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Abstract

This paper introduces a novel generation

system that composes humanlike descrip-

tions of images from computer vision de-

tections. By leveraging syntactically in-

formed word co-occurrence statistics, the

generator filters and constrains the noisy

detections output from a vision system to

generate syntactic trees that detail what

the computer vision system sees. Results

show that the generation system outper-

forms state-of-the-art systems, automati-

cally generating some of the most natural

image descriptions to date.

1 Introduction

It is becoming a real possibility for intelligent sys-

tems to talk about the visual world. New ways of

mapping computer vision to generated language

have emerged in the past few years, with a fo-

cus on pairing detections in an image to words

(Farhadi et al., 2010; Li et al., 2011; Kulkarni et

al., 2011; Yang et al., 2011). The goal in connect-

ing vision to language has varied: systems have

started producing language that is descriptive and

poetic (Li et al., 2011), summaries that add con-

tent where the computer vision system does not

(Yang et al., 2011), and captions copied directly

from other images that are globally (Farhadi et al.,

2010) and locally similar (Ordonez et al., 2011).

A commonality between all of these ap-

proaches is that they aim to produce natural-

sounding descriptions from computer vision de-

tections. This commonality is our starting point:

We aim to design a system capable of producing

natural-sounding descriptions from computer vi-

sion detections that are flexible enough to become

more descriptive and poetic, or include likely in-

The bus by the road with a clear blue sky

Figure 1: Example image with generated description.

formation from a language model, or to be short

and simple, but as true to the image as possible.

Rather than using a fixed template capable of

generating one kind of utterance, our approach

therefore lies in generating syntactic trees. We

use a tree-generating process (Section 4.3) simi-

lar to a Tree Substitution Grammar, but preserv-

ing some of the idiosyncrasies of the Penn Tree-

bank syntax (Marcus et al., 1995) on which most

statistical parsers are developed. This allows us

to automatically parse and train on an unlimited

amount of text, creating data-driven models that

flesh out descriptions around detected objects in a

principled way, based on what is both likely and

syntactically well-formed.

An example generated description is given in

Figure 1, and example vision output/natural lan-

guage generation (NLG) input is given in Fig-

ure 2. The system (“Midge”) generates descrip-

tions in present-tense, declarative phrases, as a

naı̈ve viewer without prior knowledge of the pho-

tograph’s content.1

Midge is built using the following approach:

An image processed by computer vision algo-

rithms can be characterized as a triple <Ai, Bi,

Ci>, where:

1Midge is available to try online at:

http://recognition.cs.stonybrook.edu:8080/˜mitchema/midge/.



stuff: sky .999

id: 1

atts: clear:0.432, blue:0.945

grey:0.853, white:0.501 ...

b. box: (1,1 440,141)

stuff: road .908

id: 2

atts: wooden:0.722 clear:0.020 ...

b. box: (1,236 188,94)

object: bus .307

id: 3

atts: black:0.872, red:0.244 ...

b. box: (38,38 366,293)

preps: id 1, id 2: by id 1, id 3: by id 2, id 3: below

Figure 2: Example computer vision output and natu-

ral language generation input. Values correspond to

scores from the vision detections.

• Ai is the set of object/stuff detections with

bounding boxes and associated “attribute”

detections within those bounding boxes.

• Bi is the set of action or pose detections as-

sociated to each ai ∈ Ai.

• Ci is the set of spatial relationships that hold

between the bounding boxes of each pair

ai, aj ∈ Ai.

Similarly, a description of an image can be char-

acterized as a triple <Ad, Bd, Cd> where:

• Ad is the set of nouns in the description with

associated modifiers.

• Bd is the set of verbs associated to each ad ∈
Ad.

• Cd is the set of prepositions that hold be-

tween each pair of ad, ae ∈ Ad.

With this representation, mapping <Ai, Bi, Ci>

to <Ad, Bd, Cd> is trivial. The problem then

becomes: (1) How to filter out detections that

are wrong; (2) how to order the objects so that

they are mentioned in a natural way; (3) how to

connect these ordered objects within a syntacti-

cally/semantically well-formed tree; and (4) how

to add further descriptive information from lan-

guage modeling alone, if required.

Our solution lies in using Ai and Ad as descrip-

tion anchors. In computer vision, object detec-

tions form the basis of action/pose, attribute, and

spatial relationship detections; therefore, in our

approach to language generation, nouns for the

object detections are used as the basis for the de-

scription. Likelihood estimates of syntactic struc-

ture and word co-occurrence are conditioned on

object nouns, and this enables each noun head in

a description to select for the kinds of structures it

tends to appear in (syntactic constraints) and the

other words it tends to occur with (semantic con-

straints). This is a data-driven way to generate

likely adjectives, prepositions, determiners, etc.,

taking the intersection of what the vision system

predicts and how the object noun tends to be de-

scribed.

2 Background

Our approach to describing images starts with

a system from Kulkarni et al. (2011) that com-

poses novel captions for images in the PASCAL

sentence data set,2 introduced in Rashtchian et

al. (2010). This provides multiple object detec-

tions based on Felzenszwalb’s mixtures of multi-

scale deformable parts models (Felzenszwalb et

al., 2008), and stuff detections (roughly, mass

nouns, things like sky and grass) based on linear

SVMs for low level region features.

Appearance characteristics are predicted using

trained detectors for colors, shapes, textures, and

materials, an idea originally introduced in Farhadi

et al. (2009). Local texture, Histograms of Ori-

ented Gradients (HOG) (Dalal and Triggs, 2005),

edge, and color descriptors inside the bounding

box of a recognized object are binned into his-

tograms for a vision system to learn to recognize

when an object is rectangular, wooden, metal,

etc. Finally, simple preposition functions are used

to compute the spatial relations between objects

based on their bounding boxes.

The original Kulkarni et al. (2011) system gen-

erates descriptions with a template, filling in slots

by combining computer vision outputs with text

based statistics in a conditional random field to

predict the most likely image labeling. Template-

based generation is also used in the recent Yang et

al. (2011) system, which fills in likely verbs and

prepositions by dependency parsing the human-

written UIUC Pascal-VOC dataset (Farhadi et al.,

2010) and selecting the dependent/head relation

with the highest log likelihood ratio.

Template-based generation is useful for auto-

matically generating consistent sentences, how-

ever, if the goal is to vary or add to the text pro-

duced, it may be suboptimal (cf. Reiter and Dale

(1997)). Work that does not use template-based

generation includes Yao et al. (2010), who gener-

ate syntactic trees, similar to the approach in this

2http://vision.cs.uiuc.edu/pascal-sentences/



Kulkarni et al.: This is a pic-

ture of three persons, one bot-

tle and one diningtable. The

first rusty person is beside the

second person. The rusty bot-

tle is near the first rusty per-

son, and within the colorful

diningtable. The second per-

son is by the third rusty per-

son. The colorful diningtable

is near the first rusty person,

and near the second person,

and near the third rusty person.

Kulkarni et al.: This is

a picture of two potted-

plants, one dog and one

person. The black dog is

by the black person, and

near the second feathered

pottedplant.

Yang et al.: Three people

are showing the bottle on the

street

Yang et al.: The person is

sitting in the chair in the

room

Midge: people with a bottle at

the table

Midge: a person in black

with a black dog by potted

plants

Figure 3: Descriptions generated by Midge, Kulkarni

et al. (2011) and Yang et al. (2011) on the same images.

Midge uses the Kulkarni et al. (2011) front-end, and so

outputs are directly comparable.

paper. However, their system is not automatic, re-

quiring extensive hand-coded semantic and syn-

tactic details. Another approach is provided in

Li et al. (2011), who use image detections to se-

lect and combine web-scale n-grams (Brants and

Franz, 2006). This automatically generates de-

scriptions that are either poetic or strange (e.g.,

“tree snowing black train”).

A different line of work transfers captions of

similar images directly to a query image. Farhadi

et al. (2010) use <object,action,scene> triples

predicted from the visual characteristics of the

image to find potential captions. Ordonez et al.

(2011) use global image matching with local re-

ordering from a much larger set of captioned pho-

tographs. These transfer-based approaches result

in natural captions (they are written by humans)

that may not actually be true of the image.

This work learns and builds from these ap-

proaches. Following Kulkarni et al. and Li et al.,

the system uses large-scale text corpora to esti-

mate likely words around object detections. Fol-

lowing Yang et al., the system can hallucinate

likely words using word co-occurrence statistics

alone. And following Yao et al., the system aims

black, blue, brown, colorful, golden, gray,

green, orange, pink, red, silver, white, yel-

low, bare, clear, cute, dirty, feathered, flying,

furry, pine, plastic, rectangular, rusty, shiny,

spotted, striped, wooden

Table 1: Modifiers used to extract training corpus.

for naturally varied but well-formed text, generat-

ing syntactic trees rather than filling in a template.

In addition to these tasks, Midge automatically

decides what the subject and objects of the de-

scription will be, leverages the collected word co-

occurrence statistics to filter possible incorrect de-

tections, and offers the flexibility to be as de-

scriptive or as terse as possible, specified by the

user at run-time. The end result is a fully au-

tomatic vision-to-language system that is begin-

ning to generate syntactically and semantically

well-formed descriptions with naturalistic varia-

tion. Example descriptions are given in Figures 4

and 5, and descriptions from other recent systems

are given in Figure 3.

The results are promising, but it is important to

note that Midge is a first-pass system through the

steps necessary to connect vision to language at

a deep syntactic/semantic level. As such, it uses

basic solutions at each stage of the process, which

may be improved: Midge serves as an illustration

of the types of issues that should be handled to

automatically generate syntactic trees from vision

detections, and offers some possible solutions. It

is evaluated against the Kulkarni et al. system, the

Yang et al. system, and human-written descrip-

tions on the same set of images in Section 5, and

is found to significantly outperform the automatic

systems.

3 Learning from Descriptive Text

To train our system on how people describe im-

ages, we use 700,000 (Flickr, 2011) images with

associated descriptions from the dataset in Or-

donez et al. (2011). This is separate from our

evaluation image set, consisting of 840 PASCAL

images. The Flickr data is messier than datasets

created specifically for vision training, but pro-

vides the largest corpus of natural descriptions of

images to date.

We normalize the text by removing emoticons

and mark-up language, and parse each caption

using the Berkeley parser (Petrov, 2010). Once

parsed, we can extract syntactic information for

individual (word, tag) pairs.



a cow with sheep with a gray sky people with boats a brown cow people at
green grass by the road a wooden table

Figure 4: Example generated outputs.

Awkward Prepositions Incorrect Detections

a person boats under a black bicycle at the sky a yellow bus cows by black sheep
on the dog the sky a green potted plant with people by the road

Figure 5: Example generated outputs: Not quite right

We compute the probabilities for different

prenominal modifiers (shiny, clear, glowing, ...)

and determiners (a/an, the, None, ...) given a

head noun in a noun phrase (NP), as well as the

probabilities for each head noun in larger con-

structions, listed in Section 4.3. Probabilities are

conditioned only on open-class words, specifi-

cally, nouns and verbs. This means that a closed-

class word (such as a preposition) is never used to

generate an open-class word.

In addition to co-occurrence statistics, the

parsed Flickr data adds to our understanding of

the basic characteristics of visually descriptive

text. Using WordNet (Miller, 1995) to automati-

cally determine whether a head noun is a physical

object or not, we find that 92% of the sentences

have no more than 3 physical objects. This in-

forms generation by placing a cap on how many

objects are mentioned in each descriptive sen-

tence: When more than 3 objects are detected,

the system splits the description over several sen-

tences. We also find that many of the descriptions

are not sentences as well (tagged as S, 58% of the

data), but quite commonly noun phrases (tagged

as NP, 28% of the data), and expect that the num-

ber of noun phrases that form descriptions will be

much higher with domain adaptation. This also

informs generation, and the system is capable of

generating both sentences (contains a main verb)

and noun phrases (no main verb) in the final im-

age description. We use the term ‘sentence’ in the

rest of this paper to refer to both kinds of complex

phrases.

4 Generation

Following Penn Treebank parsing guidelines

(Marcus et al., 1995), the relationship between

two head nouns in a sentence can usually be char-

acterized among the following:

1. prepositional (a boy on the table)

2. verbal (a boy cleans the table)

3. verb with preposition (a boy sits on the table)

4. verb with particle (a boy cleans up the table)

5. verb with S or SBAR complement (a boy

sees that the table is clean)

The generation system focuses on the first three

kinds of relationships, which capture a wide range

of utterances. The process of generation is ap-

proached as a problem of generating a semanti-

cally and syntactically well-formed tree based on

object nouns. These serve as head noun anchors

in a lexicalized syntactic derivation process that

we call tree growth.

Vision detections are associated to a {tag

word} pair, and the model fleshes out the tree de-

tails around head noun anchors by utilizing syn-

tactic dependencies between words learned from

the Flickr data discussed in Section 3. The anal-

ogy of growing a tree is quite appropriate here,

where nouns are bundles of constraints akin to

seeds, giving rise to the rest of the tree based on

the lexicalized subtrees in which the nouns are

likely to occur. An example generated tree struc-

ture is shown in Figure 6, with noun anchors in

bold.



NP

PP

NP

NN

table

DT

the

IN

at

NP

PP

NP

NN

bottle

DT

a

IN

with

NP

NN

people

DT

-

Figure 6: Tree generated from tree growth process.

Midge was developed using detections run on

Flickr images, incorporating action/pose detec-

tions for verbs as well as object detections for

nouns. In testing, we generate descriptions for

the PASCAL images, which have been used in

earlier work on the vision-to-language connection

(Kulkarni et al., 2011; Yang et al., 2011), and al-

lows us to compare systems directly. Action and

pose detection for this data set still does not work

well, and so the system does not receive these de-

tections from the vision front-end. However, the

system can still generate verbs when action and

pose detectors have been run, and this framework

allows the system to “hallucinate” likely verbal

constructions between objects if specified at run-

time. A similar approach was taken in Yang et al.

(2011). Some examples are given in Figure 7.

We follow a three-tiered generation process

(Reiter and Dale, 2000), utilizing content determi-

nation to first cluster and order the object nouns,

create their local subtrees, and filter incorrect de-

tections; microplanning to construct full syntactic

trees around the noun clusters, and surface real-

ization to order selected modifiers, realize them as

postnominal or prenominal, and select final out-

puts. The system follows an overgenerate-and-

select approach (Langkilde and Knight, 1998),

which allows different final trees to be selected

with different settings.

4.1 Knowledge Base

Midge uses a knowledge base that stores models

for different tasks during generation. These mod-

els are primarily data-driven, but we also include

a hand-built component to handle a small set of

rules. The data-driven component provides the

syntactically informed word co-occurrence statis-

tics learned from the Flickr data, a model for or-

dering the selected nouns in a sentence, and a

model to change computer vision attributes to at-

tribute:value pairs. Below, we discuss the three

main data-driven models within the generation

Unordered Ordered

bottle, table, person → person, bottle, table

road, sky, cow → cow, road, sky

Figure 8: Example nominal orderings.

pipeline. The hand-built component contains plu-

ral forms of singular nouns, the list of possible

spatial relations shown in Table 3, and a map-

ping between attribute values and modifier sur-

face forms (e.g., a green detection for person is to

be realized as the postnominal modifier in green).

4.2 Content Determination

4.2.1 Step 1: Group the Nouns

An initial set of object detections must first be

split into clusters that give rise to different sen-

tences. If more than 3 objects are detected in the

image, the system begins splitting these into dif-

ferent noun groups. In future work, we aim to

compare principled approaches to this task, e.g.,

using mutual information to cluster similar nouns

together. The current system randomizes which

nouns appear together.

4.2.2 Step 2: Order the Nouns

Each group of nouns are then ordered to deter-

mine when they are mentioned in a sentence. Be-

cause the system generates declarative sentences,

this automatically determines the subject and ob-

jects. This is a novel contribution for a general

problem in NLG, and initial evaluation (Section

5) suggests it works reasonably well.

To build the nominal ordering model, we use

WordNet to associate all head nouns in the Flickr

data to all of their hypernyms. A description is

represented as an ordered set [a1...an] where each

ap is a noun with position p in the set of head

nouns in the sentence. For the position pi of each

hypernym ha in each sentence with n head nouns,

we estimate p(pi|n, ha).
During generation, the system greedily maxi-

mizes p(pi|n, ha) until all nouns have been or-

dered. Example orderings are shown in Figure 8.

This model automatically places animate objects

near the beginning of a sentence, which follows

psycholinguistic work in object naming (Branigan

et al., 2007).

4.2.3 Step 3: Filter Incorrect Attributes

For the system to be able to extend coverage as

new computer vision attribute detections become

available, we develop a method to automatically



A person sitting on a sofa Cows grazing Airplanes flying A person walking a dog

Figure 7: Hallucinating: Creating likely actions. Straightforward to do, but can often be wrong.

COLOR purple blue green red white ...

MATERIAL plastic wooden silver ...

SURFACE furry fluffy hard soft ...

QUALITY shiny rust dirty broken ...

Table 2: Example attribute classes and values.

group adjectives into broader attribute classes,3

and the generation system uses these classes when

deciding how to describe objects. To group adjec-

tives, we use a bootstrapping technique (Kozareva

et al., 2008) that learns which adjectives tend to

co-occur, and groups these together to form an at-

tribute class. Co-occurrence is computed using

cosine (distributional) similarity between adjec-

tives, considering adjacent nouns as context (i.e.,

JJ NN constructions). Contexts (nouns) for adjec-

tives are weighted using Pointwise Mutual Infor-

mation and only the top 1000 nouns are selected

for every adjective. Some of the learned attribute

classes are given in Table 2.

In the Flickr corpus, we find that each attribute

(COLOR, SIZE, etc.), rarely has more than a single

value in the description, with the most common

(COLOR) co-occurring less than 2% of the time.

Midge enforces this idea to select the most likely

word v for each attribute from the detections. In

a noun phrase headed by an object noun, NP{NN

noun}, the prenominal adjective (JJ v) for each

attribute is selected using maximum likelihood.

4.2.4 Step 4: Group Plurals

How to generate natural-sounding spatial rela-

tions and modifiers for a set of objects, as opposed

to a single object, is still an open problem (Fu-

nakoshi et al., 2004; Gatt, 2006). In this work, we

use a simple method to group all same-type ob-

jects together, associate them to the plural form

listed in the KB, discard the modifiers, and re-

turn spatial relations based on the first recognized

member of the group.

3What in computer vision are called attributes are called

values in NLG. A value like red belongs to a COLOR at-

tribute, and we use this distinction in the system.

4.2.5 Step 5: Gather Local Subtrees Around

Object Nouns

1 2

NP

NN

n

JJ* ↓DT{0,1} ↓ S

VP{VBZ} ↓NP{NN n}

3 4

NP

VP{VB(G|N)} ↓NP{NN n}

NP

PP{IN} ↓NP{NN n}

5 6

PP

NP{NN n}IN ↓

VP

PP{IN} ↓VB(G|N|Z) ↓

7

VP

NP{NN n}VB(G|N|Z) ↓

Figure 9: Initial subtree frames for generation, present-

tense declarative phrases. Each noun n selects for the

words that co-occur with it within the given subtree

frames. ↓ marks a substitution site, * marks ≥ 0 sis-

ter nodes of this type permitted, {0,1} marks that this

node can be included of excluded.

Input: set of ordered nouns, Output: trees preserving

nominal ordering.

Possible actions/poses and spatial relationships

between objects nouns, represented by verbs and

prepositions, are selected using the subtree frames

listed in Figure 9. Each head noun selects for its

likely local subtrees, some of which are not fully

formed until the Microplanning stage. As an ex-

ample of how this process works, see Figure 10,

which illustrates the combination of Trees 4 and

5. For simplicity, we do not include the selection

of further subtrees. The subject noun duck se-

lects for prepositional phrases headed by different

prepositions, and the object noun grass selects

for prepositions that head the prepositional phrase

in which it is embedded. Full PP subtrees are cre-

ated during Microplanning by taking the intersec-

tion of both.

The leftmost noun in each ordered noun se-

quence is given a rightward directionality con-

straint, placing it as the subject of the sentence,



a over b a above b b below a b beneath a a by b b by a a on b b under a

b underneath a a upon b a over b

a by b a against b b against a b around a a around b a at b b at a a beside b

b beside a a by b b by a a near b b near a b with a a with b

a in b a in b b outside a a within b a by b b by a

Table 3: Possible prepositions from bounding boxes.

Subtree frames:
NP

PP{IN} ↓NP{NN n1}

PP

NP{NN n2}IN ↓

Generated subtrees:
NP

PP

IN

above, on, by

NP

NN

duck

PP

NP

NN

grass

IN

on, by, over

Combined trees:
NP

PP

NP

NN

grass

IN

on

NP

NN

duck

NP

PP

NP

NN

grass

IN

by

NP

NN

duck

Figure 10: Example derivation.

and so it will only select for trees that expand to

the right. The rightmost noun is given a leftward

directionality constraint, placing it as an object,

and so it will only select for trees that expand to

its left. The noun in the middle, if there is one,

selects for all its local subtrees, combining first

with a noun to its right or to its left. We now

walk through the derivation process for each of

the listed subtree frames. Because we are follow-

ing an overgenerate-and-select approach, all com-

binations above a probability threshold α and an

observation cutoff γ are created.

Tree 1:

Collect all NP → (DT det) (JJ adj)* (NN noun)

and NP → (JJ adj)* (NN noun) subtrees, where:

• p((JJ adj)|(NN noun)) > α for each adj

• p((DT det)|JJ, (NN noun)) > α, and the proba-

bility of a determiner for the head noun is higher

than the probability of no determiner.

Any number of adjectives (including none) may

be generated, and we include the presence or ab-

sence of an adjective when calculating which de-

terminer to include.

The reasoning behind the generation of these

subtrees is to automatically learn whether to treat

a given noun as a mass or count noun (not taking a

determiner or taking a determiner, respectively) or

as a given or new noun (phrases like a sky sound

unnatural because sky is given knowledge, requir-

ing the definite article the). The selection of de-

terminer is not independent of the selection of ad-

jective; a sky may sound unnatural, but a blue sky

is fine. These trees take the dependency between

determiner and adjective into account.

Trees 2 and 3:

Collect beginnings of VP subtrees headed by

(VBZ verb), (VBG verb), and (VBN verb), no-

tated here as VP{VBX verb}, where:

• p(VP{VBX verb}|NP{NN noun}=SUBJ) > α

Tree 4:

Collect beginnings of PP subtrees headed by (IN

prep), where:

• p(PP{IN prep}|NP{NN noun}=SUBJ) > α

Tree 5:

Collect PP subtrees headed by (IN prep) with

NP complements (OBJ) headed by (NN noun),

where:

• p(PP{IN prep}|NP{NN noun}=OBJ) > α

Tree 6:

Collect VP subtrees headed by (VBX verb) with

embedded PP complements, where:

• p(PP{IN prep}|VP{VBX verb}=SUBJ) > α

Tree 7:

Collect VP subtrees headed by (VBX verb) with

embedded NP objects, where:

• p(VP{VBX verb}|NP{NN noun}=OBJ) > α

4.3 Microplanning

4.3.1 Step 6: Create Full Trees

In Microplanning, full trees are created by tak-

ing the intersection of the subtrees created in Con-

tent Determination. Because the nouns are or-

dered, it is straightforward to combine the sub-

trees surrounding a noun in position 1 with sub-

trees surrounding a noun in position 2. Two



VP

VP* ↓

NP

NP ↓CC

and

NP ↓

Figure 11: Auxiliary trees for generation.

further trees are necessary to allow the subtrees

gathered to combine within the Penn Treebank

syntax. These are given in Figure 11. If two

nouns in a proposed sentence cannot be combined

with prepositions or verbs, we backoff to combine

them using (CC and).

Stepping through this process, all nouns will

have a set of subtrees selected by Tree 1. Prepo-

sitional relationships between nouns are created

by substituting Tree 1 subtrees into the NP nodes

of Trees 4 and 5, as shown in Figure 10. Verbal

relationships between nouns are created by substi-

tuting Tree 1 subtrees into Trees 2, 3, and 7. Verb

with preposition relationships are created between

nouns by substituting the VBX node in Tree 6

with the corresponding node in Trees 2 and 3 to

grow the tree to the right, and the PP node in Tree

6 with the corresponding node in Tree 5 to grow

the tree to the left. Generation of a full tree stops

when all nouns in a group are dominated by the

same node, either an S or NP.

4.4 Surface Realization

In the surface realization stage, the system se-

lects a single tree from the generated set of pos-

sible trees and removes mark-up to produce a fi-

nal string. This is also the stage where punctua-

tion may be added. Different strings may be gen-

erated depending on different specifications from

the user, as discussed at the beginning of Section

4 and shown in the online demo. To evaluate the

system against other systems, we specify that the

system should (1) not hallucinate likely verbs; and

(2) return the longest string possible.

4.4.1 Step 7: Get Final Tree, Clear Mark-Up

We explored two methods for selecting a final

string. In one method, a trigram language model

built using the Europarl (Koehn, 2005) data with

start/end symbols returns the highest-scoring de-

scription (normalizing for length). In the second

method, we limit the generation system to select

the most likely closed-class words (determiners,

prepositions) while building the subtrees, over-

generating all possible adjective combinations.

The final string is then the one with the most

words. We find that the second method produces

descriptions that seem more natural and varied

than the n-gram ranking method for our develop-

ment set, and so use the longest string method in

evaluation.

4.4.2 Step 8: Prenominal Modifier Ordering

To order sets of selected adjectives, we use the

top-scoring prenominal modifier ordering model

discussed in Mitchell et al. (2011). This is an n-

gram model constructed over noun phrases that

were extracted from an automatically parsed ver-

sion of the New York Times portion of the Giga-

word corpus (Graff and Cieri, 2003). With this

in place, blue clear sky becomes clear blue sky,

wooden brown table becomes brown wooden ta-

ble, etc.

5 Evaluation

Each set of sentences is generated with α (likeli-

hood cutoff) set to .01 and γ (observation count

cutoff) set to 3. We compare the system against

human-written descriptions and two state-of-the-

art vision-to-language systems, the Kulkarni et al.

(2011) and Yang et al. (2011) systems.

Human judgments were collected using Ama-

zon’s Mechanical Turk (Amazon, 2011). We

follow recommended practices for evaluating an

NLG system (Reiter and Belz, 2009) and for run-

ning a study on Mechanical Turk (Callison-Burch

and Dredze, 2010), using a balanced design with

each subject rating 3 descriptions from each sys-

tem. Subjects rated their level of agreement on

a 5-point Likert scale including a neutral mid-

dle position, and since quality ratings are ordinal

(points are not necessarily equidistant), we evalu-

ate responses using a non-parametric test. Partici-

pants that took less than 3 minutes to answer all 60

questions and did not include a humanlike rating

for at least 1 of the 3 human-written descriptions

were removed and replaced. It is important to note

that this evaluation compares full generation sys-

tems; many factors are at play in each system that

may also influence participants’ perception, e.g.,

sentence length (Napoles et al., 2011) and punc-

tuation decisions.

The systems are evaluated on a set of 840

images evaluated in the original Kulkarni et al.

(2011) system. Participants were asked to judge

the statements given in Figure 12, from Strongly

Disagree to Strongly Agree.



Grammaticality Main Aspects Correctness Order Humanlikeness

Human 4 (3.77, 1.19) 4 (4.09, 0.97) 4 (3.81, 1.11) 4 (3.88, 1.05) 4 (3.88, 0.96)

Midge 3 (2.95, 1.42) 3 (2.86, 1.35) 3 (2.95, 1.34) 3 (2.92, 1.25) 3 (3.16, 1.17)

Kulkarni et al. 2011 3 (2.83, 1.37) 3 (2.84, 1.33) 3 (2.76, 1.34) 3 (2.78, 1.23) 3 (3.13, 1.23)

Yang et al. 2011 3 (2.95, 1.49) 2 (2.31, 1.30) 2 (2.46, 1.36) 2 (2.53, 1.26) 3 (2.97, 1.23)

Table 4: Median scores for systems, mean and standard deviation in parentheses. Distance between points on the

rating scale cannot be assumed to be equidistant, and so we analyze results using a non-parametric test.

GRAMMATICALITY:

This description is grammatically correct.

MAIN ASPECTS:

This description describes the main aspects of this

image.

CORRECTNESS:

This description does not include extraneous or in-

correct information.

ORDER:

The objects described are mentioned in a reasonable

order.

HUMANLIKENESS:

It sounds like a person wrote this description.

Figure 12: Mechanical Turk prompts.

We report the scores for the systems in Table

4. Results are analyzed using the non-parametric

Wilcoxon Signed-Rank test, which uses median

values to compare the different systems. Midge

outperforms all recent automatic approaches on

CORRECTNESS and ORDER, and Yang et al. ad-

ditionally on HUMANLIKENESS and MAIN AS-

PECTS. Differences between Midge and Kulkarni

et al. are significant at p < .01; Midge and Yang et

al. at p < .001. For all metrics, human-written de-

scriptions still outperform automatic approaches

(p < .001).

These findings are striking, particularly be-

cause Midge uses the same input as the Kulka-

rni et al. system. Using syntactically informed

word co-occurrence statistics from a large corpus

of descriptive text improves over state-of-the-art,

allowing syntactic trees to be generated that cap-

ture the variation of natural language.

6 Discussion

Midge automatically generates language that is as

good as or better than template-based systems,

tying vision to language at a syntactic/semantic

level to produce natural language descriptions.

Results are promising, but, there is more work to

be done: Evaluators can still tell a difference be-

tween human-written descriptions and automati-

cally generated descriptions.

Improvements to the generated language are

possible at both the vision side and the language

side. On the computer vision side, incorrect ob-

jects are often detected and salient objects are of-

ten missed. Midge does not yet screen out un-

likely objects or add likely objects, and so pro-

vides no filter for this. On the language side, like-

lihood is estimated directly, and the system pri-

marily uses simple maximum likelihood estima-

tions to combine subtrees. The descriptive cor-

pus that informs the system is not parsed with

a domain-adapted parser; with this in place, the

syntactic constructions that Midge learns will bet-

ter reflect the constructions that people use.

In future work, we hope to address these issues

as well as advance the syntactic derivation pro-

cess, providing an adjunction operation (for ex-

ample, to add likely adjectives or adverbs based

on language alone). We would also like to incor-

porate meta-data – even when no vision detection

fires for an image, the system may be able to gen-

erate descriptions of the time and place where an

image was taken based on the image file alone.

7 Conclusion

We have introduced a generation system that uses

a new approach to generating language, tying a

syntactic model to computer vision detections.

Midge generates a well-formed description of an

image by filtering attribute detections that are un-

likely and placing objects into an ordered syntac-

tic structure. Humans judge Midge’s output to be

the most natural descriptions of images generated

thus far. The methods described here are promis-

ing for generating natural language descriptions

of the visual world, and we hope to expand and

refine the system to capture further linguistic phe-

nomena.
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