
Institute of Physics and Engineering in Medicine Physics in Medicine and Biology

Phys. Med. Biol. 59 (2014) 1367–1387 doi:10.1088/0031-9155/59/6/1367

Midsagittal plane extraction from brain

images based on 3D SIFT

Huisi Wu1,6, Defeng Wang2,3,4,5, Lin Shi2,3, Zhenkun Wen1,6

and Zhong Ming1

1 College of Computer Science and Software Engineering, Shenzhen University,

Shenzhen, Guangdong, People’s Republic of China
2 Department of Imaging and Interventional Radiology, The Chinese University of

Hong Kong, Shatin, NT, Hong Kong
3 Research Center for Medical Image Computing, The Chinese University of Hong

Kong, Shatin, NT, Hong Kong
4 The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen,

People’s Republic of China
5 Department of Biomedical Engineering and Shun Hing Institute of Advanced

Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong

E-mail: hswu@szu.edu.cn and wenzk@szu.edu.cn

Received 2 June 2013, revised 6 December 2013

Accepted for publication 24 December 2013

Published 28 February 2014

Abstract

Midsagittal plane (MSP) extraction from 3D brain images is considered as

a promising technique for human brain symmetry analysis. In this paper,

we present a fast and robust MSP extraction method based on 3D scale-

invariant feature transform (SIFT). Unlike the existing brain MSP extraction

methods, which mainly rely on the gray similarity, 3D edge registration or

parameterized surface matching to determine the fissure plane, our proposed

method is based on distinctive 3D SIFT features, in which the fissure plane

is determined by parallel 3D SIFT matching and iterative least-median of

squares plane regression. By considering the relative scales, orientations

and flipped descriptors between two 3D SIFT features, we propose a novel

metric to measure the symmetry magnitude for 3D SIFT features. By

clustering and indexing the extracted SIFT features using a k-dimensional tree

(KD-tree) implemented on graphics processing units, we can match multiple

pairs of 3D SIFT features in parallel and solve the optimal MSP on-the-fly.

The proposed method is evaluated by synthetic and in vivo datasets, of normal

and pathological cases, and validated by comparisons with the state-of-the-art

methods. Experimental results demonstrated that our method has achieved a
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real-time performance with better accuracy yielding an average yaw angle error

below 0.91◦ and an average roll angle error no more than 0.89◦.

Keywords: symmetry analysis, MSP extraction, 3D SIFT, GPU KD-tree

(Some figures may appear in colour only in the online journal)

1. Introduction

The left and right hemispheres of human brains are closely symmetrical because most tissues

in the left hemisphere have a mirrored counterpart on the right with apparently similar scale

and appearance. Research studies demonstrated that the symmetrical structure of human brain

degenerates in traumatic brain injury (Gilles et al 2003, Kumar et al 2005), brain infections

(Corti et al 2008, Hermes et al 2008), brain tumors (Joshi et al 2003, Yu et al 2012), metabolic

disorders (Herbert et al 2005, Cullen et al 2006, Takao et al 2010, Oertel-Knöchel and Linden

2011), and perinatal brain lesions (Tommasi et al 2009, Tilman et al 2010, Roussigne et al

2012, Saenger et al 2012), which caused abnormal tissue intensity or texture alterations to break

the symmetrical structure of human brains. To enhance the use of computer-aided technology

in disease diagnosis of human brain, researchers have to understand the relationship between

asymmetrical brain structure and specific brain pathologies. By measuring structural and

radiometric asymmetries based on an efficient multi-scale registration algorithm, Lorenzen

et al (2001) proposed a framework to identify brain tumors. They registered the brain

tissues with their counterpart reflections across the midsagittal plane (MSP) using adaptive

image deformation and intensity warping. By analyzing the texture asymmetry between two

brain hemispheres based on heuristic minimization search, Bergo et al (2008a) successfully

segmented the focal cortical dysplasia, the most common malformation region in patients with

intractable epilepsy. By quantifying brain asymmetry across the MSP in multi-scale spaces

based on a non-supervised manifold learning algorithm, Liu et al (2007) and Teverovskiy

et al (2008) discovered the biomarkers for Alzheimer disease (AD) from the deformation and

tensor fields in MR brain images, which played an important role in early diagnosis of AD.

The key issue to perform the above brain symmetry analysis is the MSP extraction from 3D

brain images. A fast and robust method to automatically extract the MSP from 3D brain images

could improve the accuracy and efficiency.

In MSP extraction methods (Prima et al 2002, Teverovskiy and Liu 2006, Volkau et al

2006, Song et al 2007, Prima and Daesslé 2007, Zhang and Hu 2008, Liu et al 2011, Roy and

Bandyopadhyay 2012), the head volume is usually considered as a whole to maximize bilateral

symmetry. They are more likely to capture the global symmetry of the human brain compared

to symmetry axis detection for each slice. Currently, existing MSP extraction methods can be

divided into two categories, e.g., shape-based and content-based methods (Liu 2009). Content-

based methods determine the symmetrical plane by using registration between two hemispheres

based on some kind of internal signal feature, such as voxel intensity, local edge and gray

distribution (Ardekani et al 1997, Stegmann et al 2005, Grigaitis and Meilunas 2007), while

shape-based methods identify MSP mainly relying on the extracted geometric landmarks and

topological features of the human head, such as the moments of inertia and inter-hemispheric

fissure (Tuzikov et al 2003, Bergo et al 2008b, Liu et al 2011, Roy and Bandyopadhyay

2012). Since MSP provides an intuitive 3D symmetrical division, quantitative asymmetrical

evaluation can be performed for the global human brain. Junck et al (1990) first relied on
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Figure 1. Framework of our method.

cross-correlation analysis to extract fissure planes from PET and SPECT volumes, which the

optimal MSP was determined by finding the translation and rotation that yielded the highest

correlation between left and right hemispheres. By establishing a scan-independent coordinate

system for the human brain, Brummer (1991) formulated the MSP extraction as an image

registration problem and applied the Hough transformation to identify MSP. Liu et al (2001)

further employed an edge-based and cross-correlation approach to decompose the MSP fitting

problem into discovery of two-dimensional (2D) symmetry axes on each slice, and estimated

the MSP parameters using linear regression. By exhaustively searching fissure line segments

using histogram-based outlier removal, Hu and Nowinski (2003) also successfully extracted

MSP by plane fitting based on the dominant orientation and selected fissure segments. Song

et al (2007) determined the MSP based on a group of assistant parallel lines and correlation

of moment of gravitational forces. By representing the image with a polar form, Costantini

and Casali (2007) successfully exploited the nonlinear dynamic behavior of cellular neural

networks to identify MSP. Liu et al (2008) also successfully solved the MSP by minimizing

the statistical dissimilarity between paired regions in opposing hemispheres and formulating

the MSP extraction as an optimization problem. More recently, Ruppert et al (2011) relied on

image features detected by the 3D Sobel edge operator and multi-scale correlation to extract

the optimal MSP, which is sensitive to image noises and deformations. Although encouraging

improvements have been made in both methodology and performance, existing methods are

still not reliable enough or too time consuming to be used in conventional scanning. Most of

them relied on gray level, skull shape or edges to infer the symmetry plane, which may easily

suffer from image noise, local deformation or the deficiencies of edge detectors. In addition,

due to their optimization schemes and iterative natures, none of them can achieve real-time

performance.

In this paper, we present a fast and robust MSP extraction method based on parallel 3D

scale-invariant feature transform (SIFT) matching and voting. Our framework is shown in

figure 1. To collect a set of distinguished features from the brain volume, we have extended

the conventional SIFT algorithm (Lowe et al 2004) from 2D to 3D and implemented it

using graphics processing units (GPU). Since 3D SIFT descriptor is invariant to scaling,

orientation, affine distortion and intensity changes, our method has higher tolerance to image

noise, bias inhomogeneity and local deformation. Also, we have built a GPU KD-tree to index

the clustered 3D SIFT features to achieve parallel matching and voting multiple pairs of 3D

SIFT features. To effectively measure symmetrical magnitude between two 3D SIFT features,

we have designed a novel symmetric similarity metric by combining their relative scales,
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orientations and flipped descriptors. Finally, an iterative least-median of squares (LMS) plane

regression is performed to solve the optimal MSP. Our method has been evaluated on both

synthetic mirrored images and in vivo datasets from normal and pathological cases. Results

from experiment comparisons have demonstrated the effectiveness of our method.

2. Methodology

2.1. 3D sift detection

Although 3D extension of the SIFT algorithm has been recently used for generating

correspondences between two volume images (Scovanner et al 2007, Allaire et al 2008,

Flitton et al 2010), there are rare reports of searching inner correspondences by matching pairs

of 3D SIFT features within a volume image. Since the human brain exhibits an approximately

symmetrical structure that contains a set of 3D mirrored features, extraction of MSP from a

brain volume by matching pairs of inner 3D SIFT features is feasible. Considering that 3D

extension of the SIFT algorithm is straightforward and has been implemented in Scovanner

et al (2007), Allaire et al (2008) and Flitton et al (2010), we can implement the 3D SIFT based

on the above approaches by selecting a best treatment and a best parameter setting in each

step.

To detect 3D SIFT keypoints from a brain volume, we first calculate the difference of

Gaussian (DoG) volumes. Suppose the given volume image is I(x, y, z), and 3D Gaussian

filter is G(x, y, z, kσ ), then the DoG volumes can be written as,

DoG(x, y, z, ki) = G(x, y, z, ki+1σ ) ∗ I(x, y, z) − G(x, y, z, kiσ ) ∗ I(x, y, z) (1)

where ∗ is the convolution operation in x, y and z; kiσ is the scale of the volume. Similar to

Scovanner et al (2007), we set k = 3
√

2, σ = 1.6 and i ∈ {1, 2, . . . , 5} in our experiments.

Once the DoG volumes are obtained, a set of candidate keypoints can be identified as the

local extrema (minima or maxima) in the DoG volumes across the scale spaces. Specifically,

we have compared each voxel in the DoG volumes with its 26 neighbors at the same scale and

27 corresponding neighboring voxels in each of the two neighboring scales. Then, we mark it

as a candidate keypoint if this voxel is the maximum or minimum in terms of intensity among

all compared voxels. To eliminate the false candidates that produce unstable descriptors, two

kinds of erroneous candidates (e.g. poorly localized along an edge or with poor contrast) have

been removed. To discard the keypoints with poor contrast, we have applied the treatment

from Allaire et al (2008), in which the candidate keypoint is discarded if its density is below

a threshold (τc = 0.05). On the other hand, we have also used a 3 × 3 Hessian matrix

H = (Di j)3×3 to describe the local curvature and measure the edge responses for the candidate

keypoints, where Di j is the second derivative in the DoG volume. Similar to Flitton et al

(2010), we can use the following equation to identify the false candidates that are poorly

localized along an edge,

Trace3(H)

Det(H)
<

(2τe + 1)3

(τe)2
(2)

where τe is a threshold. According to Flitton et al (2010), we can also set τe = 30 to remove

the false candidates. After removing the two kinds of false candidates, localizations of the

true keypoints are determined in the DoG volumes. Figure 2 shows typical 3D SIFT keypoints

detected in a volume brain image.

Once the location and the scale of a keypoint are determined, we can calculate its dominant

orientation based on local image gradients to achieve orientation invariance. Unlike the 2D

SIFT keypoint that only requires one angle to determine the dominant orientation, a 3D case
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Figure 2. Typical 3D SIFT keypoints detected on a 3D brain volume.

Figure 3. Three angles required to define the 3D orientation.

requires three angles. As shown in figure 3, they are azimuth angle φa ∈ [−π, π ], elevation

angle φe ∈ [−π
2
, π

2
], and tilt angle φt ∈ [−π, π ]. Therefore, we can denote each keypoint as a

seven-dimensional vector ki = (xi, yi, zi, si, φa, φe, φt ), where (xi, yi, zi), si and (φa, φe, φt )

describe its location, scale and orientation, respectively. To encode the local appearance of

the keypoint ki, we have also generated a 3D SIFT descriptor pi and normalize its scale and

orientation. As shown in figure 5(a), we choose Ns × Ns × Ns sub-volumes surrounding each

keypoint to build the 3D SIFT descriptor pi. Each sub-volume includes Nv × Nv × Nv voxels,

which are the basic elements to be described using gradient histograms. For each voxel, we

split it into 45◦ bins along its azimuth and elevation directions to calculate a Gaussian weighted

gradient histogram, so we obtain 8 × 4 bins in each gradient histogram. Finally, each 3D SIFT
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descriptor pi includes N3
s × N3

v × 8 × 4 components. We set Ns = Nv = 2, and our 3D

SIFT descriptor can be written as pi = (v1, v2, . . . , v2048). Our experiment demonstrated that

increasing the value of Ns or Nv does not improve the accuracy much but slows down the

performance. Note that, in our experiments, the orientation of pi is normalized by always

setting the dominant orientation (φa, φe) of the keypoint ki as the starting point for each

gradient histogram. In addition, the scale of each component in pi is also normalized to unity.

So far, since no additional location, scale or orientation information is recorded in the 3D SIFT

descriptor pi, it satisfies the properties of spatial invariance, scale invariance and orientation

invariance.

2.2. Clustering and indexing

Given a set of 3D SIFT keypoints within a brain volume, we can perform the MSP extraction

by matching pairs of symmetric 3D SIFT keypoints. Multiple pairs of 3D SIFT features of

symmetric voxels within the approximately symmetrical structure should have similar scale

si and tilt angle φt . Clustering on the 3D SIFT keypoints can accelerate the voxel matching.

Thus, we have employed the adaptive mean-shift clustering algorithm (Comaniciu et al 2002) to

group the extracted 3D SIFT keypoints. The major advantage of adaptive mean-shift clustering

is to automatically determine the number of clusters; unlike other techniques such as k-means,

which require to measure the number of clusters in advance. In our implementation, the scales

si and the tilt angle φt of the 3D SIFT keypoints are fed for adaptive mean-shift clustering

in order to group features with similar shapes and tilt orientations. Specifically, a 2D feature

space (si, φt) is regarded as the probability density function (pdf) of the represented 3D SIFT

keypoints. Dense regions in the feature space correspond to local maxima of the pdf, which are

also named the modes of the density. Therefore, based on the local structure of the feature space

(si, φt), we can obtain the number and the shapes of all clusters by identifying the locations of

the modes. Since mean-shift clustering is a nonparametric clustering technique, which does

not require prior measure of the number of clusters, and does not constrain the shape of the

clusters, we start the mode finding procedure on the extracted 3D SIFT keypoints. Then we

run mean-shift procedure to find the stationary points of the density function, and retain those

of local maxima. By repeating the above procedures, we have finally obtained the clustering

results when the set of all locations converge to the same modes.

To facilitate the following k-nearest neighbor (KNN) searching in symmetric voxel

matching, we further index the scales si and tilt angles φt of the keypoints in each cluster

using a k-dimensional tree (KD-tree), which is a well-known acceleration structure to partition

and organize points in k-dimensional space. For fast retrieval, we have implemented the KD-

tree on GPU to support the parallel KNN searching. Specifically, we have applied compute

unified device architecture to build all tree nodes in breadth-first search to fully exploit the fine-

grained parallelism of modern GPUs at all stages of KD-tree construction (Zhou et al 2008). In

terms of speed, such an implementation is much faster than well-optimized single-core CPU

algorithms and competitive with multi-core CPU algorithms.

2.3. Symmetric similarity metric

Symmetric pairs of 3D SIFT keypoints in each cluster form by matching a voxel with its

nearest neighbors. However, if we directly form pair of voxels by searching nearest neighbors

in the GPU KD-tree, the resulting pairs of voxels may potentially contain different things, as

the mean-shift clustering and following indexing are only based on a crude measurement of the

scale si and tilt angle φt without considering the volume content. Hence, a more sophisticated

metric is required to validate and select neighbors during the selection of a symmetric pair of
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Figure 4. Orientation symmetric similarity of two 3D SIFT features.

voxels. In the following, we will define a novel metric to quantify the symmetric similarity of

two neighboring voxels in terms of scale, orientation and appearance.

2.3.1. Scale similarity. Even when the symmetric volumes are slightly deformed, two

symmetric voxels remain close in scale or size. Hence, the scale similarity Si j of two 3D

SIFT features ki and k j is a function of their scale

Si j = exp

(

−‖si − s j‖2

σs

)

(3)

where σs controls the weighting of the scale variation. We set σs = 2.0 in all our experiments.

2.3.2. Orientation symmetric similarity. If two keypoints ki and k j exhibit reflected symmetry,

their orientations should also satisfy a mirror relationship with each other. This suggests that

we have to consider their orientation symmetric similarity in designing the global symmetric

similarity metric. Hence, we have defined an orientation symmetric similarity �i j to measure

the mirror relationship between ki and k j in terms of their directions. As shown in figure 4,

suppose the median plane between (xi, yi, zi) and (x j, y j, z j) is P, we denote the orientation

symmetric similarity �i j as

�i j = exp

(

−di j

2π

)

·
1 − cos(θi − θ j) cos(ψi − ψ j)

2
(4)

where θi/θ j is the angle between ki/k j and P; Ai/A j is the intersection point between ki/k j

and P; di j is the distance from Ai to A j; ψi/ψ j is the counterclockwise/clockwise tilt angle of

ki/k j. From the formulation, we can determine that �i j ∈ [0, 1], with larger value when the

orientations of ki and k j are more symmetric with each other.

2.3.3. Appearance symmetric similarity. Since neither scale similarity nor orientation

symmetric similarity between keypoints ki and k j have considered the volume content, we
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(a)

(b)

Figure 5. (a) The relationship between two symmetric 3D SIFT descriptors. Note that
flipping does not change the elevation, but only inverts the azimuth of the 3D orientation.
(b) Formation of the mirrored 3D SIFT descriptor qi by reordering sub-volumes, voxels
and gradient histograms of pi, where Ns = Nv = 2 and the dimension of pi is 2048.

further measure their appearance symmetric similarity by comparing their descriptors pi and

p j, which encode the local volumes associated with ki and k j, as shown in figure 3. The

detailed mathematical definition of the 3D SIFT descriptor and its implementation can be

found in Flitton et al (2010). Although the 3D SIFT descriptor satisfies scale-independent and

orientation-independent after scale and orientation normalization, we still cannot define the

appearance symmetric similarity by directly calculating the Euclidean distance between pi

and p j, because the 3D SIFT descriptor does not satisfy flipping-invariance. The relationship

between two symmetric 3D SIFT descriptors is as shown in figure 5. Two symmetric 3D SIFT

descriptors can be converted into each other by reordering the 2048 elements and warping
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their orientations. Hence, we need to form a mirrored 3D SIFT descriptor qi by reordering

the 2048 elements of pi. Recall that we have set Ns = Nv = 2 in section 2.1, as shown in

figure 5(b), our sub-volumes are sorted as eight octants in a standard Cartesian coordinate

system, e.g., pi = (o1, o2, o3, o4, o5, o6, o7, o8), where each oi denotes a sub-volume and

includes N3
v × 8 × 4 of 2048 elements. For sub-volume level, we can reorder pi and obtain

qi = (o2, o1, o4, o3, o6, o5, o8, o7) according to the flipping relationship of the eight octants.

Similarly, for voxel level, we sort the eight voxels as eight octants and reorder them as in

sub-volume level. Finally, for the gradient histogram bin level, we observe that the flipping

does not change the order of elevation bins, but only inverts the order of azimuth bins. As

shown on the right of figure 5(b), suppose the 32 bins of gradient histogram are sorted first

according to azimuth and then elevated, then we can obtain the new gradient histogram of qi

only by inverting the order of the eight azimuth bins in the original gradient histogram.

According to the above three-level reordering, we obtain a mirrored version 3D SIFT

descriptor qi, and denote the appearance symmetric similarity 	i j as follows

	i j = exp

(

−‖qi − p j‖2

σa

)

, (5)

where σa controls the weighting of the appearance variation, and in our experiment,

σa = 0.8. After the scale similarity, orientation symmetric similarity and appearance symmetric

similarity have been defined, we can combine them to form an overall symmetric similarity

metric Wi j for each pair of keypoints ki and k j

Wi j = Si j × �i j × 	i j. (6)

Therefore, we can use Wi j ∈ [0, 1] to quantify the symmetric magnitude for each pair of

3D SIFT keypoints. Keypoints are identified as a symmetric pair if their symmetric magnitude

Wi j > ω. In our experiment, we set ω = 0.6 to select a number of symmetric pairs to fit the

best MSP, where most outliers will be filtered out.

2.4. MSP fitting

Given a number of symmetric pairs of keypoints, we first calculate a set of midpoints

M = {M1, M2, . . . , Mn} for the symmetric pairs to fit the best MSP within a brain volume, as

shown in figure 6. The formulation of MSP is written as,

aX + bY + cZ + d = 0 (7)

where a, b, c and d are the four parameters to uniquely determine the plane. The MSP

detection problem has now changed to fitting a least-squares plane to a set of points

M = {M1, M2, . . . , Mn}. To perform a robust linear regression, we have adopted the LMS

(Mount et al 2007) to solve a, b, c and d because it can handle large fractions of outliers,

unlike M-estimator because it tolerates much lower percentages of outliers and requires a

careful initialization to avoid local optimization. We have further developed a two-stage

filtering process to improve the efficiency of the LMS estimator. Specifically, after solving

each tentative MSP P{ai, bi, ci, di}, we use two regularizations to filter out two clusters of

outliers. The first kinds of outliers are the points O1 = {Mi}, for which the distance of Mi to

P{ai, bi, ci, di} is larger than 2 mm, as shown in figure 6(b). Also, we filter out another kind

of outliers by measuring if θ f satisfies |θ f − π
2
| < π

36
, where θ f is the angle between the line

passing through the original pair of keypoints (e.g., k3, k4) and P{ai, bi, ci, di}. An interactive

LMS plane fitting is performed and the best MSP is solved until all outliers are filtered out

using the two conditions.
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(a) (b)

Figure 6. Fitting MSP to a set of points. (a) Filtering out the outliers by measuring θ f .
(b) Filtering out the outliers by measuring their distances to MSP.

3. Results

We have implemented our method in C language on a PC with 4 Intel(R) Xeon(TM) CPUs

3.20 GHz, 16 GB RAM, and nVidia GeForce GTX 690 GPU with 4 GB video memory. To

evaluate the effectiveness of our proposed method, we have tested it on both synthetic and in

vivo MRI datasets.

3.1. Evaluation on synthetic datasets

To evaluate the accuracy of our method in extracting MSP, a set of reflectional symmetrical

volumes is created. Then a fissure plane is figured out followed by flipping one side of the

brain volume to form another mirrored hemisphere. The left and right symmetrical volume

can be perfectly stitched and the ground truth MSP is known. By synthesizing perfectly

symmetrical brain volumes, conventional subjective factors in human visual evaluations also

can be avoided. In our experiments, 40 perfectly symmetrical brain volumes were synthesized.

For different types of evaluations, a certain amount of Gaussian noise, blur, deformation or

artificial tumors have been added to the datasets.

After the synthetic data are completed, MSP is extracted using the proposed method. To

clearly observe the accuracy of the proposed method, several representive slices perpendicular

to the extracted MSP have been clipped. As shown in figure 7, the green lines are the intersecting

lines between the clipped slices and the MSP. Compared with the top row, we can observe that

our method can accurately extract the MSP, where the intersecting lines conform to symmetry

axes presented in the brain slices. To evaluate the ability of our method in tolerance of noise,

blur, distortions and asymmetric structures, we have also added Gaussian noise, Gaussian blur,
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Figure 7. MSP extracted from synthetic volumes with known ground truth. Gaussian
noise, blur, local distortions and artificial tumors are added in the second, third,
fourth and fifth rows, respectively. All synthetic volumes have a resolution of
256 × 256 × 256.

deformation and artificial tumors to the synthetic volumes, and applied our method to identify

the MSP. The results from the second to fifth rows of figure 7 demonstrate the stability of our

method. In our experiments, we synthesized an artificial tumor by drawing a sphere with a

uniform gray level, where the size and the location of the tumor is randomly generated within

the synthesized brain, so its scale and position can be changed, as shown in the bottom row of

figure 7. Although the artificial tumors or the distortion regions cover about one third of the

human brain, our method successfully identified the MSP.
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(a) (b) (c) (d) (e)

Figure 8. Visual comparison of different methods in extracting MSP from synthetic
datasets. (a) Synthetic volumes. MSP extracted from (a) using Zhang and Hu (2008),
Ruppert et al (2011), Liu et al (2011) and our method are shown in (b), (c), (d) and (e),
respectively.

Also, we have compared the proposed method with three state-of-the-art methods,

including Zhang and Hu (2008), Ruppert et al (2011) and Liu et al (2011). We have randomly

selected 30 perfectly symmetrical brains and resynthesized into four types of datasets, e.g. data

with different degree of rotation, Gaussian noise, Gaussian blur and artificial tumors, which

combined a total of 120 synthesized brains for comparison. The MSP extraction results for

different methods are as shown in figures 8(b)–(e), respectively. As Zhang and Hu (2008) only

relied on the principal component analysis for gray similarity and used a linear combination

to approximately construct the MSP, it could not always obtain a correct MSP with high

accuracy, especially when the brain volumes suffered from rotation, noise, blur or local

asymmetry structures (figure 8(b)). By detecting principal edges using a 3D Sobel operator

and fitting the MSP based on distinctive edge matching, Ruppert et al (2011) achieved a better

performance than Zhang’s method, as shown in figure 8(c). By representing the head volume

as a reparameterized surface and searching the best MSP using surface matching, Liu et al
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Figure 9. Comparison of different methods in tolerance to rotation.

(2011) obtained comparable results versus Ruppert’s method, as shown in figure 8(d). But

without relying on a better distinctive 3D image feature like 3D SIFT to extract MSP, all of

the above methods have low tolerance to image rotation, noise, blur and asymmetry. Instead,

by extending the well validated SIFT feature from 2D to 3D, and using it to detect MSP, our

method outperforms the three competitors in terms of accuracy of symmetry detection.

Since our 3D SIFT features are invariant to scaling, orientation, affine distortion and

intensity changes, our method is more stable in tolerance to rotation, noise, blur or asymmetry,

and obtains better results than the other three state-of-the-art methods. As shown in figure 8(e),

although the datasets have quite heavy noise or blur disturbance, our method can still robustly

extract the MSP even for the cases with more than one tumor. Note that, since our 3D SIFT

features are identified as the local extrema (minima or maxima) in the DoG volumes across

the scale spaces, our method has an inherent tolerance to Gaussian blur, as shown in the third

row of figures 7 and 8, and statistics results shown in figure 11 demonstrate its effectiveness.

Even for the cases with more than one tumor, our method can still accurately identify the MSP

as long as their total volume is not larger than one third of the whole brain (as shown in the

bottom row of figure 8).

Besides visual comparison, we also calculated the yaw angle error (in degrees) and roll

angle error (in degrees) between detected MSP Pi{ai, bi, ci, di} and the ground truth MSP

P0{a0, b0, c0, d0} to quantitatively compare our method with the state-of-the-art methods. In

our experiments, polar angle θy and roll angle θr are defined as

θy = arctan
b

a
(8)

θr = arctan
−c

√
a2 + b2

(9)

where θy and θr can uniquely describe a MSP. So we can measure the accuracy of different

methods in MSP extraction based on θp and θr. After applying our method and the competitors

over the synthetic datasets with different ratio of rotation, noise, blur and asymmetry, we

calculated the mean squared error for polar angle θp and roll angle θr between detected Pi and

the ground truth P0, as shown in figures 9–12. From the comparison, the proposed method

generally outperforms the other three in terms of accuracy (both yaw angle and roll angle),
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Figure 10. Comparison of different methods in tolerance to noise.

Figure 11. Comparison of different methods in tolerance to blur.

with more significant improvement when there is larger rotation angle (figure 9), heavier

noise (figure 10), blur (figure 11) and larger asymmetry ratio (figure 12). This points out the

effectiveness of using 3D SIFT feature to detect MSP.

Table 1 shows the statistics of yaw angle error and roll angle error of three synthetic

datasets. From the statistics results, our method has improved the MSP extraction in terms

of accuracy in both yaw angle and roll angle. To evaluate if our improvement is statistically

significant, we conducted a multivariate analysis of variance (MANOVA) to compare our

method with the three other state-of-the-art methods. In our experiments, yaw angles and roll

angles obtained with the four competitors are fed for MANOVA. As shown in the bottom

of table 1, the MANOVA yields a result of F-value = 13.04 and P-value = 0.0012, which

indicated that there are significant differences among the methods. Besides, we also conducted

a simple planned comparison between our method and each competitor to evaluate if there

is a significant difference. The results are as shown in the two P-value columns of table 1.
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Figure 12. Comparison of different methods in tolerance to asymmetry.

Table 1. Accuracy statistics of different methods over all simulated datasets. Each
P-value in the columns is obtained using a simple planned comparison performed
between our method and each competitor.

Yaw angle error (deg) Roll angle error (deg)

Method Mean SD P-value Mean SD P-value

Zhang and Hu (2008) 2.563 0.356 0.0005 2.595 0.382 0.0003
Ruppert et al (2011) 2.382 0.301 0.0008 2.448 0.327 0.0006
Liu et al (2011) 1.857 0.225 0.0013 1.783 0.205 0.0012
Our method 0.926 0.198 0.886 0.201

MANOVA: F-value = 13.04, P-value = 0.0012.

Table 2. Running time statistics of different methods over all simulated datasets.

Average running time (s)

Method 128 × 128 × 128 256 × 256 × 256 512 × 512 × 512

Zhang and Hu (2008) 9.856 18.322 43.561
Ruppert et al (2011) 10.524 16.143 26.848
Liu et al (2011) 7.231 13.692 17.737
Our method 0.639 0.855 0.961

From the planned comparison results in table 1, we can see that our method has a significant

improvement in terms of accuracy at the 5% level (P-value is less than 0.05). Table 2 shows the

statistics of running time for different methods over all three simulated datasets. To evaluate the

speed of each method on the datasets with different resolutions, we resynthesized each brain

volume from 256 × 256 × 256 to 128 × 128 × 128/512 × 512 × 512 by interpolation,

and collected the running time of each method. The results indicated that the proposed method

outperforms the other three in running time by 20 times. As shown in table 2, even when the

volume size is 512 × 512 × 512, it still achieves a real-time performance.
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(a) (b) (c) (d) (e) (f)

Figure 13. Visual comparison of different methods in detecting MSP from in vivo
datasets. (a) Original images. (b) MSP drawn manually by a human expert. MSP detected
using Zhang and Hu (2008), Ruppert et al (2011), Liu et al (2011) and our method are
shown in (c), (d), (e) and (f), respectively.

3.2. Evaluation on in vivo datasets

The proposed method has been tested on 136 in vivo datasets, in which 30 cases are from normal

subjects and 106 cases from patients with stroke, infarct, Alzheimer and tumor, and compared

with the state-of-the-art methods. Extracted MSP using Zhang and Hu (2008), Ruppert et al

(2011), Liu et al (2011) and the proposed method are shown in figures 13(c)–(f), respectively.

Since there are no ground truths for the in vivo datasets, a specialist was invited to manually

draw the MSP as shown in figure 13(b) to compare all methods with the human performance.

From the visual comparison in figure 13, none of Zhang and Hu (2008), Ruppert et al (2011)

and Liu et al (2011) can achieve a stable symmetrical detection because their methods rely

on the gray principal component analysis, 3D edges and reparameterized surface, which are

sensitive to distorted regions, noise or asymmetry, to determine the MSP. Instead, by using
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Table 3. In vivo datasets collected for evaluation.

Dataset Pathology # of volumes

1 Stroke 25
2 Infarct 25
3 Alzheimer 26
4 Tumor 30
5 Normal 30

Table 4. Statistical analysis of MANOVA on each dataset. Yaw angles and roll angles
obtained in each dataset are fed for MANOVA.

Dataset F-value P-value

1 14.05 0.0015
2 13.40 0.0025
3 13.62 0.0029
4 14.98 0.0010
5 15.08 0.0009

Table 5. Accuracy statistics of different methods for each in vivo dataset. Each P-value
is obtained using a simple planned comparison performed between our method and each
indicated state-of-the-art method.

Yaw angle error (deg)

Zhang and Hu (2008) Ruppert et al (2011) Liu et al (2011) Our method

Dataset Mean SD P-value Mean SD P-value Mean SD P-value Mean SD

1 2.612 0.385 0.0007 2.438 0.324 0.0007 1.996 0.287 0.0010 0.819 0.234
2 2.653 0.379 0.0003 2.433 0.319 0.0010 1.991 0.282 0.0013 0.823 0.249
3 2.621 0.372 0.0009 2.432 0.320 0.0007 1.992 0.285 0.0013 0.825 0.257
4 2.637 0.376 0.0007 2.441 0.326 0.0010 1.994 0.288 0.0010 0.822 0.243
5 2.648 0.381 0.0007 2.435 0.328 0.0007 1.998 0.286 0.0010 0.821 0.248

Roll angle error (deg)

Zhang and Hu (2008) Ruppert et al (2011) Liu et al (2011) Our method

Dataset Mean SD P-value Mean SD P-value Mean SD P-value Mean SD

1 2.739 0.411 0.0008 2.507 0.334 0.0011 1.875 0.268 0.0015 0.909 0.246
2 2.736 0.421 0.0005 2.512 0.341 0.0011 1.881 0.266 0.0010 0.902 0.241
3 2.741 0.415 0.0008 2.515 0.332 0.0008 1.879 0.264 0.0015 0.898 0.244
4 2.737 0.419 0.0009 2.509 0.331 0.0008 1.877 0.261 0.0015 0.901 0.238
5 2.698 0.423 0.0008 2.513 0.332 0.0011 1.878 0.263 0.0010 0.904 0.240

3D SIFT feature to determine MSP, our method generally outperforms the other methods,

especially on the pathological brain volumes that usually present accentuated asymmetry due

to the presence of tumors or variation of the brain tissues. As shown in figure 13(f), results

obtained from the proposed method are more identical to the expert’s results in figure 13(b),

when compared to the other three methods in figures 13(c)–(e).

Besides visual comparison, we have further calculated the yaw angle error (in degrees)

and roll angle error (in degrees) between detected MSP Pi{ai, bi, ci, di} and the human expert’s

result P0{a0, b0, c0, d0} to quantitatively compare our method with the other methods. Table 5

shows the statistics of accuracy for different methods on each dataset in table 3. From the

statistics comparison in table 5, our method generally outperforms the other three competitors
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Table 6. Running time statistics of different methods for each in vivo dataset.

Average running time (s)

Dataset Zhang and Hu (2008) Ruppert et al (2011) Liu et al (2011) Our method

1 18.351 16.139 13.653 0.876
2 18.348 16.202 13.572 0.869
3 18.401 16.161 13.499 0.873
4 18.383 16.152 13.586 0.871
5 18.395 16.144 13.552 0.875

in terms of accuracy. To evaluate if our improvement is statistically significant, a MANOVA

also has been carried out. Similar to the synthesized dataset, yaw angles and roll angles obtained

with the four competitors are fed for MANOVA. Table 4 shows the results of MANOVA

conducted in each in vivo dataset, which suggest that there are significant differences among

the methods. In addition, we also conducted a simple planned comparison between our method

and each competitor to evaluate if there is a significant difference. The results are as shown

in table 5, which also indicates that our method has a significant improvement in terms of

accuracy at the 5% level (P-value is less than 0.05). We further compared the running time of

our method with the other three methods. From the results using the in vivo dataset as shown

in table 6, the proposed method outperforms the other three methods by 20 times. Based

on the GPU implementation of 3D SIFT matching and MSP fitting, we obtained a real-time

performance on the in vivo brain datasets.

4. Discussion and conclusion

We have developed a novel MSP extraction method based on 3D SIFT by extending the

conventional SIFT feature from 2D. The metric is based on scale, orientation and flipped

descriptor to measure the symmetric similarity between two brain volumes. After clustering

and indexing the 3D SIFT features using mean-shift and GPU KD-tree, the optimal MSP

presented in a brain volume is solved on-the-fly. To the best of our knowledge, our method

is the first to employ 3D SIFT to detect MSP from brain volumes, and it is more stable and

available for real-time performance.

Compared with the existing methods for MSP detection from 3D brain images, the

proposed method has the following advantages: (1) improved tolerance to image rotation, noise,

blur and asymmetry, unlike other methods that use gray similarity, 3D edges or parameterized

surface to detect MSP; (2) an intuitive and effective way to measure the symmetric similarity

for each pair of 3D SIFT features, especially where 3D SIFT descriptor is proved to be invariant

to scaling, orientation, affine distortion and intensity changes; (3) a real-time performance by

clustering and indexing all detected 3D SIFT features using mean-shift and GPU KD-tree.

Experiments on both synthetic and in vivo datasets have demonstrated the above advantages

of our method in term of both accuracy and running time comparisons.

A few limitations should be taken into account. The proposed method cannot perform

well for data with high levels of noise when the signal-to-noise ratio is less than –30 dB due

to the difficulty in extracting the real 3D SIFT keypoints. Also, when the blur radius (sigma)

is larger than 12 mm, or when the data are suffering from other kinds of blur or bias, such as

unconstrained box blur and regional wrong focus bias, the accuracy of MSP extraction will be

affected even though our method is able to tolerant a certain degree of Gaussian blur because

our 3D SIFT features are identified as the local extrema (minima or maxima) in the difference
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of Gaussian volumes across the scale spaces. Furthermore, our method is limited to a certain

ratio of asymmetry. It can correctly identify the MSP when a brain suffers from more than

one tumor, but is not able to accurately perform when the total volume of the tumors is larger

than one third of the whole brain. In addition, another side effect of our system to obtain

a real-time performance is that the parameter setting of our method is somehow complex,

because several steps of our implementation strategies are still a little heuristic, including

τc = 0.05 and τe = 30, which are inherited from the original SIFT algorithm (Lowe 2004) to

discard false candidates of keypoints that are localized along an edge or with poor contrast,

and ω = 0.6, which is also empirically set to quickly filter out outliers and select a number of

symmetric pairs to fit the best MSP. Although our current parameter setting is optimized based

on our synthesized datasets and collected in vivo datasets, our experiments suggest that such

a parameter setting works well for new collected in vivo datasets as long as the noise or blur

bias does not exceed upper limits mentioned above. Finally, similar to the previous methods

of MSP detection from a brain volume, our method is also under the assumption that an ideal

MSP is a plane. This assumption may not reflect the true anatomical structure of a human

brain because the fissure plane could be a curved surface even for a normal person. But, since

there exist many situations that only require finding a reference MSP in the brain volume, our

method still potentially provides a useful tool for many clinical applications.

In conclusion, we have presented a more accurate, efficient and robust MSP detection

method based on 3D SIFT features, which are detected, clustered and indexed under a novel

parallel framework. The proposed method has been validated on both synthetic and in vivo

datasets from normal and pathological cases. Our future work is to extend our method to

curved symmetry surface detection for 3D brain images.
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