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Abstract This paper considers the axisymmetric steady flow driven by exact counter rotation of two

co-axial disks of finite radius. At the edges of the rotating disks one of three conditions is (typically)

imposed: (i) zero velocity, corresponding to a stationary, impermeable, cylindrical shroud (ii) zero normal

velocity and zero tangential fluid traction, corresponding to a (confined) free surface and (iii) an edge

constraint that is consistent with a similarity solution of von Kármán form. The similarity solution is valid

in an infinite geometry and possesses a pitchfork bifurcation that breaks the midplane symmetry at a criti-

cal Reynolds number. In this paper, similar bifurcations of the global (finite-domain) flow are sought and

comparisons are made between the resulting bifurcation structure and that found for the similarity solu-

tion. The aim is to assess the validity of the nonlinear similarity solutions in finite domains and to explore

the sensitivity of the solution structure to edge conditions that are implicitly neglected when assuming a

self-similar flow. It is found that, whilst the symmetric similarity solution can be quantitatively useful for a

range of boundary conditions, the bifurcated structure of the finite-domain flow is rather different for each

boundary condition and bears little resemblance to the self-similar flow.

Keywords Rotating disk · Bifurcation · Similarity solution

1 Introduction

The axisymmetric flow between rotating disks has been a topic of significant interest for several decades.

As first noted by Batchelor [1], the flow supports similarity solutions of von Kármán type, in which the

radial and azimuthal flow velocities increase linearly with distance from the axis of rotational symmetry,

whilst the transverse velocity is independent of this distance. Such flows are explored in great detail in the

review article of Zandbergen and Dijkstra [2].

Von Kármán flow is one of a class of exact stagnation-type solutions to the Navier–Stokes equations.

The term “exact” in this context signifies that the assumed form of solution reduces the steady Navier–

Stokes equations to a much simpler ordinary-differential, boundary-value problem without requiring any

approximation; that is, no terms are neglected. There are many analogous flows with the same stagnation
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form, for example the axisymmetric motion between two uniformly porous disks, or two “stretching”

disks in which the velocity is directed radially out/inwards in proportion to the distance from the axis

of symmetry. Equivalent two-dimensional solutions in Cartesian geometries include the flow in a porous

channel driven by uniform wall transpiration [3], or the flow in a stretching channel [4]; and these flows

can easily be extended to three dimensions [5, 6]. Furthermore, the same form of solution can be applied

to cylindrical pipe flow, again driven by uniform transpiration [7] or with axial stretching [4]. In all these

cases the velocity components are scaled at most linearly by a spatial coordinate. Hence, these solutions

can be made unsteady without breaking the spatial self-similarity.

The flows described above have been applied to far too many problems to list here; see the recent

monograph by Riley and Drazin [8] for a review. Initially, the flow states themselves were the topic of

interest, owing to the exact nature of the solutions in the broader framework of the Navier–Stokes equa-

tions. In many cases, however, the similarity solutions are introduced on the basis of a large aspect ratio

being present in the problem under consideration. An implicit assumption is that in a domain of large

aspect ratio, the far-field boundary conditions only have local influence and can be neglected, allowing

the self-similar solution to be used to describe a finite region of the near-axis flow. In other words, there

is an implicit assumption of Saint-Venant’s principle. For these similarity solutions, we may also note

that bifurcations and non-uniqueness are commonplace. It is typically assumed that the nonlinear behav-

iour represented in the self-similar equations will be replicated in a global solution of the Navier–Stokes

equations in some finite domain.

For the flow between two co-axial rotating disks, Brady and Durlofsky [9] examined the relationship

between the von Kármán solutions and solutions of the parabolized Navier–Stokes equations in large but

finite axial domains. Their conclusions were that end effects can be important even in arbitrarily large (but

finite) domains. Using a Reynolds number, Re, defined by choosing the distance between the two disks as

the natural length scale, they noted that what quantitative agreement there was (between the similarity and

“finite-disk” solutions) rarely extend beyond the first 20% of the flow domain for Re ≥ 200. The authors

claimed that qualitative agreement was available over a broader range and that the similarity solution was,

therefore, of use as an approximation even at moderate to high Reynolds numbers. Most significantly, in

the context of the present work, they reported that, in the case of exact counter-rotation of the disks, “we

find the solution to be unique at all values of the Reynolds number considered”, a result in contrast to the

behaviour of the similarity solution, which possess a (midplane) symmetry breaking bifurcation.

In the present work, we further develop these ideas by solving the axisymmetric Navier–Stokes equa-

tions numerically over a domain of fixed aspect ratio. Previous numerical and experimental studies of such

rotating-disk flows have revealed rich and varied dynamics, see e.g. [10, 11] and the references therein.

Even so, the three-dimensional parameter space spanned by the Reynolds number, the aspect ratio of the

domain and relative rotation rates of the two disks has not been comprehensively explored. We chose to

concentrate exclusively on the case of exact counter-rotation, in which the two disks rotate at the same

frequency but in opposite directions. This configuration admits solutions that possess a reflectional symme-

try with respect to the midplane, and, as mentioned above, the similarity solution undergoes a supercritical

pitchfork bifurcation in this configuration. Our (broad) aims for this paper are to address some simple

questions: (i) does the finite-domain system undergo a pitchfork bifurcation at large aspect ratios? (ii) if

so, are the similarity solution predictions for the critical Reynolds number and eigenmode useful in finite

(but large) domains? (iii) and generally, to what extent are the similarity solutions accurate descriptions of

the near-axis flow.

Partial answers to some of these questions are already available in the literature, but the picture is

still rather incomplete because each study has tended to concentrate on one particular set of boundary

conditions and relative rotation ratio. One such condition is a closed-end, appropriate for a configura-

tion in which the disks are enclosed by a fixed, impermeable shroud. For this condition, Nore et al. [11]

conducted a numerical investigation of the stability of exact counter-rotating disk flow at small aspect ratios;

until this point, counter rotation had received relatively little attention. They found a midplane-symmetry
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breaking pitchfork bifurcation that did not coincide with that of the similarity solution. For the aspect

ratios considered, however, stability of the primary symmetric state was first lost through bifurcations to

non-axisymmetric flows. For alternative, open-end boundary conditions, defined below, Witkowski et al.

[12] examined the nature of the first axisymmetric bifurcation in domains of large aspect ratio. Once again,

the location of the bifurcation did not coincide with that of the similarity solution. Moreover, at large

aspect ratios, they found that the symmetric, axisymmetric solution first becomes unstable through a Hopf

bifurcation at low values of the Reynolds number.

In order to examine end effects in some detail, we apply three different types of boundary condition at

the disk edges. In the first (closed-end) case, we apply no-slip boundary conditions to model the case when

the disks are surrounded by a stationary, impermeable cylindrical shroud. In the second (open-end) case, a

traction constraint is imposed that corresponds to a stationary “free surface”. In the final case, conditions

consistent with the similarity solution are imposed at the edge of the flow domain. The use of homotopy

continuation techniques allows us to explore the connection between the behaviour of the system under

different boundary conditions and the relationship between the similarity solution and solutions in the

finite domain.

2 Formulation

We consider a viscous, incompressible, fluid of constant density ρ and dynamic viscosity µ confined by two

identical disks, each of radius L, separated by a distance h. The disks are aligned co-axially and counter-

rotate with constant angular frequencies ±ω. The flow is described using a cylindrical polar coordinate

system (r∗, θ , z∗), where r∗ = 0 is the axis of rotation and z∗ = 0 is the midplane of the flow domain. Here,

an asterisk is used to distinguish dimensional quantities from their dimensionless equivalents.

The problem is non-dimensionalised by choosing h and ωh as the natural length and velocity scales,

respectively, giving a Reynolds number, Re = ρωh2/µ. The dimensionless coordinates are r = r∗/h ∈ [0, Ŵ]

and z = z∗/h ∈ [−1/2, 1/2], where Ŵ = L/h is the aspect ratio of the domain. The dimensionless velocity

field is u = u
∗/(ωh), with components (u, v, w) in the directions of increasing (r, θ , z), respectively; and the

fluid pressure, p∗, is non-dimensionalised on the viscous scale, p = p∗/(µω).

If the aspect ratio, Ŵ, is large, then it is convenient to introduce a re-scaled radial coordinate r̂ = r/Ŵ ∈

[0, 1] and corresponding radial and azimuthal velocity components û = u/Ŵ, v̂ = v/Ŵ. For notational

convenience, we relabel the unchanged vertical coordinate, vertical velocity component and fluid pressure,

ẑ = z, ŵ = w and p̂ = p.

The governing equations in this rescaled problem are the steady, axisymmetric, Navier–Stokes equations

in cylindrical polar coordinates:

Re

[

û
∂û

∂ r̂
−

v̂2

r̂
+ ŵ

∂û

∂ ẑ

]

= −
1

Ŵ2

∂p̂

∂ r̂
+ D

2û, (1a)

Re

[

û
∂ v̂

∂ r̂
+

ûv̂

r̂
+ ŵ

∂ v̂

∂ ẑ

]

= D
2v̂, (1b)

Re

[

û
∂ŵ

∂ r̂
+ ŵ

∂ŵ

∂ ẑ

]

= −
∂p̂

∂ ẑ
+ ∇2ŵ, (1c)

where

∇2f ≡
1

Ŵ2

(

∂2f

∂ r̂2
+

1

r̂

∂f

∂ r̂

)

+
∂2f

∂ ẑ2
and D

2f ≡ ∇2f −
1

Ŵ2

f

r̂2
;

and the continuity equation

1

r̂

∂

∂ r̂

(

r̂û
)

+
∂ŵ

∂ ẑ
= 0. (2)
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The no-slip and impermeability boundary conditions on the counter-rotating disks are:

û(r̂, ẑ = ± 1
2 ) = ŵ(r̂, ẑ = ±

1

2
) = 0, and v̂(r̂, ẑ = ±

1

2
) = ±r̂. (3)

Large aspect ratios: Ŵ ≫ 1. We note that in the limit of large aspect ratios, that is as Ŵ → ∞, the equations

are reduced to being parabolic in r̂ if one assumes that Ŵ−1 ∂
∂ r̂

≪ 1. This approach is taken, for example, in

the work of Brady and Durlofsky [9] and corresponds to assuming that no radial flow features exist with

length scales comparable to the separation of the two disks. Such an assumption will be invalid in “square”

regions near the axis and the edge of the disks, where r̂ = O(1/Ŵ) or r̂ = 1 − O(1/Ŵ) (corresponding to

r∗ = O(h) or r∗ = L−O(h)). In these regions, the effects of radial viscous stresses must be included. Brady

and Durlofsky imposed boundary conditions on the parabolic system based on ad hoc assumptions about

the end regions; the reader is directed to their paper for specifics. We shall discuss this assumption that

Ŵ−1 ∂
∂ r̂

≪ 1 in more detail when our global numerical results are presented.

2.1 Self-similar flows in infinite domains

If the flow domain is infinite in its radial extent, then Eqs. 1, 2 admit self-similar solutions of von Kármán

form:

û = −
1

2
r̂F

′

(ẑ), v̂ = r̂G(ẑ), ŵ = F(ẑ), p̂ =
1

2
r̂2Ŵ2K + Q(ẑ), (4)

where K is a constant and a prime denotes differentiation with respect to the remaining independent

variable, ẑ. The chosen form exactly satisfies the continuity equation (2) and ensures that the radial and

transverse-pressure-gradient terms remain in the momentum equations.

Equation 1c decouples from the system and may be integrated once to determine the vertical pressure

variation,

Q(ẑ) = F
′

(ẑ) − Re
1

2
F2(ẑ). (5)

After differentiation of Eq. 1a to eliminate the constant radial pressure gradient, K, the system reduces to

two coupled ordinary differential equations

G
′′

= Re
(

FG
′

− F
′

G
)

, (6a)

F(iv) = Re
(

FF
′′′

+ 4GG
′
)

. (6b)

The boundary conditions are F(±1/2) = F ′(±1/2) = 0 and G(±1/2) = ±1. The system exhibits a pitchfork

bifurcation at a critical Re = Rec ≈ 120; see Fig. 1.

These equations are said to be exact because none of the terms in the original Navier–Stokes equations

have been neglected. We note that the terms of O(1/Ŵ2) in Eqs. 1a–c are identically zero when using the

scalings (4). Hence, solutions of the Eqs. 6a,b are also solutions of the original system in the limit, Ŵ → ∞.

The system (6a,b) has been widely studied and many solutions have been found in the two-dimensional

parameter space spanned by the Reynolds number and a measure of the relative rotation rates of the

two disks; see [2]. For the purposes of this work, however, we restrict attention to the case of exact

counter-rotation for Reynolds numbers in the range Re ∈ [0, 500].

2.2 Numerical solution in a finite domain

When the flow domain is finite in its radial extent, we solve the axisymmetric Navier–Stokes equations

using a Galerkin finite-element method. Standard continuation methods are used to track the resulting
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Fig. 1 The pitchfork bifurcation at Re ≈ 120 in the similarity solution described by (6a) and (6b). Note that the two branches
of solution type II are interchanged by reflection in the midplane z = 0, so that both branches have the same radial flow
measure (û/r̂) but the transverse flow (ŵ) is inverted

solutions in the two-dimensional parameter space spanned by the Reynolds number, Re, and the aspect

ratio of the domain, Ŵ.

The problem is formulated in the unscaled dimensionless coordinates, (r, z), defined in Sect. 2, in which

case Ŵ ≡ 1 in the governing equations (1,2) and we drop the caret notation. The cylindrical domain is

decomposed into isoparametric, axisymmetric Q2P−1 finite elements; see [13, p. 554] for example. The

pressure is discontinuous across element boundaries and is approximated by piecewise bi-linear polyno-

mials, ξj, p =
∑

j pjξj, where pj are the discrete pressure unknowns. The two global coordinates (r, z) and

the three velocity components (u, v, w) are continuous across element boundaries and are approximated

by piecewise bi-quadratic polynomials, φi, e.g., u =
∑

i ui φi, where ui are the velocity unknowns.

The finite-element method is used to calculate approximate solutions to the weak form of the Navier–

Stokes equations, obtained by weighting (1,2) by suitable test functions and integrating over the fluid

domain. A consequence of the assumption of axisymmetric flow is that we can integrate over the azimuthal

coordinate, θ , analytically and cancel the resulting factors of 2π .

In a Galerkin formulation, the test functions are the same as the functions used to interpolate the

unknowns; hence, the momentum equations are weighted by the velocity basis functions, φi. The viscous

and pressure terms are integrated by parts, ensuring that the highest derivatives in the equations are first-

order only. An application of the divergence theorem yields the desired weak form, and leads to a set of

coupled, nonlinear residual equations:

Ui =

∫ 1
2

− 1
2

∫ Ŵ

0

[

Re

(

u
∂u

∂r
+ w

∂u

∂z
−

v2

r

)

−
p

r
+ (1 + γ )

u

r2

]

φi r dr dz

+

∫ 1
2

− 1
2

∫ Ŵ

0

[(

−p + (1 + γ )
∂u

∂r

)

∂φi

∂r
+

(

∂u

∂z
+ γ

∂w

∂r

)

∂φi

∂z

]

r dr dz

−Ŵ

∫ 1
2

− 1
2

[

−p + (1 + γ )
∂u

∂r

]

r=Ŵ

φi dz, (7a)

Vi =

∫ 1
2

− 1
2

∫ Ŵ

0

[

Re

(

u
∂v

∂r
+ w

∂v

∂z
+

uv

r

)

+
v

r2
− γ

1

r

∂v

∂r

]

φi r dr dz

+

∫ 1
2

− 1
2

∫ Ŵ

0

[(

∂v

∂r
− γ

v

r

)

∂φi

∂r
+

∂v

∂z

∂φi

∂z

]

r dr dz − Ŵ

∫ 1
2

− 1
2

[

∂v

∂r
− γ

v

Ŵ

]

r=Ŵ

φi dz, (7b)
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Wi =

∫ 1
2

− 1
2

∫ Ŵ

0

[

Re

(

u
∂w

∂r
+ w

∂w

∂z

)]

φi r dr dz

+

∫ 1
2

− 1
2

∫ Ŵ

0

[(

∂w

∂r
+ γ

∂u

∂z

)

∂φi

∂r
+

(

−p + (1 + γ )
∂w

∂z

)

∂φi

∂z

]

r dr dz

−Ŵ

∫ 1
2

− 1
2

[

∂w

∂r
+ γ

∂u

∂z

]

r=Ŵ

φi dz. (7c)

The parameter γ is used to specify whether the equations are solved in conventional (γ = 0) or stress-

divergence form (γ = 1). In the latter case, the “natural” boundary conditions are that the fluid traction

is zero; in the case γ = 0, the corresponding boundary conditions are that the pseudo-traction is zero, see

(11) for the distinction between traction and pseudo-traction.

The surface integrals over the upper and lower walls are omitted because we impose Dirichlet conditions

along these boundaries. The appropriate no-slip boundary conditions are u = w = 0 on z = ±1/2 and, for

exact counter-rotation, we impose v = −r on z = −1/2 and v = r on z = 1/2. The boundary conditions at

the axis, r = 0, are u = 0, v = 0 and ∂w/∂r = 0. This last condition is the “natural” boundary condition

of (7c) even when γ = 1, because the Dirichlet condition on u implies that ∂u/∂z = 0 along the axis. This

condition is implicitly enforced in our formulation by the omission of the “surface” integral along the line

r = 0 in (7c).

Finally, the weak form of the continuity equation is obtained by weighting it with the pressure basis

functions, ξj, and integrating over the volume,

Pj =

∫ 1
2

− 1
2

∫ Ŵ

0

[

1

r

∂

∂r
(ru) +

∂w

∂z

]

ξj r drdz. (8)

The nonlinear system of equations (Ui, Vi, Wi, Pj)
T = 0 is then assembled and solved numerically via a

Newton method.

It remains only to specify the boundary condition at the end of the domain, r = Ŵ. We find that this

boundary condition can have a profound effect on the behaviour of the solution and consider three main

alternatives.

2.2.1 Closed-end boundary conditions

In many experimental configurations, the disks are enclosed by a fixed impermeable end wall. The required

boundary conditions in this case are that u = v = w = 0 on the edge r = Ŵ; and we obtain the same results

for γ = 0 and γ = 1. The condition v = 0 induces a discontinuity in the swirl velocity v at the corners

r = Ŵ, z = ±1/2 because the upper/lower boundaries impose v = ±Ŵ at these points. In contrast to

the well-known driven-cavity problem, there is no associated pressure singularity because the pressure

does not feature in the azimuthal momentum equation. Nonetheless, we have taken great care to obtain

results that are independent of the treatment of the corner regions. Following the methods successfully

employed in Taylor–Couette flow computations (see for example [14]), a simple approach is to reduce the

swirl velocity of the disks to zero smoothly, but rapidly, with a corner refinement of the computational

mesh in these regions. Numerical results are then seen to be independent of the length scale over which

this smoothing is applied (for sufficiently small length scales). For sufficiently fine grids, the results are

identical to those obtained when the corner discontinuities are explicitly included in the approximation

for the swirl velocity, v = Vdiscont +
∑

i viφi. In practice, of course, in any experimental investigation there

will be a small gap between the disks and any surrounding shroud.
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2.2.2 Open-end boundary conditions

The earliest numerical studies of flow between finite rotating disks were motivated by the problem of flows

in differentially rotating cylindrical drops [15]. The boundary conditions chosen in such studies were appro-

priate for a ‘free surface’ confined to the line r = Ŵ. Specifically, the velocity normal to the surface is zero,

u = 0, and the tangential fluid traction is also zero. The traction conditions are enforced by omitting the

surface integrals in (7b) and (7c) and setting γ = 1. We use these boundary conditions in order to compare

our results with the recent paper of Witkowski et al. [12]). In addition, we briefly consider traction-free

boundary conditions, the “natural” boundary conditions when γ = 1; and pseudo-traction-free boundary

conditions, the “natural” boundary conditions when γ = 0. In both cases, the normal fluid traction or

pseudo-traction, rather than the normal fluid velocity, is set to zero.

2.2.3 Boundary conditions consistent with the similarity solution

We expect to be able to resolve the similarity solution throughout the entire finite domain, provided that

the condition applied at r = Ŵ does not preclude the similarity form. One possibility is to impose the

similarity solution as a Dirchlet condition. The similarity solution, uss = (r uss, r vss, wss)
T , is obtained by

solving (6a, 6b); here we use uss(z), vss(z) and wss(z) to denote the quantities −F ′(z)/2, G(z) and F(z),

respectively. This solution can then be imposed at every node on the boundary by setting

u(r = Ŵ, z) = Ŵuss(z) − Ŵ

∫ 1
2

− 1
2

uss(z) dz,

v(r = Ŵ, z) = Ŵvss(z), w(r = Ŵ, z) = wss(z) .

The inclusion of the integral term here ensures that conservation of mass is achieved in the discretised

problem by subtracting the mass flux per unit length into the domain from the radial velocity compo-

nent. These boundary conditions do indeed resolve the similarity solution throughout the entire domain,

although for coarse meshes the discrete-mass-conservation requirement introduces a small correction

region near r = Ŵ.

Once Re > Rec ≈ 120, however, the solution for uss is non-unique and one of the multiple steady

solutions must be selected and imposed at the edge. In fact, the selected solution is resolved throughout

the domain, but remains stable to temporal perturbations, even when the imposed condition is an unstable

solution of the similarity equations. Thus, the Dirichlet conditions are too restrictive (or “too hard”), in

the sense that the reflectional symmetry about the mid-plane will not be broken in the finite domain if that

symmetry is enforced via the edge condition (even though the condition is applied only along a line within

the domain and the other points in the domain are free to become asymmetric).

A more elegant boundary condition (that does not impose a symmetry) may be formulated by requiring

that the traction at the location r = Ŵ is consistent with the form of the similarity solution. In general, the

similarity form (4) can be made unsteady, giving a solution in the form

u = russ(z, t), v = rvss(z, t), w = wss(z, t), p =
1

2
r2K(t) + Q(z, t). (9)

A consequence of the addition of the acceleration term is that Eq. 5 becomes

Q(z, t) = w′
ss(z, t) − Re

(

1

2
w2

ss(z, t) +

∫ z ∂wss

∂t
(s, t) ds

)

. (10)

The fluid-traction components normal to the boundary r = Ŵ are

σu = −p + (1 + γ )
∂u

∂r
, σv =

∂v

∂r
− γ

v

r
, σw =

∂w

∂r
+ γ

∂u

∂z
. (11)
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Thus, using the scalings (9) and Eq. 10 shows that the following tractions are consistent with the similarity

solution:

σu = −
1

2
r2K(t) + Re

(

1

2
w2

ss(z, t) +

∫ z ∂wss

∂t
(s, t) ds

)

+ (3 + γ )uss(z, t),

σv = (1 − γ )vss(z, t),

σw = γ r
∂uss

∂z
(z, t),

where the continuity equation has been used to replace ∂wss/∂z by −2uss. Without any loss of generality

we can insist that the pressure constant is zero at the end of the domain, K = 0, and then require that

the velocity field of the full solution is the similarity solution at the edge of the domain, i.e. uss = u/Ŵ,

vss = v/Ŵ and wss = w at r = Ŵ. The resulting traction conditions then become

σu = Re

[

1

2
w2 +

∫ z ∂w

∂t
(s, t)

∣

∣

∣

∣

r=Ŵ

ds

]

+ (3 + γ )
u

Ŵ
, (12a)

σv = (1 − γ )
v

Ŵ
, (12b)

σw = γ
∂u

∂z
, (12c)

and this is easily imposed (directly) via the surface-integral terms in the weak form of the momentum

equations. We note that, for steady problems, the integral term will be zero.

3 Results

Two different implementations of the same problem have been developed, using separate libraries for

the solution of elliptic systems via the finite-element method, namely oomph-lib [16] and ENTWIFE [17].

The results (as shown in this section) of both formulations agree to within the specified tolerance of the

methods, which is typically that the maximum residual is below 10−8.

3.1 The symmetric states

The similarity solution may be interpreted as a near-axis expansion in the radial coordinate, and so we

expect it to be at its most accurate (compared to a finite-domain solution) in a central region near r = 0.

If the boundary conditions at r = Ŵ are not compatible with the similarity solution, then we might hope

that this influence will be confined to a zone near the end of the domain in which the solution adjusts to

the enforced boundary conditions.

We first consider the closed-end boundary condition, corresponding to the disks being surrounded by a

fixed, impermeable shrouding cylinder. Results for the vertical velocity at a fixed height, w(r, z = −1/4),

are shown in Fig. 2 together with the corresponding similarity solutions in a domain of aspect ratio Ŵ = 10.

Here we choose a measure of the w-velocity component at z = −1/4 in order to obtain a non-zero

measure of symmetric states; it is worth noting that this is an arbitrary choice and any metric displays

similar behaviour.

We find, in agreement with [9], that the similarity solution provides an accurate quantitative prediction

for the flow in a region near the axis of rotation, and that, for sufficiently large aspect ratios, Ŵ ≥ 10, the

region always occupies the same proportion of the domain at a given Re, i.e., the results are independent

of Ŵ when presented as functions of the scaled radial coordinate, r̂. The axial extent of the region decreases

as Re increases and Brady and Durlofsky [9] showed that the region vanishes for sufficiently large values
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Fig. 2 Vertical velocity, w, as a function of the scaled radial
coordinate r̂ = r/Ŵ at a fixed height, z = −1/4, for the
case Ŵ = 10. Solutions obtained in the finite domain with
closed-end boundary conditions (solid lines) are compared
to the similarity solution (dashed lines) from Re = 10 (top)
to Re = 160 (bottom). Note that w is independent of r̂ for
the similarity solution
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Fig. 3 Scaled deviation of the velocity from the similarity
solution, � = (w − wss)/ maxr̂(w − wss), as a function of the
scaled radial coordinate r̂ = r/Ŵ at a fixed height, z = −1/4,
for the case Ŵ = 10, Re = 80. Solutions are shown for four
different boundary conditions at r = Ŵ: closed-end (solid
line), open-end (dashed line), traction-free (dotted line) and
pseudo-traction-free (dot-dashed line). In each case devia-
tion from the similarity solution is first observed at r̂ ≈ 0.7

of Re in arbitrarily large (but still finite) domains. At such high values of Re, however, such results are of

less interest if the symmetric state becomes unstable via bifurcations at lower Reynolds numbers.

We find the same general behaviour for a number of alternative boundary conditions applied at r = Ŵ

and, in fact, the size of the adjustment zone does not vary greatly between the different cases. A comparison

between four different boundary conditions at Ŵ = 10 and Re = 80, is shown in Fig. 3. The accuracy of the

similarity solution is indicated by plotting the deviation of the vertical velocity from the similarity solution

at a fixed height, w(r, z = −1/4)−wss(r, z = −1/4). In order to compare the different boundary conditions,

the measure is scaled so that the maximum deviation in the range r ∈ [0, Ŵ] is always one. In fact, the

absolute magnitude of the deviation is only significantly different in the case of the pseudo-traction-free

boundary condition, when it is an order of magnitude smaller than the other three cases.

We conclude, therefore, that, provided the flow remains symmetric, the similarity solution provides a

good representation of the solution over a sizeable portion of the finite domain for moderate Reynolds

numbers (Re � 200) irrespective of the boundary conditions.

3.2 Midplane-symmetry breaking

The similarity solution loses midplane symmetry via a supercritical pitchfork bifurcation at Re = Rec ≈

120, see Sect. 2.1. This pitchfork bifurcation is independent of Ŵ and is exactly reproduced by the full elliptic

system when fluid tractions consistent with the form of the similarity solution (Eqs. 12a,c), are applied at

r = Ŵ. Using these end conditions, we find Rec = 119.78 at a mesh resolution of 150 × 30 elements, in

agreement with the results from the system (6a,b). The accurate resolution of the bifurcation confirms that

these boundary conditions do indeed faithfully reproduce the behaviour of the similarity solution over the

whole domain. We should note, however, that these boundary conditions do not preclude the co-existence

of more complex, non-self-similar states.

In the finite domain, we would not expect the symmetry-breaking bifurcation to be suppressed for

general boundary conditions. It remains to be seen, however, whether the bifurcation in the similarity
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solution has any bearing on the finite-domain problem. Brady and Durlofsky [9] solved the parabolic

system obtained from the large-aspect-ratio limit Ŵ → ∞ of the Navier–Stokes equations (1,2), but were

unable to find non-uniqueness in their solution. In contrast, Harriot and Brown [15] solved the problem

using the open-end boundary conditions and found a midplane-symmetry breaking pitchfork bifurcation at

Rec ≈ 109 when Ŵ = 1. In addition, the recent work of Nore et al. [11] found axisymmetric pitchfork bifur-

cations for closed-end conditions when Ŵ ≤ 2. In that regime, however, bifurcations to non-axisymmetric

states were found to occur at lower Reynolds numbers than the midplane-symmetry breaking bifurcations;

we shall discuss this in our concluding section.

Initially, we demonstrate convergence of our numerical results, by locating the first midplane-symmetry

breaking pitchfork bifurcation, Rep, for closed-end boundary conditions when Ŵ = 10. The results for a

number of different (uniform) mesh resolutions in the half domain (r, z) ∈ [0, Ŵ] × [0, 1/2] are shown in

Table 1. The location of the bifurcation is well-resolved by a uniform mesh of 150 × 30 elements in the

complete domain and this resolution was used for the majority of presented computations. Convergence

of selected results was confirmed by repeating the calculations at a higher resolution. We note that the

actual number of elements over the whole domain is somewhat greater than 2Nr × Nz, owing to five levels

of corner refinement employed near r = Ŵ.

Table 2 shows the location of the first pitchfork bifurcation when Ŵ = 10 for a number of different

boundary conditions. Although the region of validity of the symmetric similarity solution appears to be

independent of the boundary conditions, the symmetry-breaking bifurcation is significantly influenced by

the boundaries. In no case, however, does the location of the bifurcation coincide with the symmetry-

breaking bifurcation of the similarity solution; the closed-end is the closest at Re ≈ 108. It is possible to

perform homotopy continuation to demonstrate that the similarity-solution bifurcation is connected to

the corresponding pitchfork bifurcation in a two-dimensional parameter space spanned by the Reynolds

number and a homotopy parameter for the closed-end and traction-free boundary conditions. For the open-

end boundary condition, the connection is via a path in a three-dimensional parameter space spanned by

the Reynolds number, the aspect ratio and the homotopy parameter.

Table 1 The location of the pitchfork bifurcation at Ŵ = 10 for a uniform mesh of Nr × Nz elements over the half domain
with closed-end conditions, u = v = w = 0 at r = Ŵ, corresponding to a fixed impermeable shrouding cylinder

Nr Nz Rep(Ŵ = 10) % change

50 5 110.055 –
100 10 108.647 1.30 %
150 15 108.405 0.22 %
200 20 108.342 0.06 %

Table 2 The location of the pitchfork bifurcation at Ŵ = 10 for a uniform mesh of 150 × 15 elements over the half domain
under different boundary conditions at r = Ŵ: closed end, u = v = w = 0; open end, γ = 1, u = 0 and the tangential traction
is zero; traction free, γ = 1 and all components of the fluid traction are zero; pseudo-traction free, γ = 0 and all components
of the fluid traction are zero

Boundary condition Rep(Ŵ = 10)

Similarity solution 119.8
Closed end 108.4
Open end 26.7
Traction free 39.4
Pseudo-traction free 217.3

The location of the bifurcation is strongly dependent on the boundary conditions, despite the fact that the symmetric base
state is well approximated by the similarity solution in all cases. Here we also show the critical Reynolds number for the
similarity solution, although this is obviously independent of Ŵ
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In general, the Reynolds number at which the first pitchfork bifurcation occurs will be a function of

the aspect ratio, Re = Rep(Ŵ). At least for the closed-end condition, one might anticipate that the bifur-

cation in the finite domain, at Re ≈ 108, is closely related to the bifurcation in the similarity solution at

Re ≈ 120. It would be natural to expect (naively) that Rep(Ŵ) approaches 120 as Ŵ increases. We find that

this is not the case. Moreover, the asymmetric bifurcated states show no agreement with the corresponding

asymmetric self-similar solution. For the closed-end boundary conditions, Fig. 4 presents a comparison

of w(r = 0, z = −1/4) for both the bifurcating similarity solution (solid line) and the bifurcating global

solution (data points and dashed line). As we have noted previously, there is excellent agreement between

the symmetric state (branch I) and the full solution (over the full range of Re here), but there is clearly no

quantitative agreement for the bifurcating states (branch II).

In fact, there is no qualitative agreement between the bifurcated states of the finite-domain problem

and those of the self-similar solution. The reason that non-uniqueness is absent in [9] was the limiting

assumption that

1

Ŵ

∂

∂ r̂
≪ 1 as Ŵ → ∞.

Our numerical results indicate that, in contrast to the similarity solution, the loss of midplane symmetry in

the finite domain is associated with structures that have a radial length scale comparable to the separation

of the two disks; see Figs. 8 and 9. Any attempt to consider a parabolic interior flow based on the above

scaling, will necessarily eliminate such states.

3.2.1 Closed-end conditions

For the experimentally motivated, closed-end boundary conditions, Fig. 5 shows the locus of the pitchfork

bifurcation and the locus of saddle-node boundaries in the two-dimensional parameter space spanned by

the Reynolds number and the aspect ratio. The recent data presented by Nore et al. [11], who considered

the small aspect ratio limit (Ŵ ≤ 2), is included for additional validation and is found to be in excellent

agreement with our results. We note in passing that their analysis uses the disk radius as the natural

length-scale, leading to different definitions of the aspect ratio and Reynolds number.

To aid in the interpretation of Fig. 5, we also provide a schematic of the bifurcation structure (in Fig. 6)

for increasing values of the aspect ratio. Each bifurcation diagram (a)–(l) shows only half of the full dia-
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Fig. 5 The locus of the primary pitchfork bifurcation (solid
line) and the locus of saddle-node points (dashed lines) for
the closed-end boundary condition. The data points (△) are
obtained from the work of Nore et al. [11]. Here C+, C−

denote coalescence points, T transcritical points, H a hys-
teresis point and Q quartic points
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gram, since each is symmetric about the horizontal axis. Quantitative bifurcation diagrams showing the

sequence (a)–(l) have been generated, but they show the topology of the solutions with less clarity than

this schematic sequence.

The cross section (a) corresponds to low values of Ŵ for which the first bifurcation is supercritical and the

second bifurcation is subcritical. This is not evident in Fig. 5 because the schematic diagram exaggerates the

separation of the saddle node and second bifurcation point. The sequence (b)–(l) corresponds to increasing

Ŵ towards Ŵ = 12, the upper limit in Fig. 5. In particular, we note the existence of the three transcritical

points at critical aspect ratios between Figs. (e) and (f), (f) and (g) and (k) and (l); these transcritical points

are located at Ŵ ≈ 6.21, 6.77 and 8.85, respectively. There is also a hysteresis point at Ŵ ≈ 8.51, shown by

the transition from diagram (j) to (k).

At these moderate to large aspect ratios, therefore, the behaviour of the system is extremely complex

and completely different to that of the similarity solution.

3.2.2 Open-end conditions

The case of open-end boundary conditions has been studied in [12] for large-aspect-ratio counter-

rotating-disk flow. They considered only the linear stability problem, however, and do not present details

of the bifurcation structure or the nonlinear, bifurcated states. Witkowski et al. found that for this choice

of end condition, a pitchfork bifurcation is found at low to moderate values of Ŵ, but is replaced by a Hopf

bifurcation at larger values of Ŵ. A parallel-flow approximation applied to the base flow followed by a

temporal stability analysis to perturbations of normal mode form was found to be in agreement with the

numerical results for large Ŵ. The main result of their paper was that the location of the Hopf bifurcation

scales with the inverse square root of the aspect ratio, ReHopf ∼ Ŵ−1/2.

We extend the results of Witkowski et al. to determine the locus of the pitchfork bifurcation over a

wider range of the parameter space spanned by the Reynolds number and the aspect ratio. The results

are shown in Fig. 7 together with the data of Witkowski et al. The datasets differ when the first instability

becomes a Hopf bifurcation. Once again, we find a complex behaviour that appears to be totally unrelated

to the behaviour of the similarity solution.
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(f)
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Fig. 6 A schematic diagram of the bifurcation sequence
as a function of Re ∈ [0, 500] for fixed values of Ŵ.
The diagrams (a)–(l) correspond to aspect ratios: Ŵ ≈

1.4, 2.5, 3.15, 4, 6, 6.5, 6.79, 6.81, 7, 8, 8.75, 12. The locus of the
saddle-node points (◦) are shown as the dashed lines in Fig.
5, whereas pitchfork bifurcations (•) are shown as the solid
line in that figure
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Fig. 7 The instability boundaries for an open-end condi-
tion applied at r = Ŵ. The data points denote the results of
Witkowski et al. for the first instability threshold, whereas
the solid line shows our results for the locus of the pitchfork
bifurcation. This dataset should be compared to that shown
in Fig. 5 (for a closed end) although we do not present the
saddle-node boundaries in this case



J Eng Math (2007) 57:273–288 285

3.3 Nonlinear stationary-wave states

In this section, we briefly describe the nonlinear states that arise from the pitchfork bifurcation. A possible

description of these states by asymptotic means is under investigation by the authors, and we restrict

ourselves to presenting some of the main qualitative features here.

We first present results for the closed-end boundary conditions when Ŵ = 10. Note that in the following

discussion, we shall make use of the symmetry about the horizontal axis and restrict attention to the

half of the bifurcation diagram shown in Fig. 6(l). The pitchfork bifurcation is located at Rep ≈ 108.4

and the saddle-node at Res ≈ 170.1. Thus, when Re = 150, there are two possible solutions: the sym-

metric solution and the asymmetric bifurcated solution. Meridional streamlines and contours of the azi-

muthal velocity for these solutions are shown in Fig. 8. When Re = 200, however, there are four possible

solutions: the symmetric solution, the asymmetric solution emanating from the pitchfork bifurcation and

two isolated asymmetric solutions connected through the saddle-node bifurcation. Figure 9 shows merid-

ional streamlines and contours of azimuthal velocity for the three asymmetric solutions; the symmetric

solution does not differ greatly from the symmetric solution at Re = 150 and is not shown.

As we have noted in the previous section, the bifurcated states arise with radial length scales that

are comparable to the disk separation. In particular, any metric of the solution as a function of radial

location displays a wavelike behaviour. An obvious metric to choose is the meridional stream function

ψ(r, z) where u = −ψz/r and w = ψr/r. For the von Kármán similarity solution it is straightforward

to see that, in terms of our solution in Sect. 2.1, we have ψ(r, z) = 1
2 r2F(z). Although these finite-

domain stationary-wave solutions are not of von Kármán form, we shall choose to scale the measure of

the solution by the r2 factor. In figure 10, we also choose to scale the measure by an additional factor

log(r), although for the purposes of this limited description one can view that choice as being empirically

motivated.
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Fig. 8 Streamlines (a, b) and contours of azimuthal velocity, v, (c, d) for the closed-end boundary conditions when Ŵ = 10
and Re = 150. The symmetric solution is shown on the left (a, c) and the asymmetric bifurcated solution is shown on the right
(b, d). Note that a third possible solution is the reflection of the asymmetric solution (b, d) in the line z = 0
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Fig. 9 Streamlines (a, b, c) and contours of azimuthal velocity, v, (d, e, f) for the closed-end boundary conditions when Ŵ = 10
and Re = 200. There are seven possible solutions: the symmetric state, three asymmetric solutions and their reflections in the
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Fig. 10 The bifurcated,
finite-domain solution
with a closed-end
condition at Re = 150 at a
range of aspect ratios
Ŵ = 10, 15, 20, 25, 30.
Here we plot the scaled
meridional stream
function, ψ , as a function
of the radial coordinate,
along the midplane
(z = 0) of the flow
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It is clear from Fig. 10 that the solutions are saturated wave states that have a well-defined wavelength.

The wavelength (when non-dimensionalised on the gap-width) is independent of the aspect ratio of the

domain, although there is some phase adjustment associated with the particular value of Ŵ chosen.

Interestingly, the wave-state solutions appear to be generic solutions of the problem. The solutions

have been observed for the open-end boundary conditions. Indeed, it is possible to perform a homotopy

continuation to show that such states persist if the edge conditions are altered so that one imposes the

asymmetric similarity solution (at the same Reynolds number) as a Dirichlet condition. In this sense, one

might expect that these states are more general solutions of the unbounded flow and are not simply a

consequence of the forcing at the edge of the finite domain.
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4 Discussion

In summary, we find the following answers to the three simple questions raised in the introduction:

(i) In general, the finite-domain problem does lose the midplane symmetry as the aspect ratio is increased.

Continuation in a homotopy parameter demonstrates that each bifurcation is connected to the bifurcation

of the similarity solution, but the path between the two in the space spanned by the Reynolds number, the

aspect ratio and the homotopy parameter can be rather complex.

(ii) The bifurcation in the similarity solution is of no use in predicting the critical Reynolds number at

which symmetry is lost in a finite-domain flow, even when Ŵ is large. Over the range of aspect ratios studied

here, Ŵ ∈ [0, 30], changing the boundary conditions causes vast differences in the critical parameters at

which the pitchfork bifurcation is located. Thus, although the exact nature of the edge conditions has little

influence on the symmetric solution, it is crucial in determining the bifurcation structure. For example,

comparing Fig. 7 and 5, at Ŵ = 10, we see that the critical Reynolds number differs by (approximately) a

factor of four when switching the edge conditions from a closed end, to an open end. Moreover, neither

case bears any resemblance to the similarity solution.

(iii) Despite the complete failure of the symmetry-broken similarity states (branch II) to make useful

predictions for a finite domain, the symmetric similarity solution (branch I) is an excellent predictor of the

flow. For moderate Reynolds numbers, the agreement is good over sizeable portions of the domain and

appears to be unchanged by the different edge constraints, all of which are nonlinear perturbations of the

similarity solution.

The applicability of the symmetric similarity solution at low Reynolds numbers was exploited by

Witkowski et al. to find a scaling for the first instability threshold as a function of aspect ratio. They assumed

that the aspect ratio was large and made a parallel-flow approximation, after which they

performed a linear stability analysis of the symmetric similarity solution. Although not explicitly stated in

their paper, we believe that the scaling applies only to the Hopf bifurcation and find no obvious indication

that it applies to our pitchfork bifurcation, at least in the range of Ŵ investigated here.

There are two obvious points to be made here regarding our assumptions of a steady, axisymmetric solu-

tion. As shown in Fig. 7, there is always the possibility that the first instability is in fact a Hopf bifurcation

leading to a time-dependent axisymmetric state. Although we have not performed any formal continuation

of the Hopf boundaries, we have performed several unsteady computations to confirm our steady results

and to assess the importance of time-dependent states. For the open-end boundary conditions, our unsteady

results confirm the presence of the Hopf bifurcation predicted by Witkowski et al. but importantly, in Fig. 7,

there is a range of Ŵ for which the first pitchfork only leads to instability of the symmetric state for a small

range of Re before it is restabilised. Unsteady computations at Re = 80 and Ŵ = 10 confirm that some of

these restabilised regions are temporally stable, a feature that is missed in the results of Witkowski et al.

Furthermore, for the closed-end condition, unsteady computations suggest that over the range of Re and

Ŵ presented in Fig. 5, there is no significant role played by a Hopf bifurcation.

A second possibility is that the first instability is non-axisymmetric and the work of Nore et al. [11]

shows that non-axisymmetric instabilities are typically the first observed at low values of Ŵ. However, our

primary motivation in this work was to assess the application of the axisymmetric similarity solution to a

finite domain. Furthermore, the paper of Witkowski et al. refers to experiments (albeit as a private commu-

nication) that find an axisymmetric instability as the first transition. Finally, as with any complex dynamical

system, a full understanding only comes from consideration of all states, both stable and unstable. We

may also note that it is easy to generate a two-disk analogue of the non-axisymmetric, exact, von Kármán

solution provided by Hewitt and Duck [18], and it would be of interest to relate this state to finite-domain

computations.

Throughout this work we have not discussed the concepts of linear spatial stability, our primary concern

being to describe sensible choices of edge conditions that are nonlinear perturbations of the similarity
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form. However, if one is prepared to consider linearised perturbations away from the von Kármán type of

flow, then it is possible to consider a steady spatial analysis by seeking perturbations in the form

u(r, z) = russ(z) + ǫr1+λũ(z) ,

with similar forms for the other dependent variables and |ǫ| ≪ 1. (This approach is only formally valid

when Ŵ ≫ 1.) In this way one can formulate a linear eigenvalue problem for the (complex) quantity λ, and

in general the set {λi} will involve infinitely many values both to the left and to the right of the imaginary

axis. Such an analysis has been considered in a number of papers, in particular for Jeffery–Hamel flow

(see for example [19]). In the case of rotating-disk flows, one can go further, allowing for spatio-temporal

development. It is a trivial observation that any pitchfork bifurcation within the von Kármán similarity

form, must also lead to one of the eigenvalues λj crossing through the origin of the complex plane; one

can relate the spatial and temporal instabilities for modes of the form exp[iα(x − ct)] where λ = iα and

x = log(r). Correlation of our results for nonlinear perturbations to those of linearised and/or weakly

nonlinear perturbations is an obvious area of future interest. The ultimate aim is to be able to determine

the relevance of any given similarity solution to a finite-domain flow without having to compute the full

solution.
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