
In Proc. of The First International Conference on Communication System Software and Middleware (COMSWARE 

2006), IEEE, New Delhi, India, January 2006. 

Middleware for Wireless Sensor Networks: A Survey 

 

 

Salem Hadim and Nader Mohamed 

Department of Electrical and Computer Engineering 

Stevens Institute of Technology  

Hoboken, NJ 07030, USA 

{shadim, nmohamed}@stevens.edu  

  

 

 

Abstract 

 

 Given the fast growing technological progress in 

microelectronics and wireless communication 

devices, in the near future, it is foreseeable that 

Wireless Sensor Networks (WSN) will offer and make 

possible a wide range of applications. However real 

world integration and application development on 

such networks composed of tiny, low power and 

limited resources devices are not easy. Therefore, 

middleware services are a novel approach offering 

many possibilities and drastically enhancing the 

application development on WSN. This survey shows 

the current state of research in this domain. It 

discusses middleware challenges in such networks 

and presents some representative middleware 

specifically designed for WSN. The selection of the 

studied methods tries to cover as many views of 

objectives and approaches as possible. We will focus 

on discovering similarities and differences by making 

classifications, comparisons and appropriateness 

studies. At the end we argue that most of the 

proposed work is at an early stage and there is still a 

long way to go before a middleware that fully meets 

the wide variety of WSN requirements is achieved. 

 

1. Introduction 

 

The advent of technology in computing and electronics 

is pioneering an emerging field of tiny-networked 

sensors, offering an unprecedented opportunity for a wide 

array of real time applications. These tiny sensor nodes 

are low cost, low power and easily deployable. When 

combined together they offer numerous advantages over 

traditional networks such as large-scale flexible 

architecture, high resolution sensed data, and application 

adaptive mechanisms. Due to their tight integration to the 

physical world and unique characteristics, sensor 

networks in general pose considerable impediments and 

make the development of applications non-trivial. A 

sensor node should sense, process and communicate the 

data to wherever it is used with minimum resource 

consumption. There must be new programming 

paradigms and new operating systems that glue every 

thing together in an efficient manner, supporting 

concurrency-intensive operations and insuring robustness 

and modularity. A friendly user programming interface 

that executes applications and marshals the high level 

constructs of the programming language to the low level 

constructs understandable to the operating system should 

be provided. The middleware should be customizable to 

different scenarios, applications and environments, also 

be self-optimizing and self-protecting. 

Indeed the need for a middleware layer that fully meets 

the design and implementation of different challenges of 

sensor network technologies is a novel approach to 

resolve many of the open issues and drastically enhance 

the development of applications on such networks. 

Some research effort has been done on surveying 

WSN.  [3] focused more on WSN characteristics and 

challenges. [10] and [12] investigated potential WSN 

applications, and  [21] presented different routing 

protocols. However none of the existing work 

investigated the current state of research on design and 

development of middleware for WSN. In this paper we 

explore different relevant middleware projects for WSN, 

and provide an exhaustive comparative study. The 

remainder of the paper is structured as follows. Section 2 

provides a short overview of sensor networks applications 

and outlines the most relevant challenges that face a 

middleware design for wireless sensor networks. In 

Section 3, which is the focus of our paper, and due to 

paper length restrictions, extensive description will be 

reserved for the most representative current research 

projects and approaches undertaken towards this 

perspective. In Section 4, a classification and comparison 

between all the projects is provided. In section 5 we 

discuss some open research issues, and then we conclude 

the paper.  

 

 

 

mailto:nmohamed}@stevens.edu


 

2.  Middleware For Sensor Networks 

Challenges 

 

Wireless Sensor Networks are emerging as a suitable 

new tool for a spectrum of new applications in recent 

years [12]. They are easily deployable at a large scale, 

low power, inexpensive and self-organizing. These 

unique characteristics make them advantageous over 

traditional networks. Sensor networks applications were 

originally motivated by military applications such as 

target detection, surveillance of enemy activities in a 

battlefield environment and counterterrorism; however, 

their many advantages over traditional networks resulted 

in the development of many other potential applications 

[10] that range from infrastructure security to industrial 

sensing. Some examples are: environment and habitat 

monitoring, health applications, home automation, traffic 

control, etc. 

The design and development of a successful 

middleware layer for WSN is not trivial. It needs to deal 

with many challenges dictated by WSN characteristics on 

one hand and the applications on the other hand:   

 Hardware resources:  The advent in microelectronics 

technology made it possible to design miniaturized 

devices in the order of cubic centimeters [14]. Limited in 

energy and individual resources, these tiny devices could 

be deployed in hundreds or even in thousands in harsh 

and hostile environments where in some cases no 

physical contact could be possible for replacement or any 

maintenance scope; therefore, the wireless media is the 

only way for remote accessibility. A middleware should 

provide mechanisms for an efficient use of the processor 

and memory while enabling lower power 

communication. A sensor node should accomplish its 

three basic operations which are: sensing, data processing, 

and communication [14] without resources exhaustion. 

As an example of energy aware middleware, most of the 

device’s components including the radio are likely to be 

turned off most of the time depending on the application. 

 Scalability and network topology: the topology of the 

network is subject to frequent changes due to different 

factors such as malfunctioning, device failure, moving 

obstacles, mobility, and interferences. If an application 

gets bigger, the network should be flexible enough to 

allow the addition of other nodes anywhere any time 

without affecting network performance. Also, a 

middleware should support mechanisms for fault 

tolerance, self-configuration and self-maintenance of 

collections of sensor nodes. 

 Heterogeneity: The middleware should provide low level 

programming models to meet the major challenge of 

bridging the gap between hardware technology’s raw 

potential and the broad needed activities. It should 

establish system mechanisms interfacing to the various 

types of hardware and networks, only supported by basic 

distributed primitive operating system abstractions. 

 Network organization: Unlike traditional networks, 

sensor networks must deal with resources – energy, 

bandwidth, and processing power that are dynamically 

changing [12].  Another important issue in sensor 

networks is to support long running application, efficient 

design of routing protocols is needed so that the network 

could run as long as possible [17]. An Ad Hoc network 

resources discovery should be provided, since knowledge 

of the network is essential for a network to operate 

properly. A sensor node needs to know its own location in 

the network in addition to the whole network topology. In 

some particular cases self-location by GPS is not possible 

or feasible, or even expensive. Some important issues on 

system parameters such as network size and density per 

square mile affect the tradeoffs between latency, 

reliability, and energy. A middleware should support the 

robust operation of sensor networks despite these 

dynamics by adapting to the changing network 

environment. 

 Real-world Integration: most sensor network 

applications are real-time phenomena, where time and 

space are of an extreme importance. Hence, middleware 

should provide real time services to adapt to the changes 

and provide consistent data. 

 Application knowledge: another important and unique 

property of middleware for WSN is dictated by the design 

principles of application knowledge [12]. However 

middleware has to include mechanisms for injecting 

application knowledge in the infrastructure of WSN. This 

will allow mapping application communication 

requirements to network parameters that allow fine-

tuning of the network monitoring process. Most WSN 

applications dictate minimum quality of service (QoS) 

requirements. A Middleware should maintain this QoS 

over an extended period of time and even adjust itself 

when the required QoS changes and the state of the 

application changes. Middleware gets QoS requirements 

from applications and adapt the network configuration to 

provide the required QoS. 

 

3.  Different Middleware for Sensor 

Networks 

 

Some design principles and research projects have 

already been proposed. In this section, which is the focus 

of our paper, all these different approaches will be 

presented in details and evaluated to explore the pros and 

cons. 

 

3.1.  Mate [22]: Mate is among the middleware for 

WSN that uses a virtual machine (VM) approach as an 

abstraction layer to implement its operation and to tackle 

the different challenges of WSN described in the earlier 

section. The project is developed at the University of 

California at Berkley, and focuses on the need for new 

programming paradigms to overcome constraints such as 



 

 3 

limited bandwidth and the large energy draw from 

network activity. Mate proposes a spectrum of 

reprogrammability from simple parameters adjustment to 

uploading complete program updates using a VM 

approach. Indeed, the energy cost of sending one single 

bit of data can consume the energy of executing 

thousands of instruction to produce the same data. A 

content specific routing and reprogramming model can be 

used and supported by the VM. 

Mate is a byte code interpreter built on TinyOS[19] 

operating system designed specifically for sensor 

networks that run on motes (small devices with a small 

CPU and limited storage resources) to implement the 

middleware operations. It uses codes that are broken into 

capsules of 24 instructions, each of which is a single byte 

long. This gives the advantage to large programs to be 

composed to multiple capsules, thus easy to inject into the 

network. The key components are the VM (Mate), 

Network, Logger, Hardware, Boot/Scheduler. Using a 

synchronous model that begins execution in response to 

an event such as packet transmission or time going off, it 

avoids message buffering and large storage. The 

synchronous model makes application level programming 

much simpler and far less prone to bugs than dealing with 

asynchronous event notifications. Another key 

functionality of Mate is infection or network updates done 

by adding a version number in the capsule, so comparison 

could be made at the neighbors and the new version is 

installed. This process cascades with hop-to-hop 

communication. 

Evaluation: Mate aims to provide a better interaction and 

adaptation to the ever changing nature of sensor 

networks. It demonstrates the use of active messages to 

update the network protocols and parameters by injecting 

new capsules. Mate is small and expressive, has concise 

programs which are resilient to failure. It makes the 

network dynamic, flexible and easy reconfigurable. Mate 

gives a user–land supplemented by the VM and Provides 

efficient network and sensor access. However, In terms of 

energy, Mate is only suitable for a sleepy application, for 

complex applications, it is wasteful because of the 

interpretation overhead. Also in its current state, Mate is 

only an architecture and byte codes; a higher-level 

language and programming models for application 

development are needed. 

 

3.2.  Magnet [5]: This effort is being carried out at 

Cornell University. It is in the middleware category that 

uses a Virtual Machine. MagnetOS is a power-aware, 

adaptive operating system specially designed for sensor 

networks and ad hoc networks. It constitutes of a layer 

defined as Single System Image that provides 

homogeneity for the heterogeneous of the distributed 

components of ad hoc networks. The abstraction provided 

is that the whole network is a single unified java virtual 

machine composed of dynamic and static components. 

The static component is responsible for rewriting regular 

java applications in byte code in the form of objects or 

modules, which explains the object-oriented nature of 

MagnetOS. Then it injects them into the network with 

special instruction to keep the semantics. At this point a 

dynamic runtime component on each node monitors the 

objects creation, invocation and migration providing 

different services for the application.  

For performance purposes, MagnetOS runtime provides 

flexibility for programmers to explicitly adjust object 

placement and migration. This allows reducing network 

communication by moving objects closer to their source. 

MagnetOS provide a robust power aware algorithms 

using object migration of the same application to nodes 

that are topologically closer together. This mechanism 

reduces application energy consumption and increases 

longevity. 

Evaluation: With its Single System Image MagnetOS 

overcomes the heterogeneity of distributes ad hoc sensor 

networks. It offers application adaptation and network 

scalability, which makes a general-purpose system. 

However, it uses java virtual machine that introduces an 

overhead in its instructions. More effort should be put to 

come up with a VM more suitable for WSN applications. 

 

3.3. EnviroTrack (Data centric) [1]: Another work 

worth mentioning is EnviroTrack, which is well 

suited for embedded tracking application. It adopts a 

data centric programming paradigm called attributed-

based naming through “context labels”, where the 

routing and addressing are based on the content of the 

requested data rather than the identity of the target 

sensor node. As most projects, it is also built on top 

of TinyOS using compiled NesC [35] programs. Its 

contribution stems from its convenient robust 

interface to the application developer geared towards 

tracking the physical environment. The attributed 

based naming is applied by associating user-defined 

entities (context label) to real physical targets. With 

this network abstraction layer the programmer 

declares the environmental characteristics which 

define the context label of the object to be tracked. 

Based on this, all sensor nodes that sense the same 

declared characteristics (object) are aggregated to 

track that physical target such as a car or a fire. With 

powerful   network management mechanisms such as 

lightweight group management and group leader 

election, it supports the dynamic behavior of the 

tracked targets such as mobility. Thus the presence of 

any moving target is detected and reported, very 

useful for environmental watch applications and 

military applications 

Evaluation: The proposed work is a well distributed 

programming support for environmental tracking. 

However its performance is based only on very small-

scale implantation and it is at its early stage of 



 

 4 

development. More work need to be done in terms of 

self-organization and autonomic system approach. 

 

3.4.  Impala [25]: Stems its insight from the 

observation that sensor networks are long running and 

autonomous. It was specially designed as part of 

ZebraNet project (A wildlife watch project). It proposes 

an asynchronous event based middleware layer that uses 

program modules (mobile agents) compiled into binary 

instructions. It ensures application adaptation and can 

automatically discern needed parameters settings or 

software usages. New protocols can be plugged in at 

anytime and switches between protocols can be 

performed at will. The middleware itself is separated in 

two layers: 

- The upper layer that contains all the application and 

protocols for ZebraNet project. These applications use 

various strategies to achieve a common task of gathering 

environment information and routing it to a base station. 

- The lower layer contains three middleware agents: the 

application adapter, the application updater, and the event 

filter. 

The event filter controls different operations and initiates 

chains of processing: timer event, packet event, send done 

event, data event, and device event. Armed with 

Application Finite State Machine (AFSM), the adapter 

agent handles application adaptation depending on 

different scenarios such as energy-efficiency and other 

attributes determined by the applications. The Updater 

agent is in charge of achieving effective software updates 

with resource constraints by taking into account the 

tradeoffs such as: high node mobility, constrained 

bandwidth, wide range of updates, propagation protocol, 

and code memory management. 

Impala adopts a module-based system with a version 

number, and each application as a whole has a version 

number. Before exchanging software updates, nodes first 

exchange an index of application modules then only 

request the changed modules for transmission which 

saves network bandwidth. Before being injected into the 

network, a program module is compiled into binary 

instructions. A module will not be linked to the main 

program for installation until the whole update is 

received.  

Evaluation: Impala provides application adaptation at 

runtime by its good architecture model, and ensures 

security against unfortunate programming errors. It is 

novel with its autonomic approach. Impala is self-

organizing and uses AFSM mechanisms to choose and 

switch between adequate protocols. It uses updates using 

modules that are small and introduces little transmission 

overhead. However, Impala doesn’t  support 

heterogeneity in terms of hardware platform since it is 

being destined to run only on HP/Compac iPAQ Pocket 

PC handheld running Linux, therefore its applications are 

limited. 

 

3.5.  Milan [18]: The “master piece” in MILAN, 

Middleware Linking Applications and Networks, is its 

focus on high level concerns by providing a high level 

interface mainly characterized by applications actively 

having an effect on the entire network. It is being 

developed at the University of Rochester. MILAN allows 

(i) sensor network applications to specify their QoS needs 

and (ii) to adjust the network characteristics to increase 

application lifetime while still meeting those needs. To 

accomplish that it receives information from: (i) The 

individual applications, about their QoS requirements 

over time and a way to meet these QoS requirement using 

different combinations of sensors. (ii) The overall system 

and the user, about the relative importance of the different 

applications. (iii) The network, about available sensors 

and resources such as energy and channel bandwidth. 

With specialized graphs incorporating state based 

changes in application needs, MILAN can determine the 

adequate combination F

A

, applications feasible set, of 

sensors satisfying the application’s QoS requirements.

 

Then with Its architecture that extends into the network 

protocols stack and an abstraction layer that allows 

network specific plug-ins to convert commands to 

protocol-specific commands, MILAN can configure and 

manages the network. Depending on F

A,

 it is for the 

network plug-ins to determine which sets of nodes 

(sensors) F

N 

that best meet the requirement and other 

information such as what role each node must play. It 

combines the two constraints to get an overall set of 

feasible combination: F

 

= F

A

 

∩ F

 

 Evaluation: Milan by its application driven network 

management is certainly very well suited for application 

adaptation and tackles very well the challenges of QoS 

requirements. However its architecture lacks innovation 

in new programming models suitable for WSN and that 

offers support applications and hardware heterogeneity. 

 

3.6. Cougar [11]: A research group at Cornell 

University Introduced a new dimension in middleware 

research by adopting a database approach where sensor 

data are considered like a “virtual” relational database and 

WSN management operations are implemented in forms 

of queries using an SQL like language. Cougar defines a 

sensor data base system composed of sensor database and 

sensor queries. The sensor database in its turn contains 

stored data and sensor data. The stored data are 

represented as relations and they include the set of sensors 

that participate in the sensor database together with 

characteristics of the sensors or the physical environment. 

The sensor data are generated by signal processing 

functions and represented as time series to facilitate the 

formulation of sensor queries. Cougar then, uses Abstract 

Data Types (ADT) with virtual relations to model the 

signal processing functions represented as sequences 

based on the fact that ADT are supported by object-



 

 5 

relational databases. All sensors of the same type in the 

physical worlds are represented by an ADT. With algebra 

operators the sensor queries are formulated in form of 

SQL language with little modification. The long running 

queries are supported by using incremental results to 

maintain a persistent view of such queries. 

Evaluation: The cougar database approach is very 

suitable for large sensor collections, and offers a simple 

implementation for different network operations. 

However, it uses valuable resources to transfer large 

amount of raw data from devices to the database server 

and there is a potential risk for communication links 

failure in case of a large scale sensor network. Another 

impediment is that sensor data are measurement and not 

facts, and often sensor measurement corresponds to 

continuous distributions. Also the dynamic nature of 

large-scale sensor networks poses a problem for the 

centralized optimizer that Cougar uses to maintain a 

global knowledge of the network. 

 

3.7. SINA [27]: More elaborated data base approach is 

proposed in SINA, System Information Networking 

Architecture, developed at the University of Delaware. 

For the purpose of achieving adaptive sensor network 

organization SINA models the network as massively 

distributed objects. Its kernel provides efficient 

mechanisms enabling scalability, and energy efficiency. 

Its architecture backbone is based on a spreadsheet 

database for querying and monitoring. A logical datasheet 

composed of cells, where each cell represents an attribute 

of a sensor node (e.g. in the form of a single value such as 

power level and location or multiple values such as 

temperature changes history). Each cell is namely unique 

and the whole datasheet is maintained by each sensor 

node. The sensor network as a whole is viewed as a 

collection of datasheets. The spreadsheet approach is the 

abstraction that allows information management to meet 

application changes and needs. SINA then incorporates 

two robust mechanisms: hierarchical clustering allowing 

scalability and an attribute – based naming scheme based 

on an associative broadcast to manage the spreadsheets. 

The cells are initiated   in a node by a request from other 

nodes (e.g. user or cluster head). The requests are made in 

a form of SQL like statement. The cells are maintained 

and updated by four possible approaches namely, on 

demand content retrieval, content coaching, periodic 

content update and triggered content update. 

Evaluation: SINA offers an advantage over Cougar by 

incorporating low-level mechanisms such as hierarchical 

clustering of sensors for efficient data aggregation. 

However as cougar it does not address the distributed 

systems heterogeneity. 

 

3.8. DsWare [31]: Data service Middleware is another 

database like abstraction approach that is tailored to 

sensor networks based on event detection. It provides 

more flexibility by supporting group – based decision, 

reliable data-centric storage, and implementing a mix of 

approaches to improve real-time execution performance, 

reliability of aggregated results and reduce network 

communication (overhead). DsWare provides application 

with services supported by its architecture modules such 

as data storage, data caching, group management, event 

detection, data subscription, and scheduling. Like Cougar 

[11] DsWare uses SQL like language for the registration 

and cancellation of events. 

Evaluation: DsWare supplies applications with a very 

rich and convenient interface so that applications do not 

have to implement their own application data-service. It 

allows sensor data to be represented using interfaces as 

conventional databases. It handles the dynamic nature of 

sensor network data and provides more reliability since 

services could be provided by a group of geographically 

close sensor nodes; hence it can easily tackle failures as 

long as enough sensors remain in the area to provide valid 

measurements. In the other hand DsWare, in its present 

form does not provide solutions for heterogeneity and 

mobility. 

 

3.9. Others: At the end, it is important to mention that 

there has been other research effort in middleware for 

sensor networks. However, most of them fall in one 

of the approaches studied earlier at some extent and 

use similar mechanisms. One example is 

AutoSec[33] Automatic Service Composition; it is an 

application driven middleware framework whose 

focus is on provision of support for dynamic service 

brokering for a better use of resources within a 

distributed system. Distributed application have QoS 

requirement that can be translated into the underlying 

system-level resources. AutoSec has an architecture 

that goes deep in the network and performs resource 

management and organization within a sensor 

network by providing the required QoS for 

applications on per-sensor basis. This is done by 

choosing a combination of information collection and 

resource provisioning policies from a given set based 

on user needs and system needs. Agilla [34] is 

another example that is based on Mate and extends it 

by providing mechanisms for better injection of a 

mobile code into the sensor network to deploy user 

applications, where the mobile agents can 

intelligently move or clone themselves into desired 

locations based on network changes. This turns to be 

more suitable than the flooding mechanisms used in 

Mate for the same purpose. Garnet [28] is a 

middleware framework focusing on managing data 

streams as an abstraction within a sensor network. 

That is, it offers a collection of system services such 

as receivers, filtering and dispatching services, 

resource manager and orphanage. 

 



 

 

Table1.  Approaches of Sensor Networks Middleware. 

 

Project Name Main Features Heterogeneity Scalability Mobility Easy for use Power 

aware 

General 

purpose 

Virtual Machine based approach  

Mate [22] 

Uses TinyOS, Synchronous, Byte code interpreter, Mobile 

active capsules. 

Yes Yes Yes No Yes Yes 

Magnet [5] 

Java virtual machine, Single System Image., Objects 

migration 

Yes Yes Yes No Yes Yes 

Database based approach 

   

Cougar [11] 

Virtual relational database, Abstract Data Types, SQL Like 

Language 

No No No Yes Some Some 

SINA [27] 

 

Spreadsheet database, Hierarchical clustering, Base naming 

scheme, SQL like statement 

No Some 

No 

 

Yes 

 

Yes 

 

Some 

DsWare [31] 

Data service, Event detection, SQL like statement, Real 

time aspects 

No Some No Yes Yes Some 

Modular programming approach  

Imapala [25] 

 

Mobile agents, Asynchronous, AFSM, Autonomic 

appraoch 

No Yes Yes Some Yes No 

Application driven approach  

Milan [18] 

High level concerns, QoS requirement, Network protocol 

stack  

No Some No Yes Yes Some 

Data centric approach  

     

Envirotrack [1] 

 

NesC prog, TinyOS, Mobile code, Context label. 

Yes Yes Yes No Yes No 

 

 

4. Comparison and Classification 

 

In the previous section we surveyed different existing 

middleware approaches, based on the programming 

models used. To the best of our knowledge we can 

classify them into four main categories: virtual machine, 

modular programming, database based, and application 

driven. We will evaluate these approaches based on their 

performance in respect to the challenges and constraints 

presented in section 2 such as heterogeneity, scalability, 

expressiveness and general purpose. 

The virtual machine approach provides an efficient 

programming paradigm that allows the development of 

any distributed algorithms and hides the heterogeneity of 

the run time environments and the hardware resources. It 

provides efficient mechanisms to support sensor networks 

dynamisms and allows highly scalable applications. 

However, sometimes its interfaces lack expressiveness as 

in Mate [22], and its instructions introduce a considerable 

overhead.  

The database approach’s treats the whole sensor network 

as a large “virtual” data base. Interactions with the sensors 

are done in form of system queries using SQL like 

language. It is easy to use and suitable for some 

applications. On the other hand it suffers from supporting 

real time applications that need the detection of spatio-

temporal relationships between events. Also, it maintains 

a fixed global network structure which is not suitable for 

scalability nor for highly dynamic applications.  

The modular programming paradigm as in impala 

provides efficient mechanisms for networks updates to 

support dynamic applications. Its autonomic behavior 

increases its fault tolerance and self-organization of the 

network. However, the nature of its code instruction does 

not allow hardware heterogeneity which makes it 

unsuitable for devices with limited resources.  

The application driven approach in Milan [18] introduces 

a new dimension in middleware design since applications 

will dictate network management operations, which 

makes it advantageous in terms of QoS for some 

applications. On the other hand heterogeneity poses a 

serious problem, since Milan did not provide a low level-

programming paradigm to overcome systems and 

hardware heterogeneity.  

The data centric approach stems from the observation that 

in most sensor network applications, the focus is 

more on the nature of sensor readings rather than 

their address in the network. Hence, nodes are 

addressed based on the data produced, for example: 

detect a target having a shape of “tank” which is used 

in military applications.  

 

Table.1 classifies and summarizes the different 

approaches and evaluates exhaustively each approach.



 

 7 

 

5. Open Research Issues 

 

Most of the projects are at an early stage focusing on 

developing algorithms and components of middleware for 

WSN. The design of a middleware layer for sensor networks 

fully meeting the challenges highlighted in an earlier section 

is now open. One primordial issue is to satisfy application 

QoS requirements while providing a high level abstraction 

dealing with the heterogeneity of sensor nodes. Another 

crucial challenge is to come up with easy to use and 

expressive programming interfaces while meeting different 

sensor network application challenges such as limited 

hardware resources and QoS requirements. Middleware 

using autonomic computing and policy-based management 

could provide more robustness, reliability and self-

management. At this point it is not obvious yet whether 

network management and programming abstractions will 

stem from the existing known paradigms as the work 

surveyed in this paper, or possibly fully new abstractions and 

approaches will emerge specifically to meet WSN goals.  

 

6. Conclusion 

 

Throughout this survey, we discussed the main challenges  

that face the design and the development of middleware for 

WSN. We investigated most of the relevant existing projects 

carried out towards this perspective. We provided a state of 

the art comparison and classification by concentrating on 

similarities and differences between the approaches. 

Middleware approaches for WSN are mainly classified into 

four categories: virtual machine, database based, modular 

programming, and application driven. Further, and based on 

the results of our comparison, we discussed and proposed 

potential enhancements and new research possibilities in the 

field. Finally we argue that there is a still a long way to go for 

a “perfect” middleware for WSN to really exist. 

 

7. References 

 

[1] T. Abdelzaher ,  B. Blum and Q. Cao and D. Evans 

and J. George , S. George, T. He and L. Luo, S. Son,  R. 

Stoleru,, J. Stankovic and A. Wood., ”EnviroTrack: 

Towards an Environmental Computing Paradigm for 

Distributed Sensor Networks”, ICDCS, 2004  

[2] M. Addlessee, R. Curwen, S. Hodges, J. Newman, P. 

Steggles, A. Ward, and A.Hopper, “Implementing a 

sentient computing system,” IEEE Computer Society, 

34(8):50-56, August 2001. 

[3] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and 

E. Cayirci, “A Survey on Sensor Networks”. IEEE 

Communications Magazine, Aug. 2002. 

[4] D. Bakken, “Middleware”. In Encyclopedia of 

Distributed Computing, Kluwer Academic Press, 2003. 

 [5] R. Barr, J.C. Bicket, D.S Dantas, B.Du, T.W.D. 

Kim, B. Zhou and E.G. Sirer, “On the Need for System-

Level Support for Ad hoc and Sensor Networks” 

Operating Systems Review, ACM, 36(2):1-5, April 

2002. 

[6] P. Bonnet , J. Gehrke , P. Seshadri  “Towards 

sensor database systems”. In: Proceedings of the 2nd 

international conference on mobile data management, 

Hong Kong, 8--10 January 2001, pp 3-- 14  

[7] P. Buonadonna, J.Hill and D. Culler, “Active 

Message Communication for Tiny Networked 

Sensors”. Submitted for publication, 7/00   

[8] A. Cerp, J. Elson, D. Estrin, L. Girod, M. 

Hamilton, and Zhao.” Habitat monitoring: Application 

driver for wireless communication technology”. In 

ACM Sigcomm Workshop on Data Communication, 

San Jose, Costa Rica, April 2001. 

[9] G.V. Chockler, I. Keidar, and R. Vitenberg, 

“Group communication specifications: A 

comprehensive study”. ACM Computing Surveys, 

33(4):427-469, Dec. 2001.  

[10] C. Chong and S.P. Kumar, “Sensor Networks: 

Evolution, Opportunities, and Challenges”. In the 

proceedings of the IEEE, Vol. 91,  No.8. Aug.2003. 

[11] Cougar Project. 

www.cs.cornell.edu/database/cougar.  

[12] D. Culler, D, Estrin and M. Srivastava, 

“Overview of Sensor Networks”. IEEE Computer 

Society, Aug.2004. 

[13] P. Debaty and D. Caswell. “Uniform Web 

Presence Architecture for People, Places, and Things”, 

IEEE Personal Communications, 8(4):46-51, August 

2001. 

[14] D. Estrin, R. Govindan, J. S. Heidemann, and S. 

Kumar, "Next century challenges: Scalable 

coordination in sensor networks", in Proc. 5th Ann. 

Intl. Conf. on Mobile Computing and Networking. 

Seattle, WA: ACM, pp. 263270, Aug. 1999. 

[15] C.Fok, G. Roman, and C. Lu, “Mobile Agent 

Middleware for Sensor Networks: An Application 

Case Study” to appear in the Proceedings of the 4th 

International Conference on Information Processing in 

Sensor Networks (IPSN'05), 2005.  

[16] Q. Han, S. Gutierrez-Nolasco and N. 

Venkatasubramanian, “Reflective Middleware for 

Integrating Network Monitoring with Adaptive object 

Messaging”. IEEE Network, Jan-Feb 2004.  

[17] J. Heideman, F, Silva, C. Intanagonwiwat, R. 

Govindan, D. Estrin, and D. Ganesan. “Building 

Efficient Wireless Sensor Networks With Low-Level 

Naming”. Operating Systems Review, 35(5): 146-159, 

December 2001. 

[18] W.B. Heinzelman, A.L Murphy, H.S Carvalho 

and M.A Perillo, “Middleware to Support Sensor 

Network Applications”. IEEE Network Magazine 

Special Issue, Jan. 2004. 

[19] J. Hill, R. Szewczyk, A. Woo, S.Hollar, D. Culler 

and K. Pister, “System Architecture Directions for 

Networked Sensors”. ASPLOS-IX Cambridge,  MA, 

USA. ACM 2000  

[20] “21 Ideas for the 21

st

 century”, Business Week, 

pp. 78-167, Aug 30, 1999. 

[21] Q. Jiang and D. Manivannan, “Routing Protocols 

for Sensor Networks”. IEEE. 2004  

www.cs.cornell.edu/database/cougar.  


 

 8 

[22] P. Levis and D. Culler, “Mate: A Tiny Virtual 

Machine for Sensor Networks”. In Proceedings of the 

International Conference on Architectural Support for 

Programming Languages and Operating Systems  

(ASPLOS-X), Oct.2002.  

[23] P. Levis, D. Gay and D. Culler, “Bridging the Gap: 

Programming Sensor Networks with Application 

Specific Virtual Machines”. In submission to OSDI 

2004.  

[24] S. Li, S. Son, and J. Stankovic, "Event Detection 

Services Using Data Service Middleware in Distributed 

Sensor Networks," 2nd International Workshop on 

Information Processing in Sensor Networks , April 2003. 

[25] T.Liu and M. Martonosi, “Impala: A Middleware 

System for Managing Autonomic, Parallel Sensor 

Systems”. PPoPP’03 , San Diego, California, USA.. 

June 2003. 

[26] K. Romer, O. Kasten, and F.Mattern, “ Milldleware 

Challenges for Wireless Sensor Networks”. Mobile 

Computing and Communications Review, Volume 6, 

Number 4. 

[27] C. Srisathapornphat, C. Jaikaeo and C. Shen, 

“Sensor Information Networking Architecture”. 

International Workshop on Parallel Processing, pp. 23-

30, September 2000.  

[28] L. St Ville and P. Dickman, “Garnet: A Middleware 

Architecture for Distributing Data Systems Originating 

in Wireless Sensor Networks”. In the Proceedings of the 

23

rd

 International Conference on Distributed Computing 

Systems workshops. IEEE 2003.  

[29] S.Tilak, N. Abu-Ghazaleh, and W. Heinzelman, “A 

Taxonomy of  Wireless Micro-Sensor Network 

Models,” ACM Mobile Computing and 

Communications Review (MC2R), Vol.6, no.2, April 

2002. 

[30] J.L Wong and M. Potkonjak, “Search in Sensor 

Networks: Challenges, Techniques, and Applications”. 

IEEE, 2002. 

[31] X. Yu, K. Niyogi, S. Mehrotra and N. 

Venkatasubramanian, “Adaptive Middleware for 

Distributed Sensor Environments”. IEEE Computer 

Society, 2003. 

[32] M. Zulkernine, S.I. Ahamed and A. Vyas, 

“Towards Developing Sensor Networks Monitoring as a 

Middleware Service”. In the Proceedings of the 2004 

International Conference on Parallel Processing 

Workshops.  IEEE 2004 

[33] Q. Han and N. Venkatasubramanian. Autosec: An 

integrated middleware framework for dynamic service 

brokering. IEEE Distributed Systems Online, 2(7), 2001. 

[34] C.-L. Fok, G.-C. Roman, and C. Lu, "Mobile Agent 

Middleware for Sensor Networks: An Application Case 

Study,"International Conference on Information 

Processing in Sensor Networks (IPSN'05), Los Angeles, 

CA, April 2005. 

[35] D. Gay, P. Levis, R. von Behren, M. Welsh, E. 

Brewer, and D. Culler. “The nesC language: A holistic 

approach to networked embedded systems. In Proc. 

Programming Language Design and Implementation 

(PLDI), June 2003”. 

 


