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Abstract

Due to the ubiquitous presence of missing values (MVs) in real-world datasets, the MV

imputation problem, aiming to recover MVs, is an important and fundamental data pre-

processing step for various data analytics and mining tasks to effectively achieve good

performance. To impute MVs, a typical idea is to explore the correlations amongst

the attributes of the data. However, those correlations are usually complex and thus

difficult to identify. Accordingly, we develop a new deep learning model called MIss-

ing Data Imputation denoising Autoencoder (MIDIA) that effectively imputes the

MVs in a given dataset by exploring non-linear correlations between missing values

and non-missing values. Additionally, by considering various data missing patterns,

we propose two effective MV imputation approaches based on the proposed MIDIA

model, namely MIDIA-Sequential and MIDIA-Batch. MIDIA-Sequential imputes the

MVs attribute-by-attribute sequentially by training an independent MIDIA model for

each incomplete attribute. By contrast, MIDIA-Batch imputes the MVs in one batch

by training a uniform MIDIA model. Finally, we evaluate the proposed approaches by

experimentation in comparison with existing MV imputation algorithms. The exper-

imental results demonstrate that both MIDIA-Sequential and MIDIA-Batch achieve

significantly higher imputation accuracy compared with existing solutions, and the

proposed approaches are capable of handling various data missing patterns and data

types. Specifically, MIDIA-Sequential performs better than MIDIA-Batch for data

with monotone missing pattern, while MIDIA-Batch performs better than MIDIA-

Sequential for data with general missing pattern.
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1 Introduction

Due to various uncontrollable factors, e.g., hardware failure, unconscious malfunc-

tion, participants refusal, etc, missing values (MVs) widely exist in various kinds of

real-world datasets, e.g., medical datasets, microarray gene datsets, survey datasets

and sensing datasets. To many algorithms employed in data analytics, data mining and

machine learning (Gharibshah et al. 2020; Dong et al. 2014), data integrity is a pre-

requisite due to the incompetence of these algorithms in handling datasets with MVs.

Moreover, the existence of MVs resulting in information loss, may cause performance

degradation of the employed algorithms (Anagnostopoulos and Triantafillou 2014).

Therefore, the critical task of missing value imputation (MV imputation), aiming to

replace the MVs with some plausible estimations, attracts much research attention

from the academia and industry.

Over years, various MV imputation methods have been proposed. Several existing

works propose to estimate the missing value on an attribute of a data record by taking a

weighted mean of values on the same attribute of some similar data records, e.g., hot-

deck imputation (Andridge and Little 2010; Joenssen and Bankhofer 2012) and kNN

imputation (Aittokallio 2010; Zhang 2008), which define some similarity functions and

impute MVs by top-k similar data records. However, determining a proper similarity

function and a suitable size of similar record set are very difficult. In a different line of

research on MV imputation, some existing methods explore the correlations amongst

attributes of the same data record. Among them, owing to the low computational cost,

linear regression model (Wang and Rao 2002a) is often proposed to impute MVs by

modeling linear correlations between incomplete attributes (attributes with MVs) and

complete attributes (attributes without MVs). Nevertheless, the correlations amongst

attributes in real-world datasets may be complex and hard to capture precisely using

a linear model, e.g., a strong non-linear correlation has been found in some gene

datasets (Zhou et al. 2003). To the best knowledge of the authors, few works on MV

imputation effectively capture the non-linear correlations amongst attributes. Existing

non-linear regression models are mostly based on kernel functions, e.g., Gaussian

kernel, Uniform kernel and Logistic kernel, guided by experience (Zhu et al. 2011; Qin

et al. 2009). They suffer the same problem with the aforementioned linear regression

models since it is hard to select a proper kernel function to capture the complex

interactions of various factors captured in the data.

Along with the advances in computer hardware, ever-increasing computing power,

and many promising real-life applications, deep learning and neural networks (NN)

have received tremendous attention in recent years. Among the various well-known NN

models, AutoEncoder (AE) first encodes a data record into a low-dimensional latent

vector which in turn is decoded back to the original data record in order to embed the

inherent properties and the (usually non-linear) correlations amongst attributes into

a latent vector. More specifically, by training the network to minimize a distortion

measure between inputs and outputs (both are the input data record itself), an AE

aims to learn a low-dimensional latent vector (called embedding) of the data record, to

obtain a property-preserving representation of the raw input data record. Furthermore,

to achieve a good embedding of the data for handling the issues of noisy data and

data sparsity, denoising AutoEncoder (dAE) (Vincent et al. 2010, 2008), a stochastic

123



MIDIA: exploring denoising autoencoders for missing data… 1861

version of autoencoder is proposed. Specifically, in order to obtain a robust embedding

and avoid simply learning the identity, a dAE takes a partially corrupted input and trains

a model that recovers the original uncorrupted input. Usually, the corrupted input are

generated by setting some values of the input data record to default values generated

based on a user-specified scheme (e.g., zeros or mean values on the corresponding

attributes).

The dAE model seems like a nature fit for the MV imputation problem, as it aims

to restore the corrupted values (i.e., MVs) by learning some intrinsic properties in

uncorrupted values (i.e., non-missing values). However, simply applying a dAE model

for MV imputation is impractical. First of all, a dAE model is originally designed

to learn a good representation of the data, rather than MV imputation. Second, the

objective function of dAE only considers to recover the entire original input rather than

the MVs only, which leads to suboptimal imputation results. Finally, the corruption

process in dAE is only introduced as a training criterion in order to obtain a better and

more robust embedding instead of trying to recover values that are totally missing.

As concluded by Bengio (Vincent et al. 2008), the dAE model is proposed to learn

embeddings of the input that are robust to small irrelevent changes in input. In other

words, the noises introduced in the corrupted input should not destruct the original

data structure seriously. However, the MVs inherently existed in the real-world datasets

may corrupt the stable structures and regular characteristics of the data, resulting in

misguided learning of non-robust embeddings. Therefore, the performance of MV

imputation by leveraging dAE directly is unsatisfactory (as demonstrated empirically

in Sect. 4.3).

Motivated by the observed deficiencies of applying dAE to the MV imputation

problem, we propose a dAE-based model of MIssing Data Imputation denoising

Autoencoder (MIDIA, pronounced just like media), tailored for MV imputation. Given

a dataset with MVs, MIDIA aims to capture the hidden correlations between MVs and

non-MVs, and then estimates the MVs for imputation. Additionally, the proposed

MIDIA is an MV-driven model, i.e., the model training processes and MV imputa-

tion strategies are different for various missing patterns. In this paper, we focus on

three common missing patterns (McNeish 2017): univariate missing pattern (where

the MVs occur only on a single attribute), monotone missing pattern (where the MVs

concentrates on several attributes and the attributes can be sorted conveniently based on

the percentage of missing values on each attribute) and general missing pattern (where

the MVs may occur on any attribute). Accordingly, based on the MIDIA model, we

devise two MV imputation approaches, namely MIDIA-Sequential and MIDIA-Batch,

to accommodate data with various missing patterns. Among them, MIDIA-Sequential

trains an individual MIDIA model for each incomplete attribute (attribute with MVs),

and imputes the MVs on different incomplete attributes based on the corresponding

learnt MIDIA models. Moreover, to further improve the imputation accuracy, MIDIA-

Sequential imputes the MVs on different incomplete attributes sequentially. Similar

to the sequential imputation strategy introduced in Zhang et al. (2008), the imputation

starts from the incomplete attribute which has the least MVs and the imputed MVs

are in turn used for imputing MVs on other incomplete attributes later. On the other

hand, MIDIA-Batch trains a uniform MIDIA model and imputes the MVs in one batch.

Moreover, with a rigid theoretical analysis (see Sect. 3.5 in detail) and extensive exper-
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iments, we find that MIDIA-Sequential and MIDIA-Batch can be reduced to the same

approach for handling datasets with univariate missing pattern. MIDIA-Sequential is

capable of handling datasets with monotone missing pattern, while MIDIA-Batch is

capable of handling datasets with general missing pattern.

The major contributions made in this paper are summarized as follows.

– We analyze the pitfalls of MV imputation by simply using the dAE model. Accord-

ingly, we propose a new dAE-based learning model, namely MIDIA, tailored for

MV imputation.

– Considering three commonly discussed data missing patterns, we proposed two

effective MV imputation approaches, namely MIDIA-Sequential and MIDIA-

Batch, to exploit the proposed MIDIA model.

– We present an extensive experimental evaluation on real datasets. The results

demonstrate that the proposed MIDIA and MV imputation approaches achieve

significantly higher imputation accuracy than existing methods, and are competent

to handle data with various data types and missing patterns.

The remainder of this paper is structured as follows. In Sect. 2, we introduce the

preliminaries and related works. In Sect. 3, we present the methodology and then, in

Sect. 4, we report the experiment results. Finally, we conclude the paper in Sect. 5.

2 Preliminaries

In this section, we first formulate the MV imputation problem. Next, we review some

prior works relevant to our research. Finally, we provide some background on denois-

ing autoencoder (dAE) which is the foundation of our research.

2.1 Problem formulation

We start by introducing some notation and definitions used in this paper and state our

research goal.

Definition 1 An observation is a data record describing an object, which consist of d

attributes.

Definition 2 An incomplete observation is a data record where the values on certain

attributes are missing, while a complete observation is a data record where the values

on all attributes exist.

Definition 3 Given a dataset consists of N observations, it can be represented by an

N × d data matrix X = [x1, x2, . . . , xN ], where each vector xi (1 ≤ i ≤ N ) is an

observation, denoted by xi =
(
xi,1, xi,2, . . . , xi,d

)
. Moreover, the dataset consists

of two disjoint subsets: incomplete dataset, denoted by Xm , and complete dataset,

denoted by Xc, containing incomplete observations and complete observations in X,

respectively.
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Table 1 Example of data tuples with MVs

CO NMHC NOx NO2 O3 T RH AH

X1 0.088 0.016 0.491 0.079 0.046 0.135 0.415 0.084

X2 ? 0.017 0.488 0.052 0.031 0.114 0.374 0.060

X3 ? 0.019 0.512 ? 0.040 0.129 ? 0.096

X4 0.037 0.022 0.569 0.158 0.051 0.273 0.525 0.231

X5 ? 0.022 0.534 ? 0.036 0.159 0.418 0.099

X6 0.096 0.023 0.545 0.052 0.017 0.123 0.488 0.099

X7 ? 0.023 0.615 0.114 0.035 0.265 0.370 0.147

X8 0.076 0.023 0.528 0.108 0.050 0.189 0.504 0.150

X9 0.022 0.024 0.614 0.136 0.028 0.245 0.541 0.213

X10 ? 0.025 0.612 0.120 0.033 0.271 0.377 0.156

Definition 4 Given a dataset X, the missing indicator matrix is denoted by S =

[s1, s2, . . . , sN ] to indicate the MVs in X, where the i-th vector si =
(
si,1, si,2, . . . , si,d

)

is corresponding to the observation xi . If the value on the j-th attribute of an observa-

tion xi is missing, then si, j = 1, otherwise si, j = 0.

Example 1 Table 1 shows a dataset (where each row is an observation) sampled from

the AirQuality1 dataset. The dataset contains various hourly averaged responses from

an Air Quality Chemical Multi-sensor device deployed in a significantly polluted area

of Italy (Vito et al. 2008). Each observation has eight attributes that are concentra-

tions for CO, Non Metanic Hydrocarbons (NMHC), Total Nitrogen Oxides (NOx ),

Nitrogen Dioxide (NO2), Indium Oxide (O3), Temperature (T), Relative Humidity

(RH) and Absolute Humidity (AH). For illustration, we use ‘?’ to indicate the MVs.

As shown, the incomplete observations are {X2, X3, X5, X7, X10} (i.e., the values on

some attributes of these observations are missing) and the complete observations are

{X1, X4, X6, X8, X9}.

As mentioned above, we aim to facilitate the MV imputation by exploring the non-

linear correlations between MVs and non-MVs. Given a dataset X, the core issue in

this work is to design a proper structure of learning model tailored for MV imputaiton

and return an effective imputed dataset X∗ based on the proposed model by consid-

ering various missing patterns. To address the issues mentioned above, we propose a

novel dAE-based learning model, namely MIDIA (MIissing Data Imputation denois-

ing Autoencoder). Moreover, based on the proposed MIDIA model, we devise two

effective MV imputation approaches, namely MIDIA-Sequential and MIDIA-Batch,

for MV imputation of data with various missing patterns.

1 https://archive.ics.uci.edu/ml/datasets/Air+Quality.
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2.2 Related work

The existing MV imputation methods can be generally categorized into two

classes (Magnani 2004): (i) local imputation which is based on the inter-correlations

amongst observations and (ii) global imputation which is based on the intra-

correlations amongst attributes in the same observation. The local imputation estimates

the MV on an attribute of an observation based on the values on the same attribute of its

neighbors. The global imputation estimates the MV on an attribute of an observation

by modeling the correlations between the incomplete attribute and complete attributes

in the same observation. Existing studies in the iterature show that these two classes

of methods impute MVs from two orthogonal views and no one is absolutely better

than the other. Different solutions fit for different situations.

The kNN-based imputation (Troyanskaya et al. 2001; Kim et al. 2004; Verboven

et al. 2007; Zhang et al. 2007) which aims to find k nearest neighbors of an incomplete

observation and then takes a distance-weighted mean of the k neighbors for imputation,

is the most well-known local imputation method. In kNN imputation, the parameter

k has a significant effect on the performance of the imputation. However, there is

no theoretically optimal way to determine k properly and the k may be different

for each dataset. Hot-deck imputation (Joenssen and Bankhofer 2012; Kim et al.

2005; Zhang et al. 2008) is another simple yet effective local imputation method. It

partitions observations into disjoint groups and predicts the MVs by using values from

one or more similar observations (donors) within the same group. Nevertheless, hot-

deck-based procedures make a strong assumption that observations can be organized

in classes with little variation inside a class. This contradicts from the assumption

that data are thought as being independent and identically which is widely make in

statistical methods and more likely to be true in real applications. Additionally, for both

kNN-based and hot-deck-based imputation methods, the proper selection of similarity

functions may be difficult especially for the data with heterogeneous attributes (i.e.,

the attributes are of different data types).

The global imputation methods leverage the correlations between the incomplete

attribute and complete attributes in an observation itself to estimate the MVs. One

such strategy is imputation by employing a regression model taking an observation

as the input to predict the MVs using the non-missing values in the same observa-

tion. The model can be trained from complete observations in the data space based on

EM (Expectation Maximization) algorithm (Dempster et al. 1977). Generally, linear

regression (Wang and Rao 2002a, b; Yuan 2010) is a typical choice as the parameters

of the linear regression model is easy to estimate. A few kernel-based MV imputation

methods (Zhu et al. 2011; Qin et al. 2009) build a non-linear model to depict the

non-linear correlations between incomplete attributes and complete attributes based

on various kernel functions. However, it is notoriously hard to select a proper kernel

function for the datasets with complex interactions and non-linear relation structures.

Only recently, neural network models are developed for MV imputation since the

neural networks have the capability to extract the complex correlations in the data.

MIDA (Lovedeep and Wang 2017), an imputation model with deep denoising autoen-

coders, has been proposed. As MIDA imputes the MVs by directly applying dAE
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Fig. 1 Denoising autoencoder architecture

model, the improvement of imputation accuracy is limited (as introduced in Sect. 1).

In this work, we propose a variant of dAE, named MIDIA, to tackle the problem of

MV imputation, carry out a grid theoretical analysis and perform a holistic research

on the problem.

2.3 Background—denoising autoencoder

In this section, we will briefly review the traditional denoising autoencoder to provide

some background for our research.

A denoising AutoEncoder (dAE) (Vincent et al. 2010) is a powerful, non-linear

mapping model to learn an effective representation with low dimensionality of the

original data. Without loss of generality, in Fig. 1, we take a one-layer dAE model as

an example for illustration.

First of all, to make the learnt model more robust and avoid overfitting, dAE corrupts

the original input x into x̃ by adding some additive small noises (e.g., isotropic Gaussian

noises) or forcing a fraction of elements in x to some default values (e.g., zeros or mean

values on the corresponding attributes). In this paper, we focus on the later strategy for

generating corrupted input because it can be viewed as removing part of elements in

the original input and replacing their values by some default values which is a common

technique for handling MVs. Next, the corrupted input x̃ is mapped to an h-dimensional

hidden representation (embedding) y = f (̃xW + b) by an encoder, where f (·) is a

user-specified activation function, W is a d ∗ h encoding weight matrix and b is a h

encoding bias vector. Generally, the embedding layer has less dimensionality than the

input, i.e., h < d, which corresponds to the regime where the dAE tries to implement

data compression (Baldi 2012). Finally, the resulting embedding y is mapped back to

reconstruct the original input x through a decoder. The transformation function has a

similar formulation z = g
(

yW
′
+ b

′
)

, where g (·) is also a user-specified activation

function, W
′
, b

′
are the h ∗ d decoding weight matrix and d decoding bias vector

respectively.

The objective function of dAE is to minimize the reconstruction error between the

original input x and the output (reconstruction) z, i.e., arg min
θ

L (x, z) where θ = {W,

W
′
, b, b

′
} is the parameter to be optimized and L (·) refers to a loss function to measure

the distance between the input x and z. It is notable that the the output z of dAE is a

deterministic function of the corrupted input x̃ rather than the original input x. While
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z is expected to be as close as possible to the original input x. The basic idea of the

parameter optimization is that if the embedding y captures the useful features of the

original input x from its corrupted version x̃, it allows a good reconstruction z of the

original input x. Therefore, by training the model to minimize reconstruction error

amounts to generating a good embedding which retains much of the information in

the original input.

3 Methodology

3.1 Exploring dAE toMV imputation

As introduced earlier, a dAE handles two things: (1) attempting to encode the cor-

rupted input to obtain a good embedding and (2) attempting to undo the effect of a

corruption process stochastically applied to the original input. In other words, besides

good embedding learning, the dAE performs the denoising which can be used for MV

imputation.

Given a dataset X with MVs, from the perspective of deep learning, we consider

the complete dataset Xc ⊆ X and the incomplete dataset Xm ⊆ X as training set for

model learning and testing set for MV imputation, respectively. For employing dAE

to MV imputation, there are two phases: (1) model training trains a dAE model based

on the complete dataset Xc and (2) MV imputation imputes the MVs in the incomplete

dataset Xm based on the learned dAE model.

In model training phase, we take the complete dataset Xc as the original input. The

corrupted input X̂c is generated by randomly selecting some values of the original

input Xc as synthetic MVs and replacing the ground truth of the MVs with default

values (generated based on a user-specified scheme). Let the embedding and output

(reconstruction) be Yc and Zc, respectively. By minimizing the reconstruction error

between Xc and its reconstruction Zc, the parameter θ is optimized (i.e., a dAE model

is trained).

Example 2 Figure 2 shows the model training process over a training set consist of

all complete observations in AirQuality dataset introduced in Example 1. In Fig. 2,

we only show the complete observations in Table 1 due to the space limitation. For

corrupted input generation, we randomly select some values in the original input as

MVs, and replace the selected values (MVs) with the mean values of the corresponding

attributes (where the mean values are considered as the default values). For example,

the mean value of the first attribute CO in the dataset is 0.325, and thus we replace all

synthetically generated MVs on attribute CO with 0.325. Unless noted specifically, we

use the mean values of the corresponding attributes to replace the MVs in all examples

through the paper. Based on the generated corrupted input, the parameter θ of the dAE

model is optimized by iteratively learning the mapping functions in encoding and

decoding.

Now given an incomplete dataset Xm , we intend to impute the MVs in Xm using

the learned dAE model. As the same line of model training, we first generate the

corruption X̃m of Xm by replacing the MVs in Xm with the default values. Next, based
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Fig. 2 The model training of dAE

Fig. 3 The MVs imputation based on learned dAE

on the corrupted input X̃m and the optimized parameter θ∗, the reconstruction Zm of

the original input is output. Since in training phase, the output is the reconstruction

of the complete dataset (the original input), the output Zm in testing phase is also the

reconstruction of the true version of Xm (MVs are replaced with ground truths). In

other words, the values in Zm corresponding to the MVs in Xm are the imputation

results.

Example 3 For the incomplete dataset Xm in Example 1, the MV imputation process

based on the learned dAE model in Example 2 is shown in Fig. 3. As shown, the

MVs in Xm are first initialized by the mean values of the corresponding attributes

(which is consistent with the data corruption process in model training phase). Then,

the embedding Ym and output Zm are computed based on the optimized parameter θ∗,

respectively. Finally, the imputation results are obtained from the output Zm .

Nevertheless, as discussed in the Introduction, the imputation results derived by

simply applying a dAE model are unsatisfactory due to various reasons, which are

demonstrated in the experimental evaluation (see Sect. 4 in detail). Therefore, we

propose a novel dAE-based model, MIDIA (MIssing Data Imputation denoising

Autoencoder), which primarily focuses on the goal of effectively imputing the MVs

rather than re-constructing the original uncorrupted input. Moreover, we propose two

MV imputation approaches based on the proposed MIDIA model, namely MIDIA-

Sequential and MIDIA-Batch, to accommodate data with various missing patterns.

3.2 An overview

Figure 4 provides an overview of the system framework for the proposed MIDIA

model and the MV imputation approaches. Given a dataset X with MVs as the input, it

is divided into the incomplete dataset Xm and the complete dataset Xc. The procedure

of MV imputation consists of six steps as follows:
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Fig. 4 System framework

Step 1 Identifying the missing pattern of the incomplete dataset Xm based on its

missing indicator matrix Sm .

Step 2 Introducing the synthetical MVs into the complete dataset Xc guided by

the missing pattern of the incomplete dataset to generate the corrupted dataset X̃c for

training.

Step 3 Turning to step 4 if the missing pattern is univariate or monotone, otherwise

turning to step 5.

Step 4 Dividing the incomplete dataset Xm into several subsets where each subset

contains only one incomplete attribute. Then the MVs one each incomplete attribute

are sequentially imputed based on MIDIA-Sequential.

Step 5 Filling the MVs in one batch based on MIDIA-Batch.

Step 6 Returning the imputed dataset X∗ finally.

Next, we introduce the missing pattern identification, the MIDIA model and the

corresponding MV imputation approaches, i.e., MIDIA-Sequential and MIDIA-Batch,

in detail respectively.

3.3 Missing pattern identification

As introduced earlier, the proposed MIDIA is an MV-driven model. For different

missing patterns, the strategies for model training and MV imputation are different.
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(a) (b) (c)

Fig. 5 Common missing patterns

Thus given an incomplete dataset Xm , we first introduce how to identify its missing

pattern.

A missing pattern describes the arrangement of missing and non-missing values in

the data (Jonathan et al. 2009). There are three missing patterns commonly discussed

in the literature, i.e., univariate missing pattern, monotone missing pattern and general

missing pattern, as illustrated in Fig. 5 where we assume there are five attributes

a1 ∼ a5 in an observation. With the univariate missing pattern, the MVs in the data

appear only on a single attribute. As shown in Fig. 5a, the MVs only exist on the third

attribute (i.e., a3). With the monotone missing pattern, the MVs in the data appear on

several attributes. Moreover, when the value on an attribute ai of an observation is

missing, all values on the subsequent attributes a j ( j > i) of the same observation are

also missing. As shown in Fig. 5b, when the value on attribute a2 of an observation

is missing, all values on a3 ∼ a5 are also missing, i.e., the proportions of MVs on

incomplete attributes are monotone. With the general missing pattern, the MVs may

occur on any attribute randomly.

Specifically, given an incomplete dataset Xm , we determine its missing pattern

based on the corresponding missing indicator matrix Sm . Based on Definition 4, when

the value on the j-th attribute of the i-th observation xi ∈ Xm is missing, si j = 1,

otherwise si j = 0. Therefore, in matrix Sm , the sum of each row is the number of

MVs in each observation, while the sum of each column is the number of MVs on

each attribute. If the sum of a row (column) is zero, there is no MV in the observation

(on the attribute). Since the complete attributes (i.e., the attributes without MVs) do

not affect the missing pattern identification, we remove them (the columns where the

sums are zero) from the missing indicator matrix Sm , and let S
′

m be the simplified

missing indicator matrix with d ′ incomplete attributes. The univariate missing pattern

is easy to determine by examining if there is only one column (attribute) remaining in

S
′

m . Next, we introduce how to determine if the missing pattern of Xm is monotone.

We first reorder the incomplete attributes in S
′

m based on the number of MVs on each

attribute in ascending order. Afterwards, for each row in S
′

m , when the first ‘1’ (i.e., the

first MV) appears, all the values on its later attributes are ‘1’ under the scenario of the
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Fig. 6 Missing pattern identification

monotone missing pattern. The criterion is determined based on the definition of the

monotone missing pattern introduced earlier, i.e., when the value on an attribute of an

observation is missing, all values on the subsequent attributes of the same observation

are also missing. Specifically, for the i-th row in S
′

m , suppose the index of the first ‘1’

is j (which starts from 0), then the number of ‘1’ in this row should be d ′ − j , i.e., the

sum of the i-th row in S
′

m should equal to d ′ − j . If all rows in S
′

m satisfy the above

criterion, the missing pattern of the incomplete dataset Xm is monotone; otherwise,

the missing pattern of the incomplete dataset Xm is general.

Example 4 For the incomplete dataset Xm in Example 1, the process of missing pattern

identification is shown in Fig. 6. First, the simplified missing indicator matrix S
′

m (with

three incomplete attributes, i.e., d ′ = 3) is derived by removing the complete attributes

in the original missing indicator matrix Sm . Next, it is obvious that the missing pattern

of Xm is not univariate since there are three incomplete attributes (columns) remaining

in S
′

m . Then we reorder the incomplete attributes in S
′

m based on the number of MVs

on each incomplete attribute in ascending order. As shown, the numbers of MVs on

the three incomplete attributes are 5, 2, 1, respectively. Thus after reordering, S
′

m

is flipped. Afterwards, we find the indexes of first ‘1’ appearing in each row (i.e.,

j = (2, 0, 1, 2, 2)T ) and compute the results of d ′ − j = (1, 3, 2, 1, 1)T . Finally,

if the sum of each row (i.e., (1, 3, 2, 1, 1)T ) equals to the corresponding d ′ − j , the

missing pattern of Xm is monotone, otherwise the missing pattern is general.

3.4 MIDIAmodel

We take a one-layer MIDIA model as an example for illustration, shown in Fig. 7

where the red part in each node of corrupted input represents the synthetically gener-

ated MVs and the yellow part in each node of the output layer is the corresponding

reconstructions.

Given an original input x, the data transformation between each layer in MIDIA is

described as follows.
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Fig. 7 The architecture of MIDIA model

(1) Corrupted input generation: MIDIA first generates the corrupted input x̃ by

marking off some values (i.e., synthetic MVs) of the original input x and filling the

sythetic MVs with some default values. Note that to accommodate effective MV impu-

tation, the missing pattern of synthetically generated corrupted input in the training set

needs to be consistent with that of the incomplete dataset to be imputed. We discuss

this issue later.

(2) Encoding: An encoder transforms the corrupted input x̃ into an h-dimensional

embedding y. Figure 7 shows a simple full-connected layer as the encoder for illus-

tration, i.e., y = f (Wx̃ + b).

(3) Decoding: A decoder takes the embedding y learned by the encoder as the

input and transforms it back to z which aims to reconstruct the original input x.

Again, Fig. 7 shows a simple fully-connected layer as the decoder for illustration, i.e.,

z = g
(

W
′
y + b

′
)

.

In the encoding and decoding steps, the encoder f (·) and decoder g (·) are

non-linear activation functions to generate the embedding y and the reconstruction

z, respectively. Various non-linear activation functions have been proposed in the

literature, e.g., Sigmoid (Han and Moraga 1995), TanH (Sinclair et al. 2001), Soft-

sign (Bergstra et al. 2009; Glorot and Bengio 2010), SoftPlus (Glorot et al. 2011),

ReLU (Nair and Hinton 2010). Since different activation functions fit for different

data and situations, we adopt different alternative activation functions during the MV

imputation based on MIDIA and evaluate the their performance in Sect. 4.

Although the network architecture in MIDIA looks the same as the dAE model,

MIDIA cares more about the reconstruction accuracy of those MVs since the goal of

MIDIA is MV imputation. To achieve this goal, we design the objective function of

MIDIA to minimize the reconstruction error of MVs rather than the reconstruction

error of the whole input observations, as derived in Eq. (1) below.

arg min
θ

1

m

n∑

i=1

L (si · xi , si · zi ) (1)
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where xi =
(
xi,1, xi,2, . . . , xi,d

)
∈ Xt is an original observation (uncorrupted) in the

training set, and zi =
(
zi,1, zi,2, . . . , zi,d

)
∈ Zt is the reconstruction of xi in the output.

The missing indicator vector si =
(
si,1, si,2, . . . , si,d

)
corresponding to xi indicates

the MVs occurrence in xi , where si, j = 1 if xi, j is a missing value, otherwise si, j = 0.

The si · xi and si · zi compute the inner product of (si , xi ) and (si , zi ), respectively.

Finally, the parameter θ = {W, W
′
, b, b

′
} is initialized at random, and optimized by

stochastic gradient descent (Bottou 2010). It is notable that the loss function can be

tailored for different data types. For numerical data, we adopt the square error loss

function L (·) [as shown in Eq. (2)], while for categorical data, we adopt the cross-

entropy loss function [as shown in Eq. (3)] with one-hot encoding. Moreover, for the

mixed types of data, above two loss functions are weighted unified together to generate

the final loss function [as shown in Eq. (4)].

L
(

x
′

i , z
′

i

)
=

∑

1≤ j≤d

(
x

′

i, j − z
′

i, j

)
(2)

L
(

x
′

i , z
′

i

)
= −

∑

1≤ j≤d

[
x

′

i, j logz
′

i, j + (1 − x
′

i, j )log(1 − z
′

i, j )
]

(3)

L
(

x
′

i , z
′

i

)
= wn

∑

1≤ j≤dn

(
x

′

i, j − z
′

i, j

)
− wc

∑

dn< j≤d

[
x

′

i, j logz
′

i, j + (1 − x
′

i, j )log(1 − z
′

i, j )
]

(4)

where x
′

i = si · xi , z
′

i = si · zi and dn is the number of numerical attributes in the

mixed type of data. In addition, wn and wc are the weights of numerical attributes and

categorical attributes, respectively, and we have wn + wc = 1.

Based on the above introduction, compared with traditional dAE model, there are

mainly two modifications in the proposed MIDIA model. First, the corrupted input in

MIDIA model is generated with the guidance of the missing pattern in the incomplete

dataset to be imputed. Second, the objective function of MIDIA model is to minimize

the reconstruction error of MVs rather than that of the whole input in dAE. The

rationale behind the modifications is two-fold, as illustrated below.

(1) The machine learning models we aim to construct is data-dependent, which

contains two intuitive meanings: (i) The training set and testing set are similar to

each other on the data content. For example, a dAE model trained based on a dataset

(training set) with images about trees does not perform well in compressing a dataset

(testing set) with images about dogs. The reason is that the features learned in the

model training are about trees which obviously cannot describe dogs accurately. (ii)

The distributions of training set and testing set are close to each other. As introduced

in Borovicka et al. (2012), for a reliable future error prediction, we need to evaluate

our model on a different, independent and identically distributed (testing) set that is

different to the (training) set we have used for building the model.

Similar to the intuitions of data-dependency in machine learning, the proposed

MIDIA model in this paper serves to fill MVs in a given incomplete dataset (i.e.,

testing set). Thus the MVs in the training set and testing set are assumed to follow the

same distribution (with a specific tolerance of deviation), especially when the missing

rate is relatively high.
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(2) As introduced earlier, the proposed MIDIA aims to recover the MVs accurately.

To achieve this goal, MIDIA is forced to extract correlations between the MVs and non-

MVs for effective MV imputation by only caring about the reconstruction accuracy

of those MVs.

3.5 MV imputation based onMIDIA

Given a dataset X with MVs, our goal is to impute the MVs in the incomplete dataset

Xm ⊆ X effectively. To achieve this goal, as the same line of employing dAE to MV

imputation, there are two phases, i.e., model training to learn an effective MIDIA

model based on the complete dataset Xc and MV imputation to fill the MVs in Xm

based on the learnt MIDIA model.

In model training phase, as introduced in Sect. 3.4, the corrupted input generation

in MIDIA depends on the missing pattern of the incomplete dataset to be imputed. A

missing pattern describes the arrangement of missing and non-missing values in the

data (Jonathan et al. 2009). There are three missing patterns commonly discussed in

the literature, i.e., univariate missing pattern, monotone missing pattern and general

missing pattern, as illustrated in Fig. 5 where we assume there are five attributes

a1 ∼ a5 in an observation. With the univariate missing pattern, the MVs in the data

appear only on a single attribute. As shown in Fig. 5a, the MVs only exist on the third

attribute (i.e., a3). With the monotone missing pattern, the MVs in the data appear on

several attributes. Moreover, when the value on an attribute ai of an observation is

missing, all values on the subsequent attributes a j ( j > i) of the same observation are

also missing. As shown in Fig. 5b, when the value on attribute a2 of an observation is

missing, all values on a3 ∼ a5 are also missing, i.e., the proportions of MVs on each

incomplete attributes are monotone. With the general missing pattern, the MVs may

occur on any attribute. For different missing patterns, the imputation strategies are

different. Therefore, we propose two MV imputation approaches based on the MIDIA

model to adapt various missing data patterns.

3.5.1 MIDIA-sequential

The basic idea behind this approach is to impute the MVs on each incomplete attribute

independently and sequentially.

Given a dataset X, suppose there are p incomplete attributes and d − p complete

attributes in an observation. For each incomplete attribute ai (1 ≤ i ≤ p), we aim to

impute the MVs on ai using the observed values on complete attributes by training a

MIDIA model. Moreover, once the MVs on an incomplete attribute ai are imputed,

ai is considered as a complete attribute and used for imputing the MVs on other

incomplete attribute later. To alleviate the effect of inaccuracy in the imputed values,

we start with sequential imputation from the incomplete attribute which has the least

MVs. For example, there are three incomplete attributes CO, NO2 and RH in the data

shown in Table 1. The number of MVs on each incomplete attribute is 5, 2 and 1,

respectively. Thus the imputation is performed sequentially on RH, NO2 and finally

CO.
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Fig. 8 Subsets of incomplete dataset Xm in Example 1

It is notable that, in MIDIA-Sequential, we train a MIDIA model for each incom-

plete attribute and impute the MVs on different incomplete attributes sequentially.

Given an incomplete dataset Xm , corresponding to each incomplete attribute, there

is an incomplete subset Xm,i ⊆ Xm (1 ≤ i ≤ p) which consists of the observations

with values on the i-th incomplete attribute missing. Moreover, the observations in

Xm,i only contains the i-th incomplete attributes and all complete attributes, i.e., the

incomplete attributes except for the i-th attribute are discarded in the training data

preparation.

Example 5 For the incomplete dataset in Example 1, as introduced earlier, there are

three incomplete attributes and the imputation is performed on attributes RH, NO2 and

CO sequentially. Thus we partition the incomplete dataset Xm into three incomplete

subsets as shown in Fig. 8. Each subset represents a target incomplete dataset to

be imputed where MVs (marked by ‘?’ in Fig. 8) only occur on a single attribute.

For example, the subset Xm,2, corresponding to the second incomplete attribute NO2

to be imputed, contains values from the incomplete attribute NO2 and all complete

attributes NMHC, NOx , O3, T, RH and AH. Note here that RH is considered as a

complete attribute since the MVs on RH have been imputed.

For each of the incomplete dataset, MIDIA-Sequential trains a specific MIDIA

model and employs it to impute the MVs on the corresponding incomplete attribute.

Model Training For an incomplete subset Xm,i (1 ≤ i ≤ p), the model training

phase takes the complete dataset Xc,i ⊆ Xc which contains the same attributes with

Xm,i as the input. As introduced earlier, to make the learned model fit for effective

imputation of MVs in the target dataset (i.e., the incomplete subset Xm,i ), the missing

pattern of synthetically generated MVs in the corrupted input X̃c,i should be consis-

tent with that in Xm,i . Since the incomplete subset Xm,i only contains one incomplete

attribute, and all values on the incomplete attribute are missing, i.e., the missing pattern

of Xm,i is univariate, we generate the corrupted input X̃c,i by deleting all the observed

values on the i-th incomplete attribute and replacing them with default values (gener-

ated based on a user-specified scheme). Next, based on the generated corrupted input,

a MIDIA model used for imputing MVs in the incomplete subset Xm,i is trained.

Example 6 The model training process of MIDIA for the incomplete dataset Xm in

Example 1 is shown in Fig. 9. By minimizing the reconstruction error between the

reconstructed MVs in Zc,1 and the ground truth in Xc,1, a MIDIA model for imputing

the MVs on the incomplete attribute RH is trained. In the same way, the MIDIA

models for the incomplete subset Xm,2 (where the incomplete attribute is NO2) and

Xm,3 (where the incomplete attribute is CO) are trained, respectively.
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Fig. 9 the model training of MIDIA-Sequential approach

MV Imputation In this phase, we impute the MVs in each incomplete subset Xm,i

(where the MVs only occur on the i-th incomplete attribute) by using its correspond-

ing trained MIDIA models. As mentioned ealier, the imputation starts from the the

incomplete attribute having the least MVs, i.e., the incomplete subset which has the

fewest observations, and the imputed MVs are used for later imputation. For the i-th

incomplete attribute, we first initialize the MVs in Xm,i by default values adopted in

the training phase. Notice that we only regard MVs on the i-th incomplete attribute as

the MVs to be imputed, the MVs imputed previously on other incomplete attributes

(which are taken as the complete attributes when conducting MV imputation for the

i-th incomplete attribute) are taken as the “ground truth”. Taking the initialized incom-

plete subset Xm,i as the corrupted input, through the mapping functions in encoding

an decoding, the imputation results of MVs in Xm,i can be found in the reconstruction

Zm,i . After the MVs in all incomplete subsets being imputed sequentially, the final

imputed dataset X∗ is thus derived.

Example 7 Based on the MIDIA-Sequential approach, the MV imputation for the

incomplete dataset Xm in Example 1 is shown in Fig. 10. First, the subset Xm,1,

i.e., the MVs on the incomplete attribute RH is imputed, as it contains the fewest

MVs. Additionally, the imputed values are in turn used for later imputation, i.e., in

the corrupted input X̃m,2 and X̃m,3, the MVs on attribute RH are replaced with the

imputed values. Then the subsets Xm,2 and Xm,3 which have two and five MVs are

imputed sequentially.

3.5.2 MIDIA-Batch

The basic idea behind this approach is to impute the MVs in the incomplete dataset

Xm in one batch by training a uniform MIDIA model.
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Fig. 10 MV imputation process based on MIDIA-Sequential approach

In model training phase, taking the complete dataset Xc as the input, the first step is

to generate a corrupted input X̃c by selecting a fraction of elements in Xc as MVs and

replacing them with some default values. To make the missing pattern of X̃c consistent

with that of Xm , we calculate the ratio of each MV arrangement occurred in Xm based

on its missing indicator matrix Sm . In the missing indicator matrix Sm , we define a

vector sm,i ∈ Sm as a possible MV arrangement to indicate the occurrence of MVs in

corresponding observation oi ∈ Xm .

Example 8 For the incomplete dataset Xm in Example 1, there are three MV arrange-

ments, i.e., [1 0 0 0 0 0 0 0], [1 0 0 1 0 0 1 0], [1 0 0 1 0 0 0 0], and the ratios are

3/5, 1/5 and 1/5, respectively.

Next, for each MV arrangement, we randomly select a set of observations based on

its ratio from Xc and replace the values on the incomplete attributes by default values

to generate the corrupted input X̃c. With the corrupted input, a MIDIA model is trained

for imputing the MVs in the incomplete dataset Xm . In the MV imputation phase, we

first initialize the MVs in Xm with default values generated based on a user-specified

scheme, and take the initialized Xm as the corrupted input. Via the trained MIDIA

model, the MVs in Xm are reconstructed through the encoding and decoding steps.

Example 9 The model training and MV imputation processes based on MIDIA-Batch

is shown in Fig. 11. Compared with MIDIA-Sequential, MIIDA-whole only learn a

single MIDIA model for the whole MVs.

As introduced earlier, MIDIA-Sequential focuses on imputing the MVs on a sin-

gle incomplete attribute at a time by splitting the incomplete dataset into several

incomplete subsets. It performs well in MV imputation for datasets where the MVs

concentrate on one or a few attributes, i.e., there are sufficient complete attributes for

use in MV imputation. However, with the general missing pattern, the MVs may occur

on any attribute. Consequently, the number of complete attributes in the data is likely

to be few. As a result, for an incomplete attribute to be imputed early, the imputation
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Fig. 11 The model training and MV imputation based on MIDIA-Batch

deviation may be large due to insufficient complete attributes. On the other hand, in

MIDIA-Sequential approach, the earlier imputed MVs are used for later imputation,

thereby the inaccuracies of the earlier imputed values may be accumulated and ampli-

fied in later imputation. Therefore, the imputation results are unsatisfactory based on

MIDIA-Sequential for incomplete dataset with general missing pattern. In contrast,

MIDIA-Batch imputes the MVs on all incomplete attributes in one batch by training

one uniform MIDIA model. Intuitively it is difficult to incorporate all non-linear cor-

relations between MVs and non-MVs in a uniform model, so it is reasonalbe to have

the MVs on various incomplete attributes imputed independently if there are suffi-

cient complete attributes to be used. However, with the general missing pattern, the

performance of MIDIA-Sequential deteriorates quickly since the number of complete

attribute is few. Under this circumstance, MIDIA-Batch alleviate the deterioration by

exploring the non-MVs on the incomplete attributes which can be explored for MV

imputation. Moerover, under the scenario of univariate missing pattern, since there is

only one incomplete attribute in the dataset, the model training and MV imputation

processes of MIDIA-Batch is the same with that of MIDIA-Sequential. In summary,

as discussed above, both MIDIA-Sequential and MIDIA-Batch perform well for data

with univariate missing pattern. MIDIA-Sequential is more capable of handling data

with monotone missing pattern, while MIDIA-Batch is more capable of handling data

with general missing pattern (which can be demonstrated in experimental study in

Sect. 4).

4 Experiments

In this section, we report the experimental evaluation on effectiveness of the pro-

posed approaches. All programs are implemented in Python and the experiments are

performed on a PC with 3.4GHz CPU and 16GB RAM.
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4.1 Experimental settings

Datasets We employ three real-world datasets: Air Quality, Adult, and Car, as detailed

below.

– Air Quality: contains the response of a gas multi-sensor device deployed in a

significant polluted area of Italy as introduced in Example 1. It contains 8991

observations where each observation has eight attributes.

– Adult2: is a dataset of census information from UCI Machine Learning Repository.

The dataset contains about 32,000 observations with 14 attributes including age,

workclass, fnlwgt, education, education-num, matital-status, occupation, relation-

ship, race, sex, capital-gain, capital-loss, hours-peer-week and native-country.

– Car3: contains 1782 observations where each observation has six attributes, i.e.,

Buying, Maint, Doors, Persons, Lug_Boot and Safety.

All of the attributes are numerical in the Air Quality, while all of the attributes are

categorical in the Car dataset. For the Adult dataset, each observation has 6 numeri-

cal attributes and 6 categorical attributes, respectively. In the Air Quality dataset, the

MVs naturally exist and the corresponding ground truths are known (provided by a

co-located reference certified analyzer), thus it is one of the most commonly used

real-world dataset in the study of MV imputation. In the Adult dataset, even though

MVs also naturally exist, we cannot evaluate the effectiveness of the proposed algo-

rithms by directly using the real MVs as the ground truths of MVs are unknown.

Instead, we remove the observations with inherent MVs from the dataset and consider

the remaining data as a complete dataset. In the Car datasets, there is no MVs. To

thoroughly evaluate the performance of the proposed MV imputation methods on the

Adult and Car datasets, we take the missing ratio as a variant and present the impu-

tation accuracy of various MV imputation methods by varying missing ratio in the

following evaluation. Therefore, we consider all the above three datasets as originally

clean, and generate different scales of incomplete datasets based on various missing

ratios. For example, if missing ratio is 5%, we select 5% observations from the entire

dataset randomly to constitute the incomplete dataset to report the imputation results,

while the remaining observations constitute the complete dataset to train the learning

models.

Additionally, to generate the incomplete dataset Xm with various missing patterns,

we introduce the MVs in different ways detailed below.

– Univariate missing pattern: We choose one attribute ai (1 ≤ i ≤ d) randomly as

the incomplete attribute and mark off all values on the attribute ai of observations

in Xm .

– Monotone missing pattern: First, we randomly choose half number of attributes as

the incomplete attributes. Next, in Xm , the proportion of MVs on each incomplete

attribute progressively decreases from 100% with step length 10%. Moreover, the

MVs on incomplete attribute ai is selected randomly from the observations have

been selected by the previous incomplete attribute ai−1. Finally, the values selected

2 http://archive.ics.uci.edu/ml/datasets/Adult.

3 http://archive.ics.uci.edu/ml/datasets/Car+Evaluation.
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as MVs are marked off. For example, suppose the incomplete attributes randomly

chosen from Air Quality dataset (which has eight attributes) are CO, NMHC, NOx

and O3. Then there are 100%, 90%, 80% and 70% MVs on the incomplete attributes

introduced above, respectively. Additionally, the 70% MVs on the attribute O3 are

selected from the observations where the values on incomplete attribute NOx are

missing.

– General missing pattern: For each observation in Xm , we randomly choose half

number of attributes as the incomplete attributes, and mark off the values on the

incomplete attributes.

Measurements To evaluate the performance of various MV imputation methods,

we adopt the following measurements for numerical and categorical data types:

– RMSE: We adopt the Root Mean Square Error (RMSE) to measure the imputation

deviation between the imputation results and the ground truths for numerical data.

The lower RMSE is, the imputation results are closer to the ground truths and thus

the imputation has better performance.

– Macro-F: For categorical data, we adopt the Micro-F (Sokolova and Lapalme

2009) which is mostly adopted in multi-labeled classification as the performance

measure. Specifically, suppose there are c possible values for categorical data, then

we have macro-F = 1
c

∑c
i=1 Fi where Fi are the F-measure of the i-th value. A

higher Macro-F indicates the imputation performs better.

Algorithms for comparison We compare the proposed approaches with the fol-

lowing baseline methods which cover a variety of ways to impute MVs.

– Mean/Voting simply imputes the MVs on each incomplete attribute with the mean

value/most frequently occurring value of the corresponding attribute for numerical

and categorical data, respectively.

– KNN (Zhang 2008) uses a distance-weighted average over k neighbors (which

similar to the incomplete observation to be imputed) to estimate the MVs in an

incomplete observation.

– Kernel (Zhu et al. 2011) is similar to the KNN and incorporates various Kernel

functions to formalize the dependencies between the incomplete observation and

its neighbors.

– GBKII (Zhang et al. 2007) imputes MVs through an EM-like iteration imputa-

tion method. It differs from KNN imputation in utilizing grey relational grade to

measure the neighborhood of MVs.

– Hot-deck (Joenssen and Bankhofer 2012) partitions observations into disjoint

groups, and predicts MVs using values from one or more similar complete obser-

vations (donors) within the same group.

– Multivariate Linear regression (MLR) (Raghunathan et al. 2001) argues that there

are linear correlations amongst attributes in an observation and imputes the MVs

by learning a linear regression model.

– SVM (Zhang and Liu 2009; Bertsimas et al. 2017) is a tool of nonlinear regression

and classification. We build an SVM model for each incomplete attribute and

impute the MVs on each incomplete attribute sequentially with the same order of

the proposed MIDIA-Single.
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– Decision Tree (DT) (Rahman and Islam 2011) is another tool of regression and

classification which is similar to the SVM and we implement both SVM and DT

by using the library of sklearn in python.

– Low-rank Matrix Recovery (LMR) (Jing et al. 2016) supposes that a data matrix

X can be factorized into two matrices U and V , i.e., X = U V T . By formulating

the problem as a matrix rank minimization problem, the optimal U∗ and V ∗ can

be estimated by the nuclear-norm minimization. Then the MVs can be estimated

based on the imputed matrix which is computed by X∗ = U∗V ∗T .

– Bayesian PCA (Audigier et al. 2016) formulates the PCA (Principle Component

Analysis) as a Bayesian model, instead of using the classical method of finding

the covariance matrix of the data. It imputes the MVs by extracting the linear

correlations between the MVs and non-MVs.

– dAE imputes the MVs in a given dataset by learning a traditional dAE model as

introduced in Sect. 2.3.

– MIDA (Lovedeep and Wang 2017) imputes the MVs by employing overcomplete

representation of dAEs, i.e., there are more units in successive hidden layers com-

pared to the input layer.

Model settings For ease of evaluation and to facilitate faster convergence, we nor-

malize the numerical data based on min-max normalization (Jain and Bhandare 2011)

and adopt the one-hot coding to represent the categorical data. Moreover, we repeat

10 times for each test and report the average results to obtain reliable experimen-

tal results. For statistical imputation approaches, i.e., kNN, Kernel and GBKII, the

parameter k is set as 10 since a low imputation error within an acceptable time range

for all three datasets are reached with k = 10. For both LMR and Bayesian PCA, the

dimensionality of sub-matrix or latent space is specified as the half of the input dimen-

sionality. For approaches based on deep learning model (including MIDIA-Sequential,

MIDIA-Batch, dAE and MIDA), each model is trained with epochs 1000, learning rate

0.01 and batch size 256. The MVs synthetically generated are replaced by the mean

values or voting values of the corresponding attributes for numerical and categorical

data, respectively. Moreover, the Sigmoid and ReLU are adopted as activation func-

tions for numerical and categorical data respectively, since we find that the proposed

approaches have the best performances with the above two activation functions (as

illustrated in Sect. 4.2 in detail). Additionally, the MIDIA model in this paper has one

hidden (embedding) layer since the imputation accuracy based on such simple model

is lower than existing MV imputation approaches. Moreover, for the regular datasets

(with low dimensionality), the imputation accuracy of the deep MIDIA model with

multiple hidden layers is almost the same with MIDIA model with one hidden layer (as

illustrated in Sect. 4.4). As introduced in Lovedeep and Wang (2017), MIDA model

has three hidden layers in Encoder,4 and the i-th hidden layer has 7 units more than

the (i − 1)-th layer. We adopt the same network structure when we implement the MV

imputation based on MIDA model.

4 We only consider the number of hidden layers in Encoder since the Decoder is symmetric with the

Encoder.
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(a)

(b)

Fig. 12 Imputation accuracy with various activation functions (Air Quality)

(a)

(b)

Fig. 13 Imputation accuracy with various activation functions (Adult-Numerical)

4.2 Selection of activation functions

Since the activation function impacts the performances for different datasets and appli-

cations, we verify the performances of MIDIA-Sequential and MIDIA-Batch with

various activation functions, including Simgoid, TanH, ReLU, Softplus and ELU in

this section. Note that Figs. 13 and 14 are the imputation accuracies of numerical

attributes and categorical attributes over Adult dataset, respectively. Figures 12, 13,

14 and 15 report the imputation performance of MIDIA-Sequential and MIDIA-Batch

with various activation functions by varying missing ratio, respectively. As shown in

Figs. 12 and 13, for numerical dataset, both MIDIA-Sequential and MIDIA-Batch
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(a)

(b)

Fig. 14 Imputation accuracy with various activation functions (Adult-Categorical)

(a)

(b)

Fig. 15 Imputation accuracy with various activation functions (Car)

achive the lowest RMSEs by adopting activation function Sigmoid under various

missing patterns. In the same way, for categorical dataset, it is obvious that both

MIDIA-Sequential and MIDIA-Batch perform best by adopting activation function

ReLU as shown in Figs. 14 and 15. Therefore, we adopt the Sigmoid and ReLU as the

default activation function for numerical and categorical data, respectively.

4.3 Comparison with existingmethods

In this section, we compare our proposed methods with existing MV imputation meth-

ods introduced in Sect. 4.1.
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Table 2 summarizes the imputation performance of all compared approaches on Air

Quality dataset with various missing patterns As shown, since the Mean imputation

fills the MVs on an attribute by the mean of the available observations, where the vari-

ability of the data is ignored, the imputation accuracy is the worst (i.e., the RMSE is the

highest) in most cases. For the neighbor-based imputation methods (i.e., KNN, Ker-

nel, GBKII and Hot-deck), they impute the MVs by employing the inter-correlations

amongst observations, while the proposed MIDIA-based imputation methods impute

the MVs by employing the intra-correlations amongst attributes in the same observa-

tion. Even though there is no theoretical support that one is absolutely better than the

other, the experimental results show that their RMSEs are higher than the proposed

MIDIA-based methods. On the other hand, for the MLR, LMR and Bayesian PCA,

they impute the MVs by exploring the linear correlations between the MVs and non-

MVs, where the complex correlations of the data tend to be underestimated, which

results in unsatisfactory imputation accuracies. Although SMV and DT can explore

the non-linear correlations between the MVs and non-MVs based on kernel functions,

the choice of kernel function is usually guided by experience, thus suffering the same

problem with the linear regression models mentioned above. Finally, the proposed

MIDIA-based approaches achieve the lowest RMSE, as the proposed MIDIA model

effectively captures the non-linear correlations between MVs and non-MVs in the data,

which is more powerful on MV imputation compared with existing approaches that

explore the linear dependencies between MVs and non-MVs. Moreover, by designing

effective generation strategy for corrupted input and minimizing the reconstruction

error between MVs and ground truths in the training process, the learned MIDIA

model is more effective than dAE and MIDA.

Additionally, under the scenario of univariate missing pattern, the RMSEs of

MIDIA-Sequential and MIDIA-Batch are almost the same. The reason is that there

is only one single incomplete attribute and all values on the incomplete attribute are

missing, which incurs that the model training processes of MIDIA-Sequential and

MIDIA-Batch reduce to be the same. Under the scenario of monotone missing pat-

tern, the RMSE of MIDIA-Sequential is lower than that of MIDIA-Batch, because

with monotone missing pattern, there are enough complete attributes used for MV

imputaiton, and MIDIA-Sequential can avoid the effect of MVs on other incomplete

attributes when it focuses on the imputation for an incomplete attribute. However, if

there is no enough complete attributes, the imputation results of MIDIA-Sequential

are likely to deteriorate, which incurs that the RMSE of MIDIA-Sequential is higher

than that of MIDIA-Batch under the scenario of general missing pattern, as shown in

Table 2. With the same line, similar results are observed in Tables 3, 4 and 5 where the

experimental evaluation conducts on datasets Adult and Car respectively. Moreover,

the results obtained based on the three real-world datasets verify that the proposed

approaches can support both numerical and categorical data.

On the other hand, based on Tables 2, 3, 4 and 5, we can observe that with the

increase of missing ratio, the imputation accuracies of existing neighbor-based impu-

tation methods (including KNN, Kernel, GBKII and Hot-deck) progressively decrease.

With a high missing ratio, there are more incomplete observations and less complete

observations, thereby the number of available neighbors used for MV imputation

becomes small and incurs a low imputation accuracy. Notable that since the data size
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of Adult dataset is large (32,000 observations), the available neighbors used for MV

imputation are sufficient even though the missing ratio is high, thereby the imputation

accuracies of existing neighbor-based imputation methods are stable. By compari-

son, for the remaining imputation methods, the imputation accuracies are stable with

the increase of missing ratio, and the RMSEs of the proposed MIDIA-Sequential and

MIDIA-Batch are significantly lower than baselines, which indicates that the proposed

approaches are effective and capable of handling datasets with small samples.

In summary, as illustrated in Tables 2, 3, 4 and 5 over the Air Quality, Adult and Car

datasets, the proposed MIDIA-based imputation approaches always achieve the best

performance in imputation accuracy. Moreover, both MIDIA-Sequential and MIDIA-

Batch perform well for dataset with univariate missing pattern. MIDIA-Sequential

performs better than MIDIA-Batch for dataset with monotone missing pattern, while

MIDIA-Batch performs better than MIDIA-Sequential for dataset with general miss-

ing pattern.

4.4 Ablation study

As illustrated earlier, the main modifications of the proposed MIDIA mainly focus on

the corrupted input generation and objective function. To evaluate the effectiveness

of each modification in improving the imputation accuracy, we implement the MV

imputation approaches based on the MIDIA model by retaining one aspect of modifi-

cation, including (1) MIDIA-LF, only retaining the modification of objective function;

(2) MIDIA-CI, only retaining the modification of corrupted input generation. More-

over, to evaluate the effectiveness of the neural network model, we implement the (3)

MIDIA-PCA, replacing the non-linear activation functions in MIDIA with the linear

activation function to approximate PCA, and (4) MIDIA-ML, extending the MIDIA

model with one hidden layer to three hidden layers.

Figure 16 illustrates the performance of various algorithms based on MIDIA-

Sequential with three missing patterns over three real-world datasets. As shown, the

imputation accuracies of algorithms with only one aspect of modification are lower

than that of the proposed approach with thorough modifications, which verifies that

each aspect of modification contributes to the improvement of imputation accuracy.

Moreover, with the same model structure, we observe that the imputation accuracy of

MIDIA-PCA is much lower than that of the proposed MIDIA-Sequential (MIDIA-S),

because MIDIA-S imputes the MVs in the data by exploring the non-linear correla-

tions between MVs and non-MVs, which is more competent for the data with complex

and unexplainable structures. Finally, as shown in Fig. 16 (Fig. 16 in response), the

imputation accuracies of MIDIA-ML and MIDIA-S are almost the same. The reason

is that the dimensionality and sample size of datasets adopted in the experiments are

small or moderate.

With low-dimensional data, MIDIA model with one-hidden layer is capable of

deeply exploring the correlations of the data, while the deep MIDIA model cannot

give the rein to its advantages. We believe that deep MIDIA model with multiple

hidden layers is more competent for handling high-dimensional and large-scale sample

dataset, which is an interesting future study. In this paper, we mainly focus on the MV
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(a)

(b)

(c)

Fig. 16 Performance of each part of modification over MIDIA-Sequentical

(a)

(b)

(c)

Fig. 17 Performance of each part of modification over MIDIA-Batch
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(a) (b) (c)

Fig. 18 The classification accuracy (Adult)

(a) (b) (c)

Fig. 19 The classification accuracy (Car)

imputation for the regular datasets. In the same line, similar results can be observed

in Fig. 17 where the algorithms are implemented based on the MIDIA-Batch.

4.5 Applications in classification

To further validate the effectiveness of our proposed methods, we consider a real

application of classification (Liu and Yu 2005) on datasets Adult and Car. Based on

the imputed dataset, a softmax classifier is directly implemented. Figures 18 and 19

reports the accuracy of classification over the original dataset (denoted by Original in

the figure), the imputed dataset by dAE, MIDA, MIDIA-Sequential and MIDIA-Batch

(denoted by MIDIA-S and MIDIA-B respectively in the figure), respectively. Note that

we do not show the results of other approaches as the MV imputation accuracies of

them are obviously smaller than dAE, MIDA, MIDIA-Sequential and MIDIA-Batch

in most cases. The classification accuracy of the original data is the best because there

is no MVs in original dataset. It is not surprising that the classification accuracies

of MIDIA-Sequential and MIDIA-Batch are higher than dAE and MIDA, largely

because they have a higher imputation accuracies. The results further demonstrate the

effectiveness of the proposed approaches.

5 Conclusion

In this paper, we propose a new unsupervised learning model, named MIDIA, tailored

for MV imputation. By considering various missing data patterns, we propose two

MV imputation approaches based on the proposed MIDIA model, namely MIDIA-
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Sequential and MIDIA-Batch, where both approaches perform well for univariate

missing pattern, and MIDIA-Sequential is more competent for monotone missing

pattern while MIDIA-Batch performs better for general missing pattern. Experimental

results on real-world datasets show that the proposed approaches significantly improve

the imputation accuracy compared with existing methods.
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