusion was designed for applications that perform infor-

mation fusion (e.g, an intruder detection system).

TinyCubus [?] is a cross-layer framework implemented on

top of TinyOS. It proposes a generic, extensible and flexible

framework that can manage new application requirements. The

application-specific requirements are satisfied by customizing

generic components. However, the cross layer design produces

an extra overhead, which is detrimental for energy usage. Also,

this software solution is not scalable. TinyCubus was designed

for monitoring bridges for structural defects and for driver

assistance systems.

Application-specific solutions do not address the hetero-

geneity of an IoT infrastructure as there is tight coupling

between applications and middleware layer. Moreover, the

application-specific approach creates only specialized middle-

ware solutions [19] instead of general purpose solutions. This

does not satisfy the IoT middleware requirements since an IoT

solution should support multiple applications. Furthermore, all

the application-specific middleware solutions presented use

a centralised resource discovery mechanism, which is not a

viable approach for a distributed fault-tolerant IoT solution.

Tables I, II, and III summarise the functional, non-

functional, and architectural capabilities of the surveyed mid-

dlewares. In populating the tables, a few common legends are

used (e.g., Supported (S), Not Supported (NS), No Information

(NI) - if no information available about the requirement)

along with requirement-specific legends (e.g., for lightweight

requirements: memory needed (M) and energy efficiency (E)).

IV. OPEN RESEARCH CHALLENGES AND FUTURE

DIRECTIONS

Although the middlewares presented herein address many

issues and requirements in IoT, there are still some open re-

search challenges. In particular, research is needed in the area

of dynamic heterogeneous resource discovery and composi-

tion, scalability, reliability, interoperability, context-awareness,

security and privacy with IoT middleware. Importantly, most

current middlewares address WSNs, while other perspectives

(e.g., M2M, RFID, and SCADA) are rarely addressed. This

survey indicates that there have been significant advances

in addressing many challenges for middleware in an IoT

environment, with the following open challenges remaining.

A. Challenges related to Functional Requirements

Resource Discovery: The dynamic and ultra large-scale

nature of the IoT infrastructure invalidates centralised resource

registries and discovery approaches. However, deciding be-

tween purely distributed and hybrid solutions is complicated.

A trade-off is necessary between registry distribution and the

number of registries. Fewer registries provide consistent and

fast discovery of resources under normal circumstances, but

will not scale well when there is a large number of service

discovery queries in IoT applications. Probabilistic resource

(e.g., service) registries and discovery [91], [109], [178] can

be scalable, though may not work well in applications (e.g.,

mission critical applications) that need guaranteed discovery

of resources with high accuracy. Further research is necessary

for improved and highly accurate probabilistic models to make

them suitable for diverse applications of IoT.

Resource Management: Frequent resource conflicts occur in

IoT applications that share resources (e.g., actuators). Conflict

resolution will be required to resolve conflicts in resource

allocation among multiple concurrent services or applications.

This is not considered in most existing middleware solutions,

except ubiSOAP [88] (Table I and IV). There is clearly

significant scope for future work in this area. Agent-based

cooperative approach for conflict resolution [179] could be a

good starting point for autonomous conflict management.

Data Management: A vast amount of raw data continuously

collected needs to be converted into usable knowledge, which

implies aggregated and filtered data. Most of the surveyed

middlewares offer support for data aggregation, but do not

consider data filtering. Data filtering is likely to be found

in application-specific approaches since the middleware is

tailored for a specific application or group of applications.

Moreover, no approach offers data compression. This remains

an important issue for research since many IoT devices are

resource-constrained and transmission of data is more expen-

sive than local processing.

Event Management: A large number of events are generated

proactively and reactively in IoT. Because of this, it is expected

that middleware components may become bottlenecks in the

system. Most of the middleware surveyed cannot handle or

have not been tested against this requirement. Also, events

can be primitive (i.e., simple) or complex. Most middlewares

statically pre-define how an event is handled. Further work



IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, JANUARY 201X 18

TABLE I
SUMMARY OF THE IOT MIDDLEWARES: SUPPORTED FUNCTIONAL REQUIREMENTS

Functional requirements

Resource Discovery Resource Management Data Management Event Management Code Management

Event-based

Prisma [18], [72] DD-SD RM DPA SN CA

Emma [16], [73] NI RM DPA NS CA

Hermes [74] DD-ND NI DPF LN NS

Green [75] DD-ND RM DS, DPF LN CM

Mires [80] DD-ND NS DPA LN NS

SensorBus [81] DD-SD NS DPA LN CA

Runes [175], [176], [177] CD-DeD, CD-SD RCA DPA NI CA, CM

Service-Oriented Approach

Hydra [95] DD-DeD, DD-SD RA, RM, RCP DS SS NS

SOCRADES [87] DD-DeD, DD-SD RA, RM, RCP NI LS NS

SenseWrap [101] DD-DeD, DD-SD NI NI SS NS

MUSIC [62] DD-SD RA, RM, RCA NS NS NS

TinySOA [103] DD-DeD, DD-SD RA DS NS NS

SENSEI [105] DD-DeD RA, RM, RCA DS,DPA NI NS

UbiSOAP [88] DD-DeD, DD-ND RA, RM, RCA, RCL NI SS NS

Servilla [89] DD-SD RA, RM, RCA DPC SS CA, CM

KASOM [106] DD-SD RA, RM, RCA NS LS NS

CHOReOS [108] DD-DeD, DD-SD RA, RM, RCA DPA SS NS

MOSDEN [35] DD-DeD, DD-SD RA, RM, RCP DS,DPA NI NS

Xively [93] DD-DeD, DD-SD RA, RM DS,DPA NI NI

CarrIoT [92] DD-DeD, DD-SD RA, RM DS,DPA NI NI

Echelon [114] DD-DeD, DD-SD RA, RM DS,DPA NI NI

Virtual Machine Approach

Maté [121] DD-DeD RA, RM DS, DPA LS CA

VM* [124] DD-DeD RM DS, DPA LS CA

Melete [126] DD-DeD RA, RM, RCA DS, DPA LS CA, CM

MagnetOS [128] DD-DeD RA, RM, RCA DS, DPA LS CA

Squawk [129] DD-DeD RA, RM DS, DPA NI CA

Sensorware [125] DD-DeD RA, RM, RCA DS, DPA LS CA, CM

Extended Maté [133] DD-DeD RA, RM DS, DPA LS CA

SwissQM [134] DD-DeD, DD-SD RA, RM, RCA DS, DPA, DPF LS CA

TinyVM [137] NI NI DPA NI NI

TinyReef [119] NI NS DS, DPA SS CA

DVM [135] DD-DeD RA, RM, RCL DS, DPA SS CA

DAViM [136] CD-DD RA, RM DS, DPA SS CA

Agent-Based Approach

Ubiware [144] DD-DeD, DD-SD RA, RM, RCA DPA LS CA, CM

Impala [145] DD-DeD RA, RM DPA LS CA, CM

Smart Messages [146] DD-ND RA, RM DPA SS CA, CM

ActorNet [151] DD-DeD RA DPA SS CA, CM

Agilla [17] DD-DeD RA, RM, RCA DPA LS CA, CM

AFME [147] CD-DD RA DPA SS CM

MAPS [148] DD-DeD RA, RM DPA LS CA, CM

MASPOT [149] DD-DeD RA, RM, RCA DPA LS CA, CM

TinyMAPS [150] DD-DeD RCA DPA, DPF LS CA, CM

Tuple-Space Approach

LIME [155] DD-SD NS DS NS CM

UbiROAD [160] CD-SD RM DS NS NS

TeenyLIME [157] DD-SD RM DPA, DS LN CM

TinyLime [156] DD-ND NS DPA NS CM

TS-Mid [159] DD-ND RM DPA NS NS

Database Approach

SINA [161] NS RM DPA, DS NS NS

IrisNet [163] DD-SD RA DPA, DPF, DS NS CM

HyCache [164] DD-DeD RM DPA, DS NS NS

GSN [165] DD-ND RA DS, DPF LN CA

KSpot+ [166] DD-SD RM DPA, DS NS NS

Cougar [167], [168], [?] DD-ND RM DPA, DS NS NS

DsWare [19] NI NI DPA, DS LN DA

Sensation [169] NI NI DPA, DS NS CM

TinyDB [61], [170] DD-ND NI DPA, DS NS NI

Application-Specific Approach

AutoSec [171] CD-SD RA, RM, RCA, RCL DS, DPA, DPF LS CA, CM

Adaptive Middleware [172] CD-SD RA, RM DS, DPA LS CA

TinyCubus [?] CD-SD RA, RM DS, DPA LS CA

MiLAN [173] CD-SD RA, RM, RCA DS, DPA LS CA, CM

MidFusion [174] CD-SD RA, RM, RCA DS, DPA, DPC, DPF LS CA

Legend Centralised Discovery (CD) Resource Allocation (RA) Data storage (DS) Supported Code Allocation (CA)

Not Supported (NS) Distributed Discovery (DD) Resource Monitor (RM) Data Preprocessing (DP) - Large Scale (LS) Code Migration (CM)

No Information (NI) Device Discovery (DeD) Resource Composition (RC) - Aggregation (A) - Small Scale (SS)

Network Discovery (ND) - Adaptive (A) - Compression(C)

Service Discovery (SD) - Predefined (P) - Filtering (F)

Resource Conflict (RCL)
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TABLE II
SUMMARY OF THE IOT MIDDLEWARES: SUPPORTED NON-FUNCTIONAL REQUIREMENTS

Non-functional requirements

Scalability Security Availability Reliability Real-Time Privacy

Event-Based Approach

Prisma [18], [72] NLWSNS NS NI NI NRT NI

Emma [16], [73] NI NI NS NS HRT NI

Hermes [74] AL NI S NS HRT NI

Green [75] NLIoTS NI S NS HRT NI

Mires [80] NLWSNS NS S NS NRT NS

SensorBus [81] NI I S NS NRT S

Runes [175], [176], [177] NI NS NI CR, DR HRT NS

Service-Oriented Approach

Hydra [95] AL, NLWSNS S NI NI SRT NS

SOCRADES [87] AL, NLIoTS C NI NI SRT NS

SenseWrap [101] AL, NLIoTS C NI NI SRT NS

MUSIC [62] AL, NLWSNS NS S DR NI NS

TinySOA [103] AL, NLWSNS NS NS NS SRT,HRT NS

SENSEI [105] AL, NLWSNS C NI NI SRT S

UbiSOAP [88] AL, NLWSNS NS S NS NI NS

Servilla [89] AL, NLWSNS NS S NI NI NS

KASOM [106] AL, NLWSNS C S CR HRT NI

CHOReOS [107] AL, NLIoTS NI S NI NI NS

MOSDEN [35] AL, NLWSNS NS S NS NI NS

Xively [93] AL, NLIoTS C S NS SRT NS

CarrIoT [92] AL, NLIoTs C, A S NI HRT, SRT NI

Echelon [114] AL, NLIoTs C, A S NI HRT, SRT NI

Virtual Machine Approach

Maté [121] AL, NLWSNS NI S CR SRT NI

VM* [124] AL, NLWSNS NI S CR SRT NI

Melete [126] AL, NLWSNS C NI CR SRT S

MagnetOS [128] AL, NLWSNS NI S CR SRT NI

Squawk [129] AL, NLWSNS NI NI CR, DR SRT NI

Sensorware [125] NLWSNS NI NI NI SRT NI

Extended Maté [133] NLWSNS NI S CR, DR SRT NI

SwissQM [134] AL, NLIoTS A S CR, DR NRT NI

TinyVM [137] NI NI NI NI NI NI

TinyReef [119] NLWSNS NI NI CR SRT NI

DVM [135] NLWSNS NI S DR SRT NI

DAViM [136] AL, NLWSNS NI S DR SRT NI

Agent-Based Approach

Ubiware [144] AL, NLIoTS NS S NI SRT NS

Impala [145] AL, NLWSNS I, A NS DR SRT S

Smart Messages [146] NLWSNS A S NI SRT NS

ActorNet [151] NLWSNS NI NI DR NRT NI

Agilla [17] NLWSNS NS S DR SRT NS

AFME [147] NLWSNS NI S CR, DR SRT NI

MAPS [148] AL, NLWSNS NI NI CR SRT NI

MASPOT [149] AL, NLWSNS NI S CR SRT NI

TinyMAPS [150] AL, NLWSNS NI S CR, DR SRT NI

Tuple-Space Approach

LIME [155] NI NS S NS HRT S

UbiROAD [160] NI C S NS NRT S

TeenyLIME [157] NIWSNS NS NS NS NRT NS

TinyLime [156] NIWSNS A NS NS NRT S

TS-Mid [159] NIWSNS NS NS NS NRT NS

Database Approach

SINA [161] NLIoTS NS NS NS NRT NS

IrisNet [163] NI NS S NS SRT S

HyCache [164] AL NI NS DR NRT NI

GSN [165] AL I S NI SRT NS

KSpot+ [166] NLWSNS I S NI NRT NS

Cougar [167], [168], [?] NLWSNS I S NI SRT S

DsWare [19] NLWSNS C NI DR SRT NS

Sensation [169] NLWSNS NS S NI SRT NS

TinyDB [61], [170] NIWSNS NS NS NS NRT NS

Application-Specific Approach

AutoSec [171] NLIoTS NI S CR, DR HRT NI

Adaptive Middleware [172] NLWSNS NI S CR, DR HRT S

TinyCubus [?] NLWSNS N S DR HRT NS

MiLAN [173] NLWSNS NI S CR HRT NI

MidFusion [174] NLWSNS NI S CR HRT NI

Legend Application Level (AL) Confidentiality(C) Supported (S) Communication (CR) Hard Real-Time (HRT) Supported (S)

Not Supported (NS) Network level (NL) Integrity (I) Data (DR) Soft Real-Time (SRT)

No Information (NI) - IoT Scale(IoTS) Availability (A) Non Real-Time (NRT)

- WSN Scale(WSNS)
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TABLE III
SUMMARY OF THE IOT MIDDLEWARES: SUPPORTED ARCHITECTURAL REQUIREMENTS

Architectural requirements

Abstraction Interoperable Context-aware Autonomous Adaptive Service-based Lightweight Distributed

Event-Based Approach

Prisma [18], [72] S NI Y N NS Y E,M Y

Emma [16], [73] NI NS N N SA Y M Y

Hermes [74] S NS N N NS Y M Y

Green [75] S NS Y N SA Y M Y

Mires [80] S NS N N NS Y E Y

SensorBus [81] S NS Y N NS Y E Y

Runes [175], [176], [177] S NI Y Y DA Y E,M Y

Service-Oriented Approach

Hydra [95] S NI,SI,SeI Y NeI DA Y E Y

SOCRADES [87] S NeI Y Y DA Y NI Y

SenseWrap [101] S NeI NI NI SA Y M Y

MUSIC [62] S NeI Y Y DA Y N Y

TinySOA [103] S NeI NS NS NI Y E, M Y

SENSEI [105] S NeI, SeI Y NI DA Y NI Y

UbiSOAP [88] S NeI NS NI DA Y E Y

Servilla [89] S NeI NS NI DA Y E, M Y

KASOM [106] S NeI, SeI Y NI DA Y E,M Y

CHOReOS [107] S NeI, SeI Y NI DA Y N Y

MOSDEN [35] S NeI, SeI Y NI DA Y E, M Y

Xively [93] S NeI Y NI DA Y NI Y

CarrIoT [92] S NeI NS NI DA Y E Y

Echelon [114] S NeI NS NI DA Y E Y

Virtual Machine Approach

Maté [121] S NeI Y Y DA Y E, M Y

VM* [124] S NeI NI Y NS Y M Y

Melete [126] S NeI No Y DA NI M Y

MagnetOS [128] S NeI, SeI NI Y DA Y E, M Y

Squawk [129] S NeI NI Y NI NI M Y

Sensorware [125] S NeI Y Y DA Y N Y

Extended Maté [133] S NeI, SI, SeI Y Y DA Y M Y

SwissQM [134] S SeI N Y DA Y M Y

TinyVM [137] S NI NI NI NI NI E, M Y

TinyReef [119] S NI NI NI NI NI M Y

DVM [135] S NeI N Y NS Y E, M Y

DAViM [136] S NeI Y Y DA Y M Y

Agent-Based Approach

Ubiware [144] S NeI, SI, SeI Y Y DA Y NI Y

Impala [145] S NeI Y Y DA Y E Y

Smart Messages [146] S NeI N Y DA Y NI Y

ActorNet [151] S NeI N Y DA Y E, M Y

Agilla [17] S NeI, SI, SeI Y Y DA Y M Y

AFME [147] S NeI Y Y DA Y M Y

MAPS [148] S NeI, SeI N Y DA Y M Y

MASPOT [149] S NeI, SeI Y Y DA Y M Y

TinyMAPS [150] S NeI, SeI Y Y DA Y E, M Y

Tuple-Space Approach

LIME [155] S SI Y N NS NI M Y

UbiROAD [160] NI SI Y Y NI Y NI Y

TeenyLIME [157] S NI NI NI NI NS E,M Y

TinyLime [156] S NS Y Y NS NI E Y

TS-Mid [159] S NS N N NS NS NS Y

Database Approach

SINA [161] S NS N Y DA N E N

IrisNet [163] NS NS N N NS Y M N

HyCache [164] S NI NI NI NI N NS N

GSN [165] S NI NI NI DA Y M N

KSpot+ [166] NS NeI N Y NS NI E Y

Cougar [167], [168], [?] NI NS N N NI N M N

DsWare [19] NI NS N N NS Y E N

Sensation [169] S SI Y Y NS NI NI N

TinyDB [61], [170] S NI NI N DA N E N

Application-Specific Approach

AutoSec [171] NS NeI Y Y DA Y E, M Y

Adaptive Middleware [172] NS NeI Y Y DA Y E, M Y

TinyCubus [?] S NeI Y Y SA Y E Y

MiLAN [173] NS NeI, SeI Y Y DA Y E Y

MidFusion [174] NS NeI Y Y DA Y N Y

Legend Supported (S) Network (NeI) Yes (Y) Yes (Y) Dynamically (DA) Yes (Y) Energy (E) Yes (Y)

Not Supported (NS) Not Supported (NS) Syntactic (SI) Not (N) Not (N) Statically (SA) Not (N) Memory(M) Not (N)

No Information (NI) Semantic (SeI) Not (N)
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should consider complex events and how to handle unknown

events. Moreover, the work presented does not consider the

difference between discrete (e.g., a door opens, switch on a

light) and continuous events (e.g., driving a car).

Code Management: Re-programmability is one of the major

challenges not only in IoT, but also in software development.

Updates or changes in business logic should be supported

by any IoT component. Agent-based, virtual machine-based

and application-specific middlewares offer support for code

management. However, their support for code allocation and

code migration is limited. Many do not distinguish between

business logic code (i.e., application code) or firmware code.

Moreover, none handles both cases. Many middlewares con-

sidered only homogeneous devices, though virtual machine

approaches address this issue through migration and allocation

of interpreted code, rather than compiled code. However,

reducing the size of the interpreted code compared with the

compiled code is still a challenge.

B. Challenges related to Non-Functional Requirements

Scalability: Since most existing middlewares (Table II) are

WSNs centric, their network level scalability is also limited

to WSNs. They will perform poorly in IoT’s ultra large-scale

network. Importantly, scalability is a system-wide requirement,

every component (e.g., resource discovery, security solution,

context-awareness) of middleware needs be scalable to achieve

system-wide scalability.

Real-time: Applications and services rely on being directly

connected to the physical world. Getting real-time information

about the state of the real world is still a challenging task.

Some middleware approaches are by nature non real-time (e.g.,

database or tuple-space middlewares), while the rest provide

at least soft real-time services. Hard real-time can be provided

by application-specific middleware approach and a few event-

based middlewares. Current middleware solutions need to

consider real-time service composition or self-adaptivity.

Reliability: Reliability is not addressed in most existing

proposals. To achieve middleware reliability, every component

or service of a middleware needs to be reliable. There is a

clear dependency between reliability and other requirements

(e.g., compression of data management, lightweight/energy

efficiency), which should be better understood and exploited.

There is significant scope for future work in this area

Availability: Maximising system availability and fast recov-

ery from failures are challenges that are not specific to IoT, but

to any distributed system. In the context of IoT, availability of

things and services offered is important. Hardware devices fail

periodically and any service they provide will be unavailable

when they fail. Service provision should be seamless by

obtaining the required service from a different device.

Security and Privacy: All the concerns of security, privacy

and trust in all the technologies (e.g., traditional Internet,

WSNs, M2M communications, RFID, SCADA, and cloud

computing) used in IoT are clearly present in the context

of the IoT. Unfortunately, security, privacy and trust are

not completely resolved in these technologies. Most existing

middlewares’ authentication-based partial security solutions

(Table II) are insufficient for a number of IoT applications.

Research for a holistic security solution that takes care of

system as well as middleware level security and privacy

aspects is necessary.

Ease-of deployment: Deployment, post-deployment, and re-

programmability are important tasks in an IoT middleware

lifecycle. Reducing human interaction at these stages and

having the possibility to remotely deploy the middleware

without any pre-configuration of the device still remains an

interesting challenge.

C. Challenges related to Architectural Requirements

Programming Abstraction: Most middlewares offer pro-

gramming abstraction support. However, the new languages

and tools that need to be adopted have a steep learning curve

for developers and users. Support for this requirement can be

improved.

Interoperability: Network interoperability is well supported

by most existing middlewares, but many lack support for

semantic and syntactical interoperability. Semantic interoper-

ability is very challenging in IoT because of heterogeneity and

the lack of standard in ontologies. From all middleware cat-

egories, the service-oriented approach offers the best support

for semantic interoperability. However, support for syntactic

interoperability is limited. For example, in service-oriented

approaches, only Hydra [95] offers support for this kind of

interoperability. Research on global, scalable, understanding

of IoT services’ syntax and semantics is required.

Service-based: Most of the middlewares are service-based.

Each service needs to provide a description for service

composition or discovery. A standard service description is

mandatory to ensure semantic and syntactic interoperability.

Adaptive: In a number of approaches, adaptation decision-

making is hard-coded and requires recompiling and redeploy-

ing the system or a part of the system. Where adaptation is

more dynamic, policies, rules or QoS definitions are used,

which can be changed during runtime to create new behaviour.

Even though most middlewares use a dynamic approach, the

rules, policies and QoS definitions are mostly hard-coded and

are not context-aware. In IoT, this approach is not scalable.

Moreover, only application-specific middlewares dynamically

adapt according to the QoS requirements. However, this intro-

duces a coupling between middleware components. Research

is required for a more flexible, dynamic, and context-aware

adaptation model.

Context-awareness and Autonomous behaviour: Different

types of middlewares have exploited some level of context-

awareness. For instance, MUSIC [62] exploits context for self-

adaptation to maintain a satisfactory QoS. Popular uses of

context (e.g., context-aware resource discovery, context-aware

composition, context-aware data management) [180], [181]

are missing. Also, the context lifecycle approach needs to be

standardised. This will improve the interoperability between

different middleware components as well as re-usability and

applicability of extracted context information.

Most existing middlewares are unsuitable for systems with

self-* properties (e.g., self-adaptive) including M2M commu-
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TABLE IV
SUMMARY OF THE IOT MIDDLEWARE APPROACHES: IOT MIDDLEWARE REQUIREMENTS

Functional Non-Functional Architectural

Event-Based DD-ND, RM, DPA, LN, CA A, HRT ABS, CW, Sb, E, M , DIST

Service-Oriented DD-DeD, DD-SD, RA, RM, RCA, DS, DPA, SS AL, NLWSNS, NLIoTS, C, A, SRT ABS, NeI, CW, DA, Sb, E, M, DIST

Agent-Based DD-DeD, RA, RM, DPA, LS, CA, CM AL, NLWSNS, A, CR, DR, SRT ABS, NeI, SeI, CW, AUTO, DA, Sb, M, DIST

Tuple-Space DD-SD, RM, DPA, CM NRT, P ABS, CW, M, DIST

VM-Based DD-DeD, RA, RM, RCA, DS, DPA, LS, CA AL, NLWSNS, A, CR, SRT ABS, NeI, AUTO, DA, Sb, M, DIST

Database-Oriented DD-ND, RM, DS, DPA NLWSNS, A, SRT ABS, E, DIST

Application-Specific CD-SD, RA, RM, DS, DPA, DPF, LS, CA NLWSNS, A, CR, HRT NeI, CW, AUTO, DA, Sb, E, DIST

Legend CA (Code Allocation) A (Security - Availability) ABS (Abstraction Supported)

CD (Centralised Discovery) AS (Availability Supported) AUTO (Autonomous)

CM (Code Migration) C (Security - Confidentiality) CW (Context Aware)

DD (Distributed Discovery) CR (Reliability - Communication) DA (Dynamically Adaptive)

DeD (Device Discovery) DR (Reliability - Data) DIST (Distributed)

DPA (Data preprocessing - Aggregation) I (Security - Integrity) E (Lightweight - Energy)

DPC (Data preprocessing - Compression HRT (Hard Real-Time) M (Lightweight - Memory)

DPF (Data preprocessing - Filtering) NLIoTS (Scalability: Network Level - IoT scale) NeI (Network Interoperability)

DS (Data storage) NLWSNS (Scalability: Network Level - WSN scale) SA (Statically Adaptive)

LS (Large Scale Event Management) NRT (Non Real-Time) SeI (Semantic Interoperability)

ND (Network Discovery) P (Privacy Supported) SI (Syntactic Interoperability)

RA (Resource Allocation) SRT (Soft Real-Time) Sb (Service-based)

RCA (Adaptive Resource Composition)

RCL (Resource Conflict)

RCP (Predefined Resource Composition)

RM (Resource Monitor)

SD (Service Discovery)

SS (Small Scale Event Management)

nications. Along with the wider exploitation of context, inte-

gration and exploitation of intelligence and self-* properties

in IoT middleware system is a rich research area.

V. SUMMARY AND FUTURE WORK

Middleware is necessary to ease the development of the

diverse applications and services in IoT. Many proposals have

addressed this problem. The proposals are diverse and involve

various middleware design approaches and support different

requirements. We have made an effort in this paper to put these

works into perspective and to present a holistic view of the

field. In doing this, we have identified the key characteristics

of IoT and the requirements of IoT’s middleware. Based on

the identified requirements we have presented a comprehensive

survey of these middleware systems focusing on current, state-

of-the-art research. Finally, we have outlined open research

issues, challenges and recommended possible future research

directions.

This survey categorises the existing middlewares accord-

ing to their design approaches: event-based, service-oriented,

agent-based, tuple-space, VM-based, database-oriented, and

application-specific. Each category has many middleware pro-

posals, which are presented accordingly. We have studied

most of these proposals on each category and summarised

them in terms their supported functional, non-functional, and

architectural requirements (Table I, II, and III). Summaries

show that every middleware fully/partially (e.g., Prisma par-

tially supports code management through code allocation)

supports two or more of the listed requirements from each

requirement type. None of these middlewares supports all the

listed requirements (fully/partially).

Table IV summarises each middleware category in terms

of their supported functional, non-functional and architectural

requirements. In general, service-oriented, agent-based, and

VM-based design approaches address more IoT requirements

than others. The service-oriented and VM-based approaches

support abstraction and network and application level scal-

ability well. Also, these approaches support resource man-

agement through resource compositions, and most cases these

compositions can be predefined, especially in VM-based ap-

proaches. However, predefined and deterministic composition

mechanisms will not scale well in ultra large and dynamic

IoT environments. The agent-based design approach is good

at resource and code management because of its mobile and

distributed nature, but this means that the security and privacy

solutions are difficult. On the other hand, middlewares based

on tuple-spaces are distributed and relatively more reliable

than others because of their data redundancy characteristics.

Like agent-based approaches, tuple-space-based middlewares

will have difficulties with security and privacy. Database

design approaches perform well in data management and

respond quickly, assuming non real-time responses are suf-

ficient. Generally, a database approach cannot provide real-

time responses to real-time sensing. Event-based middlewares

perform well in mobile and reactive applications, but have

limited interoperability, adaptability and context-awareness.

Finally, application-specific middlewares are optimised for an

application or a group of applications, and may not be suitable

and effective for other applications.

Although the existing middleware solutions address many

requirements associated with middleware in IoTs, some re-

quirements and related research issues are remain relatively

unexplored, such as scalable and dynamic resource discovery

and composition, system-wide scalability, reliability, security

and privacy, interoperability, integration of intelligence and

context-awareness. There is significant scope for future work

in these areas.
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