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Middleware Infrastructure for Parallel and
Distributed Programming Models in

Heterogeneous Systems
Jameela Al-Jaroodi, Student Member, IEEE, Nader Mohamed, Student Member, IEEE,

Hong Jiang, Member, IEEE, and David Swanson

Abstract—In this paper, we introduce a middleware infrastructure that provides software services for developing and deploying high-

performance parallel programming models and distributed applications on clusters and networked heterogeneous systems. This

middleware infrastructure utilizes distributed agents residing on the participating machines and communicating with one another to

perform the required functions. An intensive study of the parallel programming models in Java has helped identify the common

requirements for a runtime support environment, which we used to define the middleware functionality. A Java-based prototype, based

on this architecture, has been developed along with a Java Object-Passing Interface (JOPI) class library. Since this system is written

completely in Java, it is portable and allows executing programs in parallel across multiple heterogeneous platforms. With the

middleware infrastructure, users need not deal with the mechanisms of deploying and loading user classes on the heterogeneous

system. Moreover, details of scheduling, controlling, monitoring, and executing user jobs are hidden, while the management of system

resources is made transparent to the user. Such uniform services are essential for facilitating the development and deployment of

scalable high-performance Java applications on clusters and heterogeneous systems. An initial deployment of a parallel Java

programming model over a heterogeneous, distributed system shows good performance results. In addition, a framework for the

agents’ startup mechanism and organization is introduced to provide scalable deployment and communication among the agents.

Index Terms—Distributed systems middleware, parallel programming models, parallel and distributed Java, cluster, heterogeneous

systems, distributed agents.

�

1 INTRODUCTION

Amiddleware infrastructure, using distributed software

agents, is developed to provide services for high-

performance programming environments and applications
on clusters and networked heterogeneous systems. The

agents enhance expandability, allowing the number of

machines involved to grow easily by providing services that

include job distribution, monitoring, and controlling for the

system. This provides flexibility and ease of managing the

different resources available. In addition, the distributed

agents provide the required runtime support for the parallel

and distributed applications developed at the application
level.

A new choice of architecture for high-performance
computing has emerged to be the cluster of PCs/work-
stations [9] and networked heterogeneous systems. Such

systems provide processing power comparable to special
purpose high end multiprocessor systems for a fraction of
the cost. However, these systems require system and

software services (middleware) that can support the
distributed architectures and provide transparent and

efficient utilization of the multiple machines. Moreover, as

Java becomes more popular and available on many plat-
forms, there is an increasing interest in using Java for high-
performance computing and distributed applications on
clusters due to its unique advantages in portability, security
mechanisms, network programming capabilities, etc. This
interest in Java has generated intensive research in Java for
parallel, distributed, and multithreaded programming
environments and tools on distributed systems.

The main objective of the paper is to identify the
common requirements for the parallel and distributed
programming models and to propose and design a
middleware infrastructure to satisfy these requirements.
In addition, the paper discusses a framework for the
distributed agents’ organization, configuration, and com-
munication mechanisms to provide efficient, flexible, and
scalable system support. Requirements such as remote
loading and execution, resource management and schedul-
ing, naming, security, group management and communica-
tions, and synchronization mechanisms were identified.
Furthermore, the middleware infrastructure is designed to
satisfy these requirements in a multilayered modular
manner, which separates the programming model’s specific
functionalities from the general runtime support required
by any parallel or distributed programming model. The
layered approach also allows for easy modifications and
updates of the different functions and services at the
different layers and provides flexible component-based
plug-ins. Therefore, the individual details of the middle-
ware infrastructure components such as the scheduler,
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resource manager, etc., can be separately considered as
plug-in components. Moreover, the pure Java infrastructure
based on distributed memory model provides portability,
security, and the ability to utilize heterogeneous systems.

In the rest of this paper, Section 2 reviews related work
and concepts. Then, we discuss parallel Java programming
models and identify common infrastructure service require-
ments on clusters and heterogeneous systems in Section 3.
In Section 4, we describe the architecture and features of the
infrastructure and introduce the agent start-up organization
and communication mechanisms in Section 5. Section 6
presents an example, the Java Object-Passing Interface
(JOPI), that utilizes the middleware, along with the
experimental evaluation of the performance. Finally, Sec-
tion 7 concludes the paper with remarks about the main
features and advantages of the middleware infrastructure
and the current and future work.

2 CONCEPTS AND RELATED WORK

Java’s popularity among developers is increasing steadily
and many research groups are exploring the possibilities of
using Java for high-performance parallel computing on
multiprocessor systems. Since Java is machine independent,
the same Java programs can run on any platform with a Java
virtual machine (JVM), without recompilation for each
platform. In addition, Java is constantly being improved
and optimized for performance. Very recently, research
groups have worked on providing parallel Java using
different approaches and programmingmodels. This section
introduces related concepts and lists some related projects.

2.1 Concepts

Java, in its current state, provides features and classes that
facilitate distributed application development. Some of the
features are object serialization [10], remote method
invocation (RMI) [27], class loaders, network programming
and Sockets, and the reflection API [10]. However, the
development process of parallel applications in Java is
complex and time consuming. Using the currently available
methods, a daring programmer may be able to write a
parallel application in Java, but the complexity of the task
deters almost all from tackling this intricate task. On the
other hand, the message-passing interface (MPI) [29] has
provided languages such as C and FORTRAN with slightly
simpler APIs to write parallel programs. Other MPI-based
APIs such as OOMPI [28], Charm++ [22], and ABC++ [5],
provide object-oriented message-passing interfaces.

2.2 Related Work

Many projects investigating parallel Java capabilities are in
the research phase. Extensive literature study led us to
classify them into the following four different categories
based on how they provide parallelism, their compatibility
with the JVM, and user involvement.

1. Java dialects and preprocessors. Projects such as
Titanium [30] and HPJava [12] provide Java dialects
for parallel programming with their own compilers,
while others such as JAVAR [6] and JAVAB [7]
provide parallelizing precompilers.

2. Alternatives to JVM. These projects provide parallel
Java capabilities by altering the JVM or building a
new one. Examples include JPVM [16] and cJVM [4].

3. Parallelizing multithreaded applications. Mechan-
isms that enable multithreaded applications to
transparently utilize the underlying multiprocessor
hardware are incorporated in projects of this
category. This approach requires that the system
distribute the threads among the distributed pro-
cessors without user involvement. Representative
projects include cJVM [4], JavaParty [26], and
ProActive [11].

4. Pure Java implementations. Projects in this category
provide parallelization facilities in pure Java im-
plementations, which make the system portable and
machine independent. Such systems require class
libraries to provide the APIs needed to write parallel
Java applications. ParaWeb [8], Ajents [20], Babylon
[19], and JOPI [23] are some of the examples.

Our literature review [2] revealed that many research
groups are working toward providing tools and program-
ming models for parallel Java. Many of the projects provide
message-passing interfaces based on MPI and MPI for Java
(MPJ) draft specifications [13]. However, our approach to
providing parallel-programming capabilities in Java has
several differences from the projects studied. One signifi-
cant difference is the separation of the enabling mechan-
isms, i.e., the middleware infrastructure, from the parallel
programming models resulting in many advantages:

1. The infrastructure supports different programming
models such as message-passing, object-passing, and
distributed shared object.

2. The infrastructure provides efficient common ser-
vices needed by any programming model such as
scheduling, monitoring, load balancing, synchroni-
zation, and job control.

3. The programming models can be easily changed,
upgraded, or completely reengineered without hav-
ing to change the underlying support mechanisms.

4. The organization of the infrastructure and its close
relationship with the models provides the flexibility
to optimize and fine-tune its operations to achieve
good performances.

3 PARALLEL JAVA ON HETEROGENEOUS SYSTEMS

Based on our observations from studying the different
approaches for parallel programming in Java, we have
identified some common requirements. In this section, we
first discuss the different parallel Java programming models
and study the requirements to implement and deploy these
models, then identify the generic services and functions that
the middleware should provide for developing and
supporting the different programming models.

3.1 Java Parallel Programming Models

Providing parallel programming capabilities in Java can be
achieved by following the known parallel programming
models. These models are divided into four layers
(categories) based on the level of user involvement in the
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parallelization process and the achievable levels of effi-

ciency. In addition, the implementation dependencies can

be observed among these layers. They are described below

in decreasing level of user involvement and system

efficiency.

1. Message Passing: In this category, the system
provides some form of information exchange me-
chanism among distributed processes. It provides,
for example, functions to exchange messages among
processes with point-to-point and group commu-
nication primitives, synchronization, and other
operations. This programming model handles the
remote process deployment and message exchange
among the participating machines. The runtime
support can be implemented as an independent
middleware layer, thus providing a flexible and
expandable solution. On the other hand, it can be
implemented as an integral component of the model,
thus making it more tightly coupled with the
required functionality. However, the first approach
is more flexible, expandable, and can be easily
enhanced to support other models. The message-
passing library and runtime support can be im-
plemented in different ways such as pure Java
implementations based on socket programming,
native marshaling, and RMI [27], or by utilizing
Java native interface (JNI), Java-to-C interface (JCI),
parallel virtual machine (PVM), and other parallel
infrastructures. A number of projects tried to comply
with MPI [29] and MPJ [13], while others were based
on a new set of APIs. Models in this category
provide an efficient parallel programming environ-
ment because they directly utilize the basic commu-
nication mechanisms available; however, they are
the least user friendly and require full user aware-
ness of the parallelization process.

2. Distributed Shared Address Space: In the distributed
shared address space or distributed shared object
(DSO) model, the model presents an illusion to the
user of a single address space where all or some
data/objects are available to all participating pro-
cesses. To provide this illusion, the programming
model should be able to transparently handle all
data/object communication, sharing, and synchro-
nization issues, thus freeing the user from the
concerns of operational details. One method of
implementation is to utilize an available message-
passing infrastructure. However, the programming
model should handle the different issues of shared
space such as information (data or objects) integrity
and coherence, synchronization, and consistency.
This category provides a more friendly development
environment of parallel applications; however, the
performance is penalized due to the overhead
imposed by the sharing (coherence and consistency)
and synchronization requirements.

3. Automatic Parallelization of Multithreaded Applica-
tions: This category aims to provide seamless
utilization of a distributed environment to execute
multithreaded applications on multiple machines.

The main goal is to execute concurrent multi-
threaded applications in parallel without modifica-
tions. In this case, the implementation issues are
similar to those in the distributed shared address
space model in the sense that all data and objects
used by more than one thread need to be sharable.
As a result, the programming model requires data
sharing or data exchange mechanisms to provide
thread distribution and information sharing. To
implement this model, a message-passing system
or a DSM/DSO system can be used as the under-
lying support mechanisms. Such system is less
efficient than a message passing due to the addi-
tional overhead of handling remote thread deploy-
ment, sharing, and synchronization.

4. Transparent (Automatic) Parallelization: Here, the
goal is to execute sequential applications in parallel
on multiple machines. Some systems provide trans-
parent parallelization of Java programs written in
standard Java by modifying the JVM, while others
utilize preprocessors. The first approach introduces
a new JVM that recognizes the existence of multiple
machines and utilizes them to execute the Java
bytecode in parallel. This JVM should handle the
distribution of load and data/objects and efficiently
utilize available resources. However, such JVM may
be inefficient since many sequential applications are
not easily parallelizable, especially if they were
designed without parallelization in mind. Using
preprocessors usually involves restructuring the
existing Java code or bytecode to a parallel format.
This process could be done either by parallelizing
substructures such as loops or by introducing a
different parallelization model such as message-
passing or DSM in the code. In both cases, the main
goals are to relieve the developer of the burden of
explicitly parallelizing the application and to run
current applications in parallel without (or with
minor) modifications. Again, the programming
model should be able to execute the automatically
generated parallel programs. This model could be
built from scratch or by utilizing any of the
programming models described above. However,
the efficiency achieved is not very high because
applications vary and the systems cannot handle all
of them at the same level of efficiency.

In addition to these four categories, a few research
groups have also used combinations of these models or
selected functionalities to provide different methods of
parallelization. Although the message-passing model is the
most difficult from a user’s perspective, it is usually the
most efficient because it is directly based on the system’s
basic communication mechanisms. However, the automatic
parallelization is still the most attractive option for users
since it does not involve any effort from them. Nevertheless,
it is very difficult to achieve and the existing systems are not
efficient. Detailed information about the classification,
implementations, and comparison of parallel Java projects
for heterogeneous systems can be found in [2].

3.2 Identifying Common Requirements

Standard Java technology such as JVM and JINI [15]
provide a variety of features to develop and implement
distributed Java applications. However, there are some key
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features lacking when directly applied as an underlying
infrastructure for constructing and executing parallel Java
applications on heterogeneous systems. Some of these
features are summarized as follows:

1. Loading User Programs onto the Remote JVMs on the
Participating Machines: Java does not provide me-
chanisms to remotely load user classes on more than
one JVM in parallel. A parallel application needs to
be loaded onto JVMs of all nodes where it is
scheduled. Thus, the parallel Java environment
needs mechanisms to remotely load classes onto
the selected nodes before starting the execution of
the parallel application.

2. Managing Resources and Scheduling User Jobs: In order
to efficiently run parallel applications, the system
needs to schedule user programs based on the
availability of the nodes and the available resources
in each node. Thus, a mechanism is needed to
monitor, manage, and maintain the resources of the
entire cluster(s). Resources on a node may include
the number of idle or sharable processors, memory
space, current workload, the number of communica-
tion ports, and sharable data and objects.

3. Security: Some resources on the cluster nodes or
distributed system may need to be protected from
remote jobs being executed locally. For example,
while a user is allowed to run a program on a remote
node, he/she should not be allowed to access any
files on the remote nodes or change their system
properties without proper authorization. Although a
basic security mechanism is available in Java to
protect selected node resources, it would never-
theless be preferable if advanced security functions
were available so that access control and security
protocols can be easily defined and enforced
through the middleware.

4. Job and Thread Naming: For an environment support-
ing multiple parallel jobs, a unique job ID needs to
be assigned to each active job, which is needed to
control a specific job, for example, to kill a job. In
addition, each parallel job consists of multiple
threads distributed among the nodes; therefore, a
thread ID is needed for each thread. The thread ID is
used to distinguish threads and control the flow of
the parallel programs such as in message passing.
For user threads to communicate, a mechanism to
provide a mapping between logical thread IDs and
actual network addresses such as IP address and
network port is needed.

5. User Commands: Users need commands to submit,
execute, and monitor their parallel programs and to
control the environment from a single point on the
cluster. Examples of these commands are to check
available resources and currently running parallel
jobs. These commands should provide the user with
a single system image.

6. Synchronization Mechanisms: Any parallel application
requires some form of synchronization and control
to function correctly. Executing parallel applications
on distributed environments makes these needs
even more important. Basic mechanisms to ensure
mutual exclusion, ordered execution, and barriers
are necessary for many programming models. For
example, a distributed shared object model will

require synchronization to achieve consistency and
coherence and an object-passing model requires
explicit APIs for methods such as the barrier.

7. Group Management and Communication: A distributed
parallel application requires collective communica-
tions at two different levels: at the job (or task) level
to deploy, monitor, and control users jobs, and at the
process level for interprocess communications such
as broadcast and multicast. A programming model
can benefit from the middleware for both levels,
where efficient group communications methods can
be utilized. Distributed applications may also re-
quire mechanisms to manage and control real-time
dynamic agent and process membership in the
system.

These common requirements can be implemented in
different ways to provide the necessary tools and APIs for
the programming model developer to build any of the
aforementioned programming models. However, each
model will also have its own set of functionalities that
need to be implemented as part of the programming model
itself. For example, in a distributed shared memory or object
model, issues such as coherence and consistency must be
handled within the programming model and independently
from the middleware, while in a message passing model, it
is left for the application developer to handle. In addition,
some programming models can implement some functions
already available in the middleware to achieve specific
goals. For example, the communications functions in a
message-passing model can be realized using the middle-
ware functions or directly in the model to support
specialized communications services that come with ad-
vanced cluster networks such as the Sockets-GM for
Myrinet [25].

4 THE MIDDLEWARE INFRASTRUCTURE

The middleware infrastructure is designed to satisfy the
requirements discussed above. This system provides a pure
Java infrastructure based on a distributed memory model,
which makes it portable, secure, and capable of handling
different programming models (see Fig. 1) such as JOPI [23]
and the DSO model. The system has a number of
components that collectively provide middleware services,
including some of the requirements described above, for a
high-performance Java environment on cluster and hetero-
geneous systems.

4.1 Agents

Software agent technology has been used in many systems
to enhance the performance and quality of their services
[18]. Our middleware infrastructure utilizes software agents
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to provide flexible and expandable middleware services for
high-performance Java environments. The main functions
of the agents are to deploy, schedule, and support the
execution of the parallel/distributed Java code, in addition
to managing, controlling, monitoring, and scheduling the
available resources on a single cluster or on a collection of
heterogeneous systems. When a parallel Java application is
submitted, an agent performs the following tasks:

1. Examine available resources and schedule the job for
execution, while balancing the load.

2. Convert scheduled user classes into threads, then
remotely upload and execute them directly from the
main memories on the remote machines.

3. Monitor and control resources and provide monitor-
ing and control functions to the user.

For high throughput, the agents are multithreaded,
where each thread serves a client’s request. Once user
threads are deployed, they directly communicate with one
another to perform parallel tasks, thus freeing the agents
and reducing the overhead on the user programs. Agents’
communication mechanisms are implemented using sock-
ets and each agent consists of a number of components
whose main functions are described below, although many
of these functions can be independently enhanced to
provide different levels of services:

1. The Request Manager handles user job requests
such as deploying classes, starting/stopping a job,
and checking agents/threads status. Requests come
as request objects from client services or from
other agents.

2. The Resource Manager provides methods to man-
age, schedule, and maintain the resources of the
machine where the agent resides. It keeps records of
executing threads, machine and communication
resources’ utilization, and performance information.
In addition, it is responsible for reclaiming system
resources after each job’s completion or termination.

3. The Security Manager provides security measures
for the system (see Section 4.3 for details).

4. The Class Loader remotely loads user classes in
parallel onto the JVMs on the remote machines in
preparation for execution.

5. The Scheduler selects the machines to execute a user
job based on the requested number of processors.
One mechanism to generate a schedule is to execute
a test program to select the fastest responding
machines. This method provides a simple but basic
load balancing among the processors. However,
since this is an independent component, the sche-
duler can be easily replaced by any suitable
scheduler to satisfy different policies and perfor-
mance requirements.

4.2 Client Services and Environment APIs

Theclient services andenvironmentAPIsprovide commands
for users to interact with the environment. Requests are
accepted from the user and passed to the agent after
encapsulation as an object with the necessary information.
The following commands are available for the user through
client services and for the other programming models and

applications as APIs such as pjava to initiate a parallel job,
pingAgent to list available agent(s) and their status, listThreads
to list active threads, and killJob to terminate a job.

The client services class uses two types of classes for
communication between clients and agents and among
agents. The agentClient provides APIs to manage, control,
and send requests for an agent and it is used for direct
communication between the client and a given agent or
among agents. In addition, the agentGroup provides APIs to
manage, control, and send requests for a group of agents
using the agentClient to individually communicate informa-
tion to all agents in the group. For example, when a job is
initiated, the request and schedule objects are passed to the
agentGroup, which uses the agentClient to pass them to
individual agents. Both agentClient and agentGroup are also
used as API for developing distributed applications. When
a programming model is developed using the runtime
support environment, the interprocess communications are
handled in different ways. Point-to-point communications,
for example, can be implemented directly by the program-
ming model. However, if the nodes/machines involved are
not within a single cluster, the agents can assist the
communications by providing routing mechanisms be-
tween the different nodes. In addition, group communica-
tions such as broadcast and multicast can be provided by
the runtime environment rather than the programming
model to achieve efficient distribution and response times.

4.3 Multiuser and Security Issues

The system allows multiple users to execute multiple jobs
simultaneously. To properly manage these jobs, each job
has multiple levels of identification, starting with a unique
job ID assigned by the system. The user ID and the program
name further distinguish different jobs. Within each job,
thread IDs are used to identify the remote threads of the job.
Executing user threads on remote machines exposes these
machines to many “alien” threats, raising security and
integrity concerns. Therefore, these machines must be
protected to ensure safe execution. Java’s default security
manager provides some level of protection by checking
operations against defined security policies before execu-
tion. However, the security manager in Java has some
restrictions, thus many functions have been modified or
rewritten for our system. More specifically, two modes of
execution are used to provide a robust and secure
environment:

1. The Agent Mode in which no restrictions are
imposed. A thread running in this mode has full
control of all the resources and operations in the
system. All agents run in agent mode.

2. The User Mode in which restrictions are applied to
limit the user access to the system resources. Some
operations, such as deleting files, creating a subpro-
cess, using system calls, modifying system proper-
ties, and writing files, are disabled in this mode.

With the security modes in place, the user processes have
full access to resources on their local machines (where the
user job was initiated), but limited and controlled access to
all remote machines’ resources (since they are running in
user mode). To provide users with access to necessary
resources for their application, the root (master) process
executes on the user’s local machine. However, the user has
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the option to override this setting and allow the root process
to execute on a remote machine; however, the application
will have limited access to the system’s resources. Never-
theless, this policy can be adapted to provide different
levels of access control on the available machines. For
example, a user on a cluster is given full access to all cluster
nodes, but limited access to external systems. Another
example is deploying an authentication/authorization
policy for different access modes on the participating
machines.

5 FRAMEWORK FOR AGENTS’ SETUP AND

ORGANIZATION

In this section, we introduce and analyze a framework for an
automated startup and configuration mechanism for a
hierarchical structure of the distributed agents in the system.
The startup stage is essential to guarantee the accurate and
efficient operation of the middleware infrastructure and the
applications using it. Themain goal here is to provide system
startup and configuration with minimum user involvement.
A number of issues such as how the agents are connected and
how they view one another are considered. The mechanism
for adding and removing agents from the system and their
effect on the configuration are also studied. Three protocols
are introduced for automatic startup, leader recovery, and
agent update.

5.1 Hierarchical Structure of Agents

The distributed agents in the system need to communicate
among themselves to perform their required operations.
However, the structure in which these agents are organized
has a strong impact on how efficient they operate. Within a
single cluster or a limited number of machines participating
in the system, a linear structure is sufficient for the agents to
communicate and achieve their functionality. However, this
requires agents to be fully connected, which may not
always be possible. In addition, the linear structure causes
considerable delays for some operations that need to be
performed on all participating machines. To overcome these
limitations, we designed a hierarchical structure where
agents have multilevel connections in the system. Gener-
ally, a networked heterogeneous system composed of
clusters and multiprocessor machines forms the top level
of the hierarchy. Within each of these machines or clusters,
one or more levels may be formed, depending on the type
of machine and number of nodes/processors in it. For
example, a cluster of a small number of nodes remains in a
single level, but one with a large number of nodes will have
multiple levels in a hierarchy. In this structure, agents are in
one of two modes of operation:

1. Leader agent (called leader hereafter): An agent that
manages and controls a set of other agents under its
control. Leaders at the same level communicate with
one another directly.

2. Regular agent (called agent hereafter): An agent that
performs the regular agent operations. Agents under
the control of the same leader should be able to
communicate with one another and their leader
directly. In addition, agents in different layers, but in
the same physical cluster (with direct links between
the nodes) communicate with one another directly.

Shown in Fig. 2 is an example of a hierarchical structure
of a networked heterogeneous system, which we will refer
to in the rest of this section. The squares denote leader
agents, while the circles represent agents. Some machines
such as SMP (symmetric multiprocessing) or MPP (Mas-
sively Parallel Processing) machines need a single agent to
handle the resources (e.g., leader 1), while others such as
clusters need an agent for each node. The connecting lines
represent bidirectional communication links between
nodes. However, at the top level of the hierarchy, the links
between leaders (e.g., 1, 2, and 3) may be a multihop path.
The protocols introduced are based on the following
general assumptions:

1. Nodes within a cluster are fully connected (e.g.,
nodes under leader 2, 3, or 4), including nodes
belonging to different subtrees (e.g., all nodes under
leader 3 are fully connected).

2. In some cases, nodes from different clusters (or
machines) may not see each other directly (e.g., nodes
under leader 2 cannot see nodes under leader 3).

3. All machines in the system must be fully connected
in the sense that at least one node from each machine
can see at least one node from each of the other
machines.

Before getting into the details of the structure and
required mechanisms, we define some basic terms that will
be used throughout this section.

1. Virtual cluster: A collection of nodes within one
large cluster that form one group of agents and their
leader (a subtree). A large cluster is divided into
multiple virtual clusters to make communications
and management more efficient (e.g., the agents led
by leader 4 in Fig. 2).

2. Head node: In some cases, a cluster has a single node
that is connected to other machines or clusters. This
node is called the head node and has a leader agent
residing on it.

3. Local node: From the viewpoint of an agent/leader,
the node where it resides is its local node.

4. Remote node: From the viewpoint of an agent/
leader, nodes other than its local node are remote
nodes.

5.2 Agent Control Messages and Operations

The protocols introduced here require a number of standard
control messages that the agents use to communicate and
exchange information. These messages, referred to as the
middleware control messages (MCM), are defined here.
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1. Leader Advertisement Message (LAM): A broadcast
message sent by a newly created leader to inform
other existing leaders of its birth. LAM contains the
leader’s ID (a unique identifier acquired at startup)
and its address information.

2. Agent Monitor (AM): Periodic messages sent by
leaders to one another and to descendant agents to
check if they still exist.

3. Leader Advertisement Acknowledgment Message
(LAAM): Sent by a leader upon receiving a LAM
or AM from another leader. LAAM contains
respondent’s ID and address information.

4. Agent Activation Message (AAM): Sent by a leader to
activate descendant agents. It contains the leader’s
ID and address information, in addition to an
activation command.

5. Agent Monitor Acknowledgement (AMA): Sent by an
agent in response to an AM or AAM. It contains the
sender’s ID, address, and resources information.

6. Leader Not Responding Message (LNRM): Sent by a
leader that does not receive an LAAM from another
leader in response to the AM message, to all leaders
at the same level, and the leader’s parent if one
exists. It contains the sender’s ID and the non-
responding leader’s ID.

For the agents to operate efficiently, they need a startup

protocol to automatically identify and communicate with

one another. The initial stage requires manual installation of

the first leader agents on the head nodes. The leaders then

start the startup and automatic configuration phase.

1. Each leader is responsible for performing the
following tasks:

a. Execute the startup protocol to automatically
acquire connectivity and operational informa-
tion in the system.

b. Periodically perform availability checks of the
leaders and descendant agents. If a leader or
agent does not respond, activate leader recovery
or agent update protocols.

c. Perform object routing for other agents to ensure
full connectivity with other clusters and ma-
chines in the system. Many routing protocols
can be adapted for this system, but the discus-
sion of the routing details is beyond the scope of
this paper. One suitable example is the content-
based object routing technique called Java
Object Router (JOR) [24].

2. Each agent should

a. on activation (by receiving an AAM), find and
register local node resources information. Re-
sources include available CPUs, CPU power,
storage and memory capacity, etc.,

b. respond to the leader with an AMA message
containing the agent’s ID, address, and re-
sources information, and

c. receive and locally update the neighbors’ ad-
dresses from the leader for future interprocess
communication.

When information becomes available, agents and leaders
communicate through the created hierarchical structure
where agents collaborate to satisfy user job requirements
efficiently. The periodic availability checks can be fine-
toned to the system properties to minimize the number of
checks performed. This mainly relies on the stability of the
system used. If the system is stable and has low probability
of failures, then the period between checks can be set to be
long, thus reducing the total messages exchanged. How-
ever, if the system includes unreliable components or is
connected through unreliable communications links, the
period should be short enough to discover failures and
recover quickly to minimize job failures.

5.3 Leader Startup Protocol

This protocol is designed to assist in automating the startup
and configuration of leader agents. The outcome of this
protocol is to have leaders acquire full resource information
about their descendant agents (including virtual clusters)
and routing information about other leaders. In addition, all
agents within the same cluster (or virtual cluster) need to
have address information of their leader and that of one
another. Another important aspect of this protocol is that it
allows agents and leaders to be easily added to the system
with minimum user intervention. The protocol works as
follows:

1. The new leader, Lx, constructs an LAM with its
information and broadcasts it on the network.

2. On receiving LAM from Lx, a leader registers
received ID and address and sends LAAM to Lx.

3. On receiving the LAAM, Lx updates the address and
routing information.

4. Lx initializes the resource table to its local node’s
available resources and remotely starts accessible
agents on the cluster or networked system by
broadcasting an AAM.

5. On receiving the AAM from Lx, an agent starts up,
constructs an AMA, and sends it to Lx.

6. On receiving an AMA from an agent, Lx updates the
resources and routing information.

7. If the number of agents activated is higher than a
preset threshold, Lx activates one of the agents to be
a leader and assigns some of the agents as its
descendants. The new leader performs all the leader
operations for the agents under its control.

8. Step 7 is repeated as necessary to evenly distribute
agents and leaders to form a balanced hierarchical
structure of agents.

The success of this and other protocols and the proper
functionality of the agents rely on having a suitable naming
(identification) scheme for the agents. Many mechanisms
can be used; however, for the system to be scalable, the
naming scheme needs to be scalable also. One suitable
scheme is the hierarchical naming used for the Internet.
Here, the leaders on the top level of the hierarchy take a
common root name followed by each machine/cluster
name. The next levels use their leader’s name as a prefix
to their names. For example, assume that the structure
shown in Fig. 2 belongs to UNL and, then, the top-level
leaders can be UNL.L1, UNL.L2, and UNL.L3. Leader 4 is
then called UNL.L3.L4 and the agents under leader 2, for
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example, are called UNL.L2.A1, UNL.L2.A2, etc. Such a
scheme, while potentially complicated for a small system,
allows the system to systematically grow without any need
to change previously assigned names or the naming scheme
itself. This also allows agents to use the machines’ actual
Internet URLs as their names, thus allowing easy access
through the Internet. Adopting this scheme, however,
requires some form of neighbor discovery mechanism as
in IPv6 [14] to ensure the use of unique names for the
participating agents. In general, the overhead incurred in
constructing a hierarchical structure is relatively high, thus
it may not benefit a system with a small number of nodes.
However, it is essential in two environments:

1. The system is composed of multiple smaller
systems (clusters, NOW, multiprocessor machines,
etc.) that do not have full connectivity to all their
nodes. Thus, the head node in each subsystem is
assigned a leader that is responsible of connecting
it to other subsystems.

2. The system includes very large clusters comprising
tens/hundreds of nodes, thus accessing all nodes in
a linear fashion is very time consuming. Here, the
threshold needs to be selected to optimize the
utilization of the suitable structure. Analytical
models or experimental evaluations can be used to
select that value.

5.4 Leader Recovery Protocol

This protocol is used in case a leader fails to respond to an
AM message sent by another leader. If a leader Lx at one
level times out before receiving an AMA response from
another leader, say Ly, the following steps are taken by Lx

to try to recover from the problem.

1. Lx broadcasts the problem to all other leaders at the
same level using the LNRM and informs them that it
will try to solve the problem.

2. Lx pings the node/machine where Ly resides to see
if it is connected and up.

3. If the node is still up, then

a. Lx initiates a remote agent activation command
to reactivate the agent using the AAM and

b. when the new agent is up, Lx activates it as a
leader and sends it all relevant leader informa-
tion. The new leader, Ly, uses the startup
protocol to restore its information.

4. If the agent does not reinitialize (e.g., has been
deleted from the node) or the node does not respond
(e.g., has been powered off), then

a. if a connection exists to another node in the
cluster, Lx activates that node’s agent as a
leader. The new leader then assumes its new
role and updates its routing and resource
information using the startup protocol,

b. if no connection exists, Lx reports the problem to
the administrator and excludes all routing
information to the cluster led by Ly from the
routing tables. In addition, Lx informs all other
leaders of the changes to avoid the failed node.

Within the affected cluster, jobs that do not involve the
failed node continue normally. However, jobs involving the
failed node will fail unless they utilize their own fault
tolerance mechanisms. The protocol’s distributed nature
makes it possible for more than one leader to try to restore
the same failed leader. However, due to the asynchronous
execution of the recovery protocol, the probability of
multiple leaders simultaneously initiating the leader recov-
ery protocol is very low. In addition, a back off mechanism
can be devised so that a leader can decide whether to
continue the protocol or stop because another leader has
already started it. One possible approach is to use the leader
ID such that the leader with the higher ID proceeds with the
leader recovery protocol, while others stop. However, in
case more than one leader starts the protocol at the same
time, an active agent ignores new activation messages, thus
will not be affected by the duplication. Moreover, the
leaders will eventually receive the broadcast LNRM and
respond to it, resulting in all but one leader to terminate the
leader recovery protocol.

5.5 Agent Update Protocol

This protocol is used to report changes in the available
resources within a cluster or virtual cluster. The protocol is
triggered if one or more nodes (other than the head node) in
the cluster fail. When a leader Lx does not receive a
response from a descendant agent, then Lx

1. Pings the node of that agent to see if it is up and
running and still connected to the network.

2. If it is up, then Lx tries to remotely reactivate the
agent on that node using the AAM.

3. If the node does not respond, then Lx

a. reports the problem to the administrator,
b. excludes the node from the cluster or virtual

cluster,
c. updates the leader’s resources information, and
d. informs all other nodes on the cluster or virtual

cluster of the changes.
4. If the node is restored later, the agent on that node

informs the leader of its recovery and updates the
cluster and itself with the local routing information.

Jobs using the failed node will fail unless they utilize
their own fault tolerance mechanisms. In addition, the
protocol provides an automatic mechanism for new or
recovered nodes to be included back in the system. In this
case, the highest incurred cost comes from activating the
agent and updating the clusters information. Nevertheless,
this only occurs once per reactivated agent. In addition, the
overhead here is limited to the cluster or virtual cluster to
which the failed node belongs, thus it does not have any
effects on the rest of the system.

5.6 Agent Operations

With the hierarchical structure, the operations of the agents
are more organized and efficient compared to having a
linear structure where all nodes must see all other nodes at
all times. The hierarchical structure also utilizes automatic
startup and configuration mechanisms and dynamic agent
allocations that reduce user involvement. Although the
linear mode of operation is efficient with small clusters
because no overhead is imposed from the structure, with
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the hierarchical structure on large clusters, most agent
operations are performed in parallel resulting in faster
response times. The hierarchical structure also provides
other advantages such as:

1. providing scalable mechanisms to easily expand the
system,

2. providing the update and recovery mechanisms for
automatic detection of agent failures or change of
status/resources and techniques to report errors and
adapt to changes,

3. providing routing capabilities in the leaders to
facilitate process communications across multiple
platforms over multihop links, and

4. making the agents management and monitoring
operations more efficient and less dependant on the
full connectivity of the system.

6 AN EXAMPLE OF USING THE MIDDLEWARE

INFRASTRUCTURE

The middleware infrastructure is capable of supporting
different parallel programming models. An example of this
support is the implementation of the Java Object-Passing
Interface (JOPI) [23]. In addition, distributed applications
utilize this middleware infrastructure to facilitate their
operation. In this section, we discuss JOPI, which provides
APIs similar to MPI and facilitates information exchange
using objects. It utilizes the features provided by the
middleware, including the scheduling mechanisms, remote
deployment and execution of user classes, control of user
threads and available resources, and the security mechan-
isms. In addition, JOPI was designed such that processes
communicate directly with one another if all job threads are
directly connected. Otherwise, the threads utilize the
agents’ routing capabilities.

6.1 JOPI Applications Performance

Benchmark programs were written to evaluate the perfor-
mance of the system using JOPI. All experiments, unless
otherwise mentioned, were conducted on Sandhills, a
cluster of 24 Dual 1.2 GHz AMD-processor nodes, 256 KB
cache per processor, and 1 GB RAM per node. The cluster is
connected via a 100 Mbps Ethernet. For these experiments,
standard JVM sdk 1.3.1 was used.

6.1.1 The Agent Overhead

To test the agent overhead, Java programs were executed

independently (without the agent) and then through the

agent. The average execution time for both executions were

measured and compared. Currently, a small overhead

(around 0.37 percent) was found since the agent is very

lightweight. We assume that adding more functions to the

agent may introduce additional, but relatively minor delays.

In addition, the overhead is relatively independent from the

application, thus it will increase only as the number of

processors or machines used increases. The main reason for

this is that parallel applications utilize the middleware to

deploy and start execution, but then they execute indepen-

dently from the agents except in few special cases.

6.1.2 Traveling Salesman Problem (TSP)

The algorithm is based on branch-and-bound search [21].

This problem required using many of JOPI’s primitives to

implement an efficient load-balanced solution. Broadcast

was used to distribute the original problem object to

processes and to broadcast the minimum tour value found,

thus allowing other processes to update their minimum

value to speedup their search. Asynchronous communica-

tion is used by processes to overlap the reporting of their

results to the master with other tasks. The results, as shown

in Fig. 3, show good speedup with growing number of

processors and fixed problem size.

6.1.3 Experiments on Heterogeneous Platforms

These experiments show the capabilities of the middleware

to support the execution of parallel applications on

heterogeneous platforms with minimum user involvement.

All experiments used standard JVM sdk 1.3.1 on combina-

tions of the following platforms:

. CSNT: 3 CPUs, Intel x86 700MHz, 1.5GB RAM, OS:
Windows 2000 advanced server.

. RCF: SGI Origin 2000, 32 processors, 250 MHz, 4MB
cache, 8GB RAM, OS: IRIX 6.5.13.

. Sandhills: Cluster, 24 nodes, dual 1.2 MHz Ath-
lonMP, 256KB cache, 1GB RAM, OS: Linux.

To fairly compare the performance, the sequential

running time for the program was measured on each

platform. Speedup is calculated with respect to the fastest

sequential time in the configuration used. A more formal

model to calculate the performance of parallel applications

on heterogeneous systems can be found in [3].
Matrix Multiplication (MM). A dense matrix multi-

plication (MM) algorithm [17] is used with load balancing

mechanism and synchronous point-to-point communica-

tion. A matrix of size 1; 800� 1; 800 floating numbers was

used, with a stripe size of 300 rows or columns. The results

on Sandhills, RCF, and CSNT are listed in Table 1.
Traveling Salesman Problem (TSP). The algorithm used

is the same as in Section 6.1.2, using the machines CSNT

and Sandhills. TSP was executed for 22 cities using different

configurations of heterogeneous processors from Sandhills

and CSNT (see Table 2).
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6.2 Discussion

The infrastructure provides a platform for parallel Java
using JOPI, which achieves good performance. However,
JOPI, in its current form, is most suitable for applications
that have high computation to communication ratio or
coarse grain parallelism, but can be optimized to handle
finer grain parallelism. In addition, the varying specifica-
tions of the processors used indicate the possibility of
achieving more speedup and faster response times by
distributing tasks based on their suitability to the platform.
For example, if some tasks require excessive data sharing,
they can be assigned to a multiprocessor parallel machine,
while relatively independent tasks can be assigned to a
cluster. More detailed experiment results and comparisons
with MPI can be found in [23]. As described earlier, JOPI
utilizes the middleware infrastructure; however, the experi-
ments show that the agents impose a very small overhead
while providing efficient and flexible functions for JOPI. In
addition, the communication overhead incurred by the
agent occurs mostly with the initial deployment of the
application, which then relies on the programming model’s
implementation of the interprocess communication func-
tions. The agents also allow user jobs to be deployed and
executed on remote machines transparently, requiring no
user involvement other than specifying the number of
processors needed. This, in addition to Java’s portability,
has allowed easy utilization of multiple distributed plat-
forms of different specifications to execute a single parallel
application.

7 CONCLUSION AND FUTURE WORK

The middleware infrastructure provides services to support
the development of high-performance parallel and distrib-
uted Java applications on clusters and heterogeneous
systems. The distributed agents collectively form the
middleware infrastructure that supports different parallel
programming models, in addition to distributed applica-
tions. The middleware provides APIs that enable program-
ming models developers to build different parallel
programming models and tools. In addition, the middle-
ware allows the distributed/parallel application developers
to build, deploy, monitor, and control their applications,
which can be written using the middleware directly or the
programming models provided on top of it. Some of the

main advantages of using distributed agents and the

hierarchical structure are:

1. Portability: The system is fully portable, allowing it
to support seamless execution of parallel applica-
tions across different multiple platforms. Here, the
agents distribute user processes to remote machines,
deploy them remotely as threads, monitor their
progress, and allow users to manage and control
their applications.

2. Expandability: The hierarchical structure allows
easy additions/removals of agents from the system
transparently from the programming models and
applications.

3. Flexibility: It is easy to modify or replace the systems
components such as the scheduler and deployment
mechanisms, and add more features such as fault
tolerance and resource discovery without requiring
changes to the applications or the programming
models. The programming model implemented
using the middleware is also free to utilize some or
all of the functions provided by the middleware,
while utilizing its own specialized functions as well.

4. Security: The agent’s security module and its
support for different execution modes provide the
user applications with different levels of access to
the machines used. Thus, limiting the ability of
malicious processes to damage or disrupt the system
resources (e.g., manipulating files, executing re-
stricted system calls, etc.) or other users jobs. In
addition, this module can be further enhanced to
support policy driven security measures defined by
the users/administrators and implemented at the
middleware level to enforce the required authentica-
tion, authorization, and access controls.

5. Resource Management: Agents, collectively, have
information about all the resources, which provides
a distributed information base of system resources.
Thus, they can collaborate to provide efficient and
comprehensive resource discovery and management
tools.

An additional unique feature in the system is the

preservation of the compatibility with available JVMs and

the layered approach that separates the programming

models from the runtime support services. Furthermore,

the framework for a hierarchical organization of agents
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provides efficient agent communications and operations,
while the startup mechanisms automate the configuration
of agents and allow easy expansions.

The experiments conducted show that the system per-
forms well. However, there are numerous opportunities for
enhancing the utilization of resources and quality of service
for high-performance Java through the cooperation and
coordination among agents. These could be dynamic
resource discovery and recovery modules, collaborative
garbage collection, and sophisticated dynamic scheduling
mechanisms for user threads. Additional functions can also
be integrated to the infrastructure such as fault tolerance
and dynamic load balancing. In addition, we are working
on developing a distributed shared Java object space based
on this infrastructure.
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