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Using either quasistatic approximation or exact Mie expansion, we characterize the localized surface plasmons supported by a
metallic spherical nanoparticle. We estimate the quality factor Qn and define the effective volume Vn of the nth mode in such a way
that coupling strength with a neighbouring dipolar emitter is proportional to the ratio Qn/Vn (Purcell factor). The role of Joule
losses, far-field scattering, and mode confinement in the coupling mechanism is introduced and discussed with simple physical
understanding, with particular attention paid to energy conservation.

1. Introduction

Metallic nanoparticles support localized surface plasmonpo-
laritons (SPP) strongly confined at the metal surface ensur-
ing efficient electromagnetic coupling with neighbouring
materials, offering a variety of applications such as surface-
enhanced spectroscopies [1, 2], photochemistry [3], or
optical nanoantennas [4]. This also opens the way towards
control of light emission at the nanoscale [5–10]. The ratio
Q/Veff is generally used to quantify the coupling strength be-
tween a dipolar emitter and a cavity mode (polariton). Q and
Veff refers to the mode quality factor and effective volume,
respectively. High ratio Q/Veff may lead to strong coupling
regime with characteristics Rabi oscillations revealing cycles
of energy exchange between the emitter and the cavity. In the
weak coupling regime, the emitter energy dissipation into the
cavity mode is nonreversible and follows the Purcell factor:

γ

nBγ0
= 3

4π2

(

λ

nB

)3 Q

Veff

, (1)

where γ is the emitter spontaneous decay rate into the cavity
compared to its free-space value γ0, nB is the optical index

inside the cavity, and λ is the emission wavelength. Spon-
taneous emission rate in complex systems follows the more
general Fermi’s golden rule that expresses γ as a function
of the density of electromagnetic mode [11]. However, for
describing the coupling to a cavity mode, the Purcell factor
is usually preferred since it clearly introduces the cavity reso-
nance quality factor Q and the mode extension Veff on which
coupling remains efficient, bringing therefore a clear physical
understanding of the coupling process.

In this context, we propose to determine the quality fac-
tors and effective volumes of localized SPPs supported by
a metallic nanosphere. Indeed, these quantities are useful
parameters to understand and evaluate the coupling mech-
anisms between dipolar emitters and plasmonic nanostruc-
tures [12, 13]. This would help for achieving strong coupling
regime [14, 15] or for designing plasmonic nanolasers [16–
18]. We have chosen a spherical particle, a highly symmetri-
cal system, since it is fully analytical and simple expres-
sions can be derived with clear physical meaning [19–23].
Moreover, our results could be extended to more complex
structures [24, 25].

In Section 2, we focus on the dipolar mode and present
in details the derivation of its quality factor and effective
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volume. We extend our approach to each mode of the particle
in Section 3. Finally, we discuss the coupling efficiency to
one of the particle modes in the last section. For the sake of
simplicity, all the analytical expressions are derived assuming
a particle in air and dipolar emitter perpendicular to the par-
ticle surface. The generalisation to arbitrary emitter orienta-
tion and a background medium of optical index nB is pro-
vided in the appendix. Exact calculations presented in the
main text using Mie expansion correctly include both the
background medium and dipolar orientation.

2. Dipolar Mode

We first characterize the dipolar mode of a spherical particle.
For sphere radius R small compared to the excitation wave-
length λ = 2πc/ω, the electric field is considered uniform
over the metallic particle. The metallic particle is polarized
by the incident electric field E0 and behaves as a dipole

p(1)(ω) = 4πǫ0α1(ω)E0, (2)

α1(ω) = ǫm(ω)− 1

ǫm(ω) + 2
R3, (3)

where α1 is the nanoparticle quasistatic (dipolar) polaris-
ability and ǫm is the metal dielectric constant. The dipole
plasmon resonance appears at ω1 such that ǫm(ω1) + 2 = 0.
In case of Drude metal, the dipolar resonance is ω1 = ωp/

√
3

with ωp the bulk metal plasma angular frequency. However,
expression (3) does not satisfy the optical theorem (energy
conservation). It is wellknown that this apparent paradox is
easily overcome by taking into account the finite size of the
particle and leads to define the effective polarisability [26]:

αeff
1 =

[

1− i
2k3

3
α1

]−1

α1,

(

k = 2π

λ

)

. (4)

The corrective term (2k3α1/3) is the so-called radiative
reaction correction and microscopically originates from the
radiation emitted by the charges oscillations induced inside
the nanoparticle by the excitation field [27].

The dipolar polarisability presents a simple shape near
the resonance if the metallic dielectric constant follows
Drude model [20] (ωp and Γabs refers to metal plasma fre-
quency an Ohmic loss rate, resp.) (for the sake of clarity,
we use lowercase notation γ for the emitter decay rates and
uppercase Γ for the quantities associated with the metallic
particle);

ǫm = 1−
ω2
p

ω2 + iΓabsω
; (5)

αeff
1 (ω) ∼

ω1

ω1

2(ω1 − ω)− iΓ1
R3, (6)

Γ1 = Γabs +
2(k1R)3ω1

3
,

(

k1 =
ω1

c

)

. (7)

where Γ1 is the decay rate of the particle dipolar mode
and includes both the Joule (Γabs) and radiative [Γrad

1 =
2(k1R)3ω1/3] losses rates.

2.1. Quality Factor. The dipolar response can be described by
either the extinction efficiency Qext, proportional to Im(α1),
or scattering efficiency Qscatt, proportional to |α1|2, and
therefore follows a Lorentzian profile centered at ω1 and with
a full width at half maximum (FWHM) ∆ω1 = Γ1:

Qext(ω) = 4k
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Im
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αeff
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]
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(8)

The quality factor of this resonance is therefore

Q1 =
ω1

Γ1
. (9)

As an example, we consider a R = 25 nm silver sphere
in air. The Drude model parameters are �ωp = 9.1 eV and
�Γabs = 18 meV that lead to a resonance peak at �ω1 = 5.2 eV
(ω1 = 7.98×1015 Hz) and radiative energy �Γ

rad
1 = 1 eV. The

quality factor is then Q1 = 5. Note that the metal optical
properties are better described when including the bound
electrons in the Drude model: ǫm = ǫ∞ − ω2

p/(ω
2 + iΓabsω),

(ǫ∞ = 3.7 for silver, see also the appendix). In that case, we
obtain �ω1 = 3.74 eV (ω1 = 5.7× 1015 Hz), �Γ

rad
1 = 0.13 eV,

and Q1 = 24.
Although Drude model qualitatively explains the shape

of the resonance, a more representative value of the quality
factor can only be determined using tabulated data for the
dielectric constant of the metal [28]. The extinction efficien-
cies associated with the dipolar resonance are represented
in Figure 1. For silver particle (Figure 1(a)), the extinction
efficiency closely follows a Lorentzian shape, as expected,
with a quality factor Q1 = 21, in good agreement with the
value obtained using Drude model (with the contribution
of the bound electrons included). In case of gold, the reso-
nance profile is not well defined due to interband transitions
for ω > 4 · 1015 Hz but a quality factor of 7 can be estimated
(Figure 1(b)). Figure 1(c) represents the extinction efficiency
for a gold particle embedded in polymethylmethacrylate
(PMMA) into which metallic particles are routinely dis-
persed. This leads to a small redshift of a resonance, avoid-
ing therefore the resonance disturbance by interband absorp-
tion, and we recover partly the Lorentzian profile [29].

2.2. Effective Volume. Coupling rate of a dipolar emitter to
a dipolar particle expresses for very short emitter-particle
distances d (z0 = R + d is the distance to the particle center)
as [19–21]

γ⊥1
γ0
∼ 6

k3z6
0

Im(α1), (10)

for a dipole emitter orientation perpendicular to the nano-
particle surface. Using (6), we obtain, in case of a dipolar
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Figure 1: Extinction efficiency for the dipolar resonance calculated keeping only the dipolar mode (n = 1) in the Mie expansion and using
experimental value for the metal dielectric constant [28]. (a) Silver particle in air. (b) Gold particle in air. (c) Gold particle in PMMA (optical
index nB = 1.5). The particle radius is R = 25 nm for each case. Fit refers to a Lorentzian fit using parameters indicated on the figure.

emitter emission tuned to the dipolar particle resonance (λ =
λ1 = 2πc/ω1)

γ⊥1
γ0
∼
ω1

6ω1R3

k3
1z

6
0Γ1

∼ 3

4π2
λ3

1

R3

πz6
0

Q1. (11)

In order to determine the dipolar mode effective volume, we
now identify the coupling rate γ/γ0 to the Purcell factor ((1),
assuming nB = 1), so that we obtain

V⊥
1 =

πz6
0

R3
, (12)

in full agreement with expression recently derived by Greffet
et al. by defining the optical impedance of the nanoparticle
antenna [30]. For a R = 25 nm radius sphere in air, we
estimate the mode effective volume V⊥

1 = 3.7 × 10−4 µm3 =
(72 nm)3 for an emitter 10 nm away from the particle surface
(z0 = 35 nm).

Unlike here, usual definition of the mode effective
volume does not include the emitter position. For in-
stance, in case of cavity quantum electrodynamics (cQED)

applications, it can be expressed as Veff =
∫

ǫ|E(r)|2dr/
max(ǫ|E(r)|2), so that it directly characterizes the mode
extension. However, in that case, Purcell factor expression (1)
is only valid for an emitter located at the cavity center where
the mode-emitter coupling is maximum (mode antinode).
In close analogy with the definition used in cQED, we derive
later another expression for the SPP effective volume, inde-
pendent of the emitter position (see (22), and the discussion
below).

3. Multipolar Modes

If the excitation field is generated by a dipolar emitter (flu-
orescent molecules, quantum dots, . . .), it cannot be consi-
dered uniform anymore and the dipolar approximation fails.
One needs therefore to consider the coupling strength to
high-order modes (Figure 2). Here again, we discuss the
mode quality factors and volume first using quasistatic ap-
proximation and then discuss their quantitative behaviour
using exact Mie theory.
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Figure 2: (a) Dipolar and (b) quadrupolar mode profiles of a R = 25 nm silver sphere, embedded in PMMA calculated using exact Mie
expansion. Silver dielectric constant is taken from [28]. Color and arrows refer to electric field intensity and vector respectively.

The nth multipole tensor moment of the metallic particle
is given by

p(n) = 4πǫ0

(2n− 1)!!
αn∇n−1E0, (13)

αn =
n(ǫm − 1)

nǫm + (n + 1)
R(2n+1), (14)

with (2n+1)!! = 1×3×5×· · ·×(2n+1) and∇ is the vector
differential operator. As discussed above, the dipole moment
p(1) = 4πǫ0α1E0 is the unique mode excited in an uniform
field. However, the dipolar emitter near field behaves as 1/r3

and strongly varies spatially so that higher modes can be
excited in the particle.

For a Drude metal, the nth resonance appears at ωn =
ωp

√

n/(2n + 1) . Therefore, higher-order modes accumulate
near ω∞ = ωp/

√
2. Moreover, as discussed for the dipolar

case, quasistatic expression of the nth mode polarisability
(14) does not obey energy conservation. Applying the optical
theorem, we recently extend the radiative correction to all the
spherical particles modes [22]. This leads to

αeff
n =

[

1− i
(n + 1)k2n+1

n(2n− 1)!!(2n + 1)!!
αn

]−1

αn. (15)

3.1. Quality Factors. It is now a simple matter to generalize
the dipolar mode analysis reported in the previous section
to all the particle modes. The nth mode polarisability can
be approximated near resonance. A simple expression for the
polarisability is achieved considering a Drude metal:

αeff
n ∼

ωn

ωn

2(ωn − ω)− iΓn
R2n+1,

Γn = Γabs + Γ
rad
n ,

Γ
rad
n = ωn

(n + 1)(knR)2n+1

n(2n− 1)!!(2n + 1)!!
,

(

kn =
ωn

c

)

,

(16)

where Γn is the total decay rate of the nth mode, that includes
both ohmic losses and radiative scattering. As expected, for
a given mode n, the radiative scattering rate Γrad

n ∝ R2n+1

increases with the particle size since it couples more effi-
ciently to the far field. For instance, we obtain �Γ

rad
2 =

39 meV (�Γ
rad
2 = 1.8 meV with ǫ∞ = 3.7) for the quadrupo-

lar mode of a R = 25 nm silver particle in air. As expected, the
radiative rate of the quadrupolar is strongly reduced com-
pared to the dipolar mode.

The quality factor associated with the nth mode is
therefore

Qn =
ωn

Γn
= ωn

Γabs + Γrad
n

. (17)

Figure 3 details the quality factor of the two first modes
of a silver sphere in PMMA using tabulated value for ǫm.
The quadrupolar mode presents a quality factor almost 5
times higher than the dipolar mode since it has limited rad-
iative losses. Indeed, quadrupolar mode poorly couples to the
far field. Finally, similar Q values (Qn ≈ 50) are obtained for
all the higher modes (n ≥ 3). Here again, assuming a Drude
metal and in the quasistatic approximation, we qualitatively
explains this result. Actually, Q factors of high-order modes
are absorption loss limited (Γrad

n ≪ Γabs, so called dark
modes) and tend to Q∞ = ω∞/Γabs. However this overesti-
mates the mode quality factor (Q∞ ≈ 207) as compared to
the value deduced using tabulated value for ǫm and exact Mie
expansion.

3.2. Effective Volumes. Last, we express the total coupling
strength of a dipolar emitter to the spherical metallic particle
for very short separation distances (kz0 ≪ 1) [21, 22]:

γ⊥tot

γ0
≈ 3

2

1

(kz0)3

∞
∑

n=1

(n + 1)2

z
(2n+1)
0

Im
(

αeff
n

)

, (18)
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Figure 3: (a) Extinction efficiency of a R = 25 nm silver sphere
embedded in PMMA, calculated using full Mie expansion. (b)
Contribution of the dipolar (n = 1) and quadrupolar (n = 2) mode
to the full extinction efficiency. The quality factor is indicated for
each mode. Dielectric constant for silver is taken from [28].

so that the coupling strength to the nth mode is easily de-
duced as

γ⊥n
γ0
≈ 3

2

1

(kz0)3

(n + 1)2

z
(2n+1)
0

Im
(

αeff
n

)

,

∼
ωn

3

2

R2n+1

(knz0)3

(n + 1)2

z
(2n+1)
0

Qn,

(19)

where we have used approximated expression (16) for
the nth polarisability. The mode effective volume is then
straightforwardly deduced from comparison to the Purcell
factor (1)

V⊥
n =

4πz2n+4
0

(n + 1)2R2n+1
. (20)

We obtain for instance quadrupole effective volume V⊥
2 =

4πz8
0/(9R5) = 3.2 × 10−4 µm3 = (68 nm)3 for an emitter

10 nm away from a 25 nm radius metallic particle in air. The
calculated effective volumes of the three first modes are
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Figure 4: Effective volume of the dipole (V1), quadrupole (V2)
and hexapole (V3) modes of a R = 25 nm sphere as a function of
the emitter-particle distance. The emitter is perpendicular to the
particle surface.

shown on Figure 4. At long distance, the smaller effective vol-
ume (most efficient coupling to an emitter) is associated with
the dipole mode since it presents the largest extension. When
the emitter-particle distance decreases the coupling strength
to the quadrupolar (d ≤ 12 nm), then hexapolar (d ≤
10 nm) mode becomes stronger as revealed by their lower
effective volume. Most efficient coupling between an emitter
and one of the particle modes obviously occurs at contact
since plasmons modes are confined near the particle surface.

Finally, it is worthwhile to note that mode effective vol-
ume is generally defined independently on the particle-
emitter distance so that it gives an estimation of the mode
extension. This is done by evaluating the maximum effective
volume available and for a random emitter orientation. In
case of localized SPP, this is achieved for contact (z0 = R).
Since the decay rate of a randomly oriented emitter expresses
γ = (γ⊥ + 2γ‖)/3, it comes

1

Vn
= 1

3V⊥
n (R)

+
2

3V‖
n (R)

, (21)

Vn =
9

(2n + 1)(n + 1)
V0, (22)

where V0 = 4πR3/3 is the metallic sphere volume and V‖
n

refers to a dipole parallel to the sphere surface (see (B.4) in
Appendix B, with ǫB = 1). Dipolar and quadrupolar mode
volumes are V1 = 3/2V0 and V2 = 3/5V0, respectively.
The expression (22), derived for a Drude metal, quantifies an
extremely important property of localized SPPs; their effective
volume does not depend on the wavelength and is of the order
of the particle volume. Metallic nanoparticles therefore sup-
port localized modes of strongly subwavelength extension.
Highest-order modes have negligible extension (Vn −→ 0 for
n −→ ∞, see Figure 5). As a comparison, photonics cavity
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modes are generally limited by the diffraction limit so that

their effective volume is at best of the order of (λ/nB)3 (see
[31]). Nevertheless, the extremely reduced SPP volume is
achieved at the expense of the mode quality factor. It should
be noticed that a low-quality factor indicates a large cavity
resonance FWHM so that emitter-SPP coupling can occur
on a large spectrum range.

Note that mode effective volume is generally defined by
its energy confinement Veff =

∫

ǫ|E(r)|2dr/ max(ǫ|E(r)|2)
[12]. Khurgin and Sun used this definition and obtained

[32] Vn = 6V0/(n + 1)2 that is in agreement with our ex-
pression for the dipolar mode volume (V1 = 1.5V0) but
leads to slightly different values for other modes (e.g., V2 ≈
0.67V0 instead of V2 = 0.60V0). Recently, Koenderink
showed that defining the mode volume on the basis of energy
density could lead to underestimating the Purcell factor
near plasmonic nanostructures [33] (however, he defined the
coupling rate to the whole system rather than considering
the coupling into a single mode). Oppositely, we adopt here
a phenomenological approach where the mode volume is
defined so that Purcell factor remains valid. Nevertheless,
both methods lead to very similar results for the effective
volumes of localized SPPs supported by a nanosphere. Since
mode volume is generally a simple way to qualitatively char-
acterize the mode extension, expressions derived here or by
Sun et al. could be used.

4. β-Factor

Purcell factor quantifies the coupling strength between a
quantum emitter and a (plasmon) mode but lacks informa-
tion on the coupling efficiency as compared to all the other
emitter relaxation channels. For the sake of clarity, it has to be
mentioned that coupling strength to one SPP mode corres-
ponds to the total emission decay rate induced by this cou-
pling. It does not permit to distinguish radiative (γrad) and
nonradiative (γNR) coupling into a single mode. This could
be done by numerically cancelling the imaginary part of the
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Figure 6: Coupling efficiency into the dipolar (β1), quadrupolar
(β2) and hexapolar (β3) mode of a R = 25 nm silver sphere in
PMMA, calculated using exact Mie expansion. The emitter wave-
length is assumed to match the considered mode. Therefore β1, β2

and β3 are calculated at λ1 = 435 nm (dipolar resonance), λ2 =
387 nm (quadrupolar resonance), and λ3 = 375 nm (hexapolar res-
onance), respectively.

metal dielectric function (see also [34] for similar discussion
in case of coupling to delocalized SPPs). However, one can
determine the coupling efficiency into a single mode as
compared to all other modes. This coupling efficiency, or the
so-called β-factor, is easily estimated in case of a spherical
metallic particle since all the available channels are taken into
account in the Mie expansion. Coupling efficiency into nth
mode writes

βn =
〈

γn
〉

〈

γtot

〉 , (23)

where 〈γ〉 = (γ⊥ + 2γ‖)/3 is the decay rate of a randomly
oriented molecule. β-factor is represented on Figure 6 for
the first three modes. A maximum efficiency of 90% can be
achieved in the dipolar mode (d ∼ 10 nm) and 87% into
quadrupolar mode (d ∼ 15 nm). The coupling efficiency into
the hexapolar mode is lower (∼ 60% around d ∼ 15 nm)
since it has a very low extension, as indicated in Figure 5. For
very short distances, all the coupling efficiencies drop down
to zero since all the higher-order modes accumulate in this
region, opening numerous alternative decay channels. More-
over, it is possible to efficiently couple the emitter to either
the dipolar or quadrupolar mode, by matching the emitter
and mode wavelengths. This is of strong importance when
designing a SPASER (or plasmon laser) [5] so that the active
mode can be tuned on the dipolar or quadrupolar mode.
This last spasing mode would consist of an extremely local-
ized and ultrafast nanosource [18].
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5. Conclusion

We explicitly determined the effective volumes for all the SPP
modes supported by a metallic nanosphere. Their quality
factor is also approximated in the quasistatic case or cal-
culated using exact Mie expansion. Rather low-quality fac-
tors ranging from 10 to 100 can be achieved, associated with
extremely confined effective volume of nanometric dimen-
sions. This results in high Q/Veff ratios indicating efficient
coupling strength with a quantum emitter. At the opposite to
cavity quantum electrodynamics where the coupling strength
is obtained on diffraction limited volumes thanks to ultra-
high Q factors, plasmonics structures allow efficient coupling
on nanometric scales with reasonable Q factors, defining
therefore high-bandwidth interaction. Finally, high coupling
efficiencies (80%–90%) to dipolar or quadrupolar mode can
be achieved and are of great interest for nanolasers realiza-
tion.

Appendices

In this appendix, we derive the expression of mode quality
factor and effective volume for a spherical particle embedded
in homogeneous background of optical index nB = √

ǫB.
For a better description of the metal optical properties, we
include the contributions of the bound electrons into the
metal dielectric constant ǫm = ǫ∞ − ω2

p/(ω
2 + iΓabsω).

A. Effective Polarisability Associated to
nth SPP Mode

The nth multipole tensor moment of the metallic particle is
given by

p(n) = 4πǫ0ǫB

(2n− 1)!!
αn∇n−1E0,

αn =
n(ǫm − ǫB)

nǫm + (n + 1)ǫB
R(2n+1). (A.1)

The resonance angular frequency is then ωn =
ωp

√

n/[nǫ∞ + (n + 1)ǫB] (ω∞ = ωp/
√
ǫ∞ + ǫB). Finally, the

effective polarisability, including finite size effects writes [22]

αeff
n =

[

1− i
(n + 1)k2n+1

B

n(2n− 1)!!(2n + 1)!!
αn

]−1

αn (A.2)

with kB = nBk the wavenumber in the background medium.
Considering a Drude metal, we achieve a simple approx-

imated expression for αeff
n near a resonance

αeff
n ∼

ωn

(2n + 1)ǫB
nǫ∞ + (n + 1)ǫB

ωn

2(ωn − ω)− iΓn
R2n+1,

Γn = Γabs + Γ
rad
n ,

Γ
rad
n = (2n + 1)ǫB

nǫ∞ + (n + 1)ǫB
ωn

(n + 1)(kBR)2n+1

n(2n− 1)!!(2n + 1)!!
,

(A.3)

so that the quality factor expression Qn = ωn/Γn remains
valid but with the corrected expressions for resonance
frequency ωn and total dissipation rate Γn.

B. Effective Volumes

The total coupling strength of a dipolar emitter to the spher-
ical metallic particle, embedded in nB medium, expresses
[21, 22]

γ⊥tot

nBγ0
≈ 3

2

1

(kBz0)3

∞
∑

n=1

(n + 1)2

z
(2n+1)
0

Im
(

αeff
n

)

,

γ‖tot

nBγ0
≈ 3

4

1

(kBz0)3

∞
∑

n=1

n(n + 1)

z
(2n+1)
0

Im
(

αeff
n

)

.

(B.1)

The coupling strength to the nth mode is

γ⊥n
nBγ0

≈ 3

2

1
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(n + 1)2

z
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0

Im
(
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n

)

∼
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4π2
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λ
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4πz3
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nǫ∞ + (n + 1)ǫB
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0

Qn,
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4

1

(kBz0)3

n(n + 1)

z
(2n+1)
0

Im
(
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n

)

∼
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3

4π2

(

λ

nB

)3 R2n+1

8πz3
0

(2n + 1)ǫB
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n(n + 1)

z
(2n+1)
0

Qn,

(B.2)

and the mode effective volume is deduced from comparison
to the Purcell factor (1)

V⊥
n =

nǫ∞ + (n + 1)ǫB
(2n + 1)ǫB

4πz2n+4
0

(n + 1)2R2n+1
, (B.3)

V‖
n =

nǫ∞ + (n + 1)ǫB
(2n + 1)ǫB

8πz2n+4
0

n(n + 1)R2n+1
. (B.4)

Finally, we define the mode volume as

1

Vn
= 1

3V⊥
n (R)

+
2

3V‖
n (R)

,

Vn =
nǫ∞ + (n + 1)ǫB

(2n + 1)ǫB

9

(2n + 1)(n + 1)
V0.

(B.5)

All the expressions obtained in this appendix reduce to the
simple analytical case discussed in the main text for ǫ∞ = 1
(bound electrons contribution neglected) and ǫB = 1 (back-
ground medium is air).
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