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Abstract

The underlying causes of migraine headache remained enigmatic for most of the 20th century. In 

1979, The Lancet published a novel hypothesis proposing an integral role for the neuropeptide-

containing trigeminal nerve. This hypothesis led to a transformation in the migraine field and 

understanding of key concepts surrounding migraine, including the role of neuropeptides and their 

release from meningeal trigeminal nerve endings in the mechanism of migraine, blockade of 

neuropeptide release by anti-migraine drugs, and activation and sensitisation of trigeminal 

afferents by meningeal inflammatory stimuli and upstream role of intense brain activity. The study 

of neuropeptides provided the first evidence that antisera directed against calcitonin gene-related 

peptide (CGRP) and substance P could neutralise their actions. Successful therapeutic strategies 

using humanised monoclonal antibodies directed against CGRP and its receptor followed from 

these findings. Nowadays, 40 years after the initial proposal, the trigeminovascular system is 

widely accepted as having a fundamental role in this highly complex neurological disorder and 

provides a road map for future migraine therapies.
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Introduction

Migraine is a highly prevalent and complex disorder characterised by an episodic, severe, 

often unilateral throbbing or pulsating headache associated with nausea, photophobia, 

phonophobia, and sometimes auras.1 Headaches are often the most troubling feature and the 

causes and treatments have been extensively researched.

In 1979, Moskowitz and colleagues2 introduced the trigeminovascular hypothesis of 

migraine in The Lancet, calling attention to a key role for the trigeminal nerve and its 

vasoactive neuropeptide-containing axonal projections to the meninges and its blood vessels. 

The model underscored the potential importance of released neuropeptides and their 

downstream effects after trigeminal activation. The trigeminal innervation became framed as 

a final common pathway for upstream headache initiation and a fundamental template for 

new therapeutic directions.3 Crucial to the hypothesis was emerging knowledge about the 

importance of vasoactive neuropeptide mediator substance P followed later by two even 

more potent vasoactive peptides, calcitonin gene-related peptide (CGRP; now a proven 

therapeutic target) and pituitary adenylate cyclase-activating polypeptide (PACAP).

The hypothesis was prescient because it predated both the 1981 discovery of the sensory 

innervation to the circle of Willis, and the identification of neuropeptide mediators within 

the trigeminovascular system (a term used from 1983 to describe the trigeminal–meningeal–

CNS relationship).4,5 Over the ensuing decades, experimental studies provided crucial 

insights into the neurophysiology of migraine-related pain with therapeutic implications (eg, 

allodynia and peripheral and central sensitisation), coherent central mechanisms of 

migraine-related pain processing, and promising efforts using neuroimaging to discern the 

relationship between blood vessel function and migraine. These subsequent findings 

provided fundamental support to the 1979 trigeminal nerve hypothesis and its contributions 

to the intellectual underpinnings and subsequent developments regarding migraine theory 

and therapeutics 40 years later.

In this Personal View, we review the most notable concepts and advances that have emerged 

from the identification of the role of the trigeminovascular system in migraine with an 

emphasis on future implications and for treatment of this disorder. These include a brief 

review of historical developments, as well as other major developments in anatomy, 

neurophysiology, pharmacology, neurochemistry, human pathophysiology, and drug 

development, all identified using neuroimaging.

Early findings and further development of the trigeminovascular model

Anatomy

The term trigeminovascular was introduced to encompass the immunohistochemical and 

neurochemical findings associated with the trigeminal pathway to pial arteries in multiple 

species, including humans.5,6 Further studies confirmed this new pathway and the well-

known trigeminal innervation of the dura mater (table 1).4,7 In cats, upper cervical dorsal 

root ganglia contribute additional meningeal innervation and together these path ways 

provide an anatomical substrate for hemicranial pain.31 Within the meninges, the largest 
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density of small diameter unmyelinated C-fibres and thinly myelinated Aδ-fibre axons (of 

trigeminal origin) are found in blood vessels. Experimental studies in humans showed that 

electrical or mechanical stimulation of large meningeal blood vessels are associated with 

headache, whereas areas remote from vessels often are not.32 In mice, dural axons of 

nociceptors have been observed issuing pial branches that cross the arachnoid space and 

suture branches that reach the periosteum and possibly some pericranial muscles. These 

axons establish a direct route of communication between extracranial and intracranial events 

that can activate nociceptors on both sides of the calvarial bones.33

In cats and rodents, trigeminal ganglion neurons projecting to the meninges send central 

axons that reach trigeminovascular neurons in the spinal trigeminal nucleus, where they 

converge on neurons that receive additional input from the periorbital skin and pericranial 

muscles (figure).10,34,35 Axonal projections of 2nd-order trigeminovascular neurons convey 

pain signals to multiple nuclei in the brainstem, hypothalamus, basal ganglia, and thalamus.
37 These projections might mediate autonomic (nausea, vomiting, yawning, lacrimation, 

urination), affective (anxiety, irritability), and hypothalamic-regulated functions related to 

keeping homoeostasis (loss of appetite, fatigue).38 Relay trigeminovascular thalamic 

neurons projecting widely (eg, to the somatosensory, insular, auditory, visual, and olfactory 

cortices) contribute to the specific nature of migraine pain and the many cortically mediated 

symptoms in migraine. These include transient symptoms of allodynia, phonophobia, 

photophobia, and osmophobia.39

Because pathways conveying migraine headaches involve both peripheral and CNS 

components, deciphering this association is complex. Under circumstances such as cortical-

spreading depress ion, intense neuroglial activity in grey matter activates signaling cascades 

that could, in turn, discharge adjacent meningeal trigeminovascular axons. The brain, via 

spinal trigeminal nucleus inputs and rostral structures, processes and integrates transmitted 

information to generate migraine headache. Hence, the same organ that processes incoming 

signals relevant to the generation of headache also depolarises trigeminovascular afferents.

Neurophysiological mechanisms

Migraine aura is the clinical manifestation of cortical spreading depression (CSD).3,40 The 

aura is characterised by a propagating wave of cellular excitability that is followed by a long 

period of hyperpolarisation and a consequent headache that is thought to be initiated at least 

partly by introduction of inflammatory molecules and CGRP to the dura.41

In rodents, CSD initiates delayed and immediate activation of trigeminovascular neurons in 

the trigeminal ganglion and spinal trigeminal nucleus. Such activation patterns appear 

similar to the delayed and immediate onset of headache after aura in patients.26,42 These 

findings support the view that the initiation of headache depends on activation of meningeal 

nociceptors at the origin of the trigeminovascular pathway. Neuropeptide-induced dural 

neurogenic inflammation and mast cell degranulation might play a role in the activation or 

sensitisation of dural nociceptors.43 When activated in the altered molecular environment, 

peripheral trigeminovascular neurons become sensitised, and in turn, sensitize second and 

third order trigeminovascular neurons in the spinal trigeminal nucleus and the thalamus.38,44 

Intensification of headache when bending over is the manifestation of peripheral 
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sensitisation, whereas cephalic and extracephalic allodynia is the manifestation of 

sensitisation of trigeminovascular neurons in the spinal trigeminal nucleus and the thalamus.
21

Triptans are a class of selective serotonin 5-hydroxytryptamine (5-HT1B) receptor agonists 

used to treat acute migraine. They disrupt communications between peripheral and central 

trigeminovascular neurons and are more effective in aborting migraine when given early—

before the development of central sensitisation—providing further support to the notion that 

meningeal nociceptors drive the initial phase of the headache.45 Sumatriptan binds to 5-

HT1B receptors in the brain that are associated with known CNS-related adverse events such 

as dizziness and somnolence, but it is unclear if this CNS binding is relevant for 

sumatriptan’s therapeutic effect in migraine.46 Further support for disrupted communication 

is found in studies showing that two peripherally acting drugs, onabotulinumtoxinA and 

anti-CGRP monoclonal anti bodies (mAbs), effectively prevent migraine in patients by 

inhibiting the activation and sensitisation of different classes of peripheral meningeal 

nociceptors. OntabotulinumtoxinA inhibits C fibres, but not Aδ-type meningeal nociceptors.
47 Anti-CGRP monoclonal antibodies inhibit thinly myelinated (Aδ) but not unmyelinated 

(C) meningeal nociceptors.48

Neuropeptides

Three powerful vasodilating peptides are found within trigeminal afferents innervating the 

meninges (substance P, CGRP, and PACAP). The tachykinin substance P, discovered in 

1931, is widely distributed in both the PNS and CNS, including the cranial vasculature, 

ganglia, and trigeminal sensory afferents.49 Preclinical experiments showed that substance P 

is widely implicated in pain transmission.50 Substance P resides in small diameter ganglion 

cells and co-exists to a great extent with CGRP in small unmyelinated fibres.10 Unilateral 

lesions of the trigeminal ganglia (or sectioning of its meningeal branches) decrease 

substance P in ipsilateral large cephalic blood vessels.5,51 These findings provided evidence 

that substance P is released into surrounding tissues from perivascular axons derived from 

the trigeminal nerve.43 However, as only a minority of trigeminal ganglion cells projecting 

to the meninges contain substance P, the presence of additional sensory neuromediators 

within the trigeminovascular system was suspected.7

CGRP, discovered in 1982, was the second neuropeptide to be identified in the 

trigeminovascular system, with effects in vascular tissues similar to those observed with 

substance P. CGRP is one of the most potent vasodilators of intracranial blood vessels, 

elicits a greater vasodilation than substance P, and its depletion leads to a decrease in the 

diameter of the ipsilateral arterial lumen.10,16 CGRP is found in perivascular trigeminal 

sensory afferents, and fibres containing CGRP are especially abundant in the walls of the 

cerebral arteries of the circle of Willis.52 Similar to substance P, CGRP is released by 

stimulation of meningeal afferents, and calcium - dependent release of CGRP in cultured 

trigeminal ganglion cells supported its role as an extracellular modulator.9,53 The findings 

are consistent with in vivo data from a study of nine patients with trigeminal neuralgia and 

five cats, which showed that plasma CGRP concentrations are increased during 

thermocoagualation of the trigeminal ganglion in humans and during electrical stimulation 
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of the trigeminal gang lion in cats.12 Electrical stimulation of the trigeminal ganglion 

releases neurokinin A, substance P, and CGRP simultaneously, suggesting that substance P 

is not alone in modulating trigeminal pathways.54 Additional data are required to clarify this 

point; however, the importance of CGRP in migraine and to the human trigeminovascular 

system was shown by the success of strategies to block the effect of CGRP, whereas a 

substance P receptor blocker was not effective in clinical trials. Despite the negative 

outcome, the latter trials were the first to test a bench-to-bedside approach to therapy, did not 

depend upon a vascular smooth muscle mechanism, and focused on products contained 

within and released from the trigeminovascular system. The progression of targeting one 

peptide to the next was then systematically approached by the pharmaceutical industry. 

Their differing success underscores the need to better understand why selectively blocking 

one neuromediator and not another effectively treats migraine or why targeting CGRP 

appears more useful for mitigating headache than it does other visceral or somatic pains.55

PACAP, discovered in 1989, exists in two bioactive forms.56 PACAP is found in trigeminal 

nerve fibres around cerebral blood vessels.56 Furthermore, it can be found in the trigeminal 

ganglia, the sphenopalatine, and the trigeminal nucleus caudalis.56 Similar to CGRP, PACAP 

plasma concentrations increase during electrical stimulation of the trigeminal ganglion and 

superior sagittal sinus.57,58 However, PACAP concentrations decrease in both plasma and 

the trigeminal ganglion during dural application of inflammatory substances, perhaps 

reflecting responses to the nature of different stimuli.56 The clinical importance of PACAP is 

still primarily hypothesis driven as results of drug trials targeting PACAP and its receptor are 

pending.

Receptor subtypes

The 5-HT1B/1D/1F receptor subtypes are widespread in the trigeminovascular system. In 

1988, a clinical trial59 reported a possible benefit from a novel 5-HT1-ike receptor agonist 

GR43175 (nowadays known as sumatriptan) for treatment of acute migraine. The same year, 

pharmacological experiments revealed that ergot alkaloids block neuropeptide release in the 

meninges following electrical trigeminal stimulation, a finding later replicated for 

sumatriptan.11,15 Both triptans and ergot alkaloids reduced elevated CGRP plasma 

concentrations during electrical trigeminal stimulation in rats.15 Taken together, these 

experimental studies provided the first pharmacological evidence for a prejunctional site of 

drug activity that coupled serotonin receptor subtypes to inhibition of neuropeptide release, 

now considered the most coherent therapeutic mechanism for ergots and triptans. These 

findings directed research away from vascular smooth muscle and towards targeting released 

trigeminal neuropeptides and their receptors.60

Preclinical discoveries showed that the 5-HT1B/1D subtypes reduce substance P and CGRP 

release in the trigeminal ganglion and trigeminal nucleus. Furthermore, using other 

experimental paradigms, 5-HT1 agonists also induce vasoconstriction in intracranial arteries.
61 The 5-HT1D receptor subtype plays a possible role in inhibiting CGRP release from 

trigeminal neurons.62 The 5-HT1F receptor subtype also resides in the trigeminal gang-lion, 

trigeminal nucleus caudalis, and cerebral vessels; however, unlike the other subtypes, the 5-

HT1F receptor subtype does not induce vasoconstriction.63
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Substance P binds to the G-protein coupled receptors neurokinin-1 (NK), NK2, and NK3, 

with highest affinity for NK1 located in the dorsal horn of the spinal cord, the locus 

coeruleus, and the raphe nucleus.49 Following substance P release, NK1 receptors are 

activated in the endothelium and cause vasodilation, mast cell degranulation, and plasma 

protein leakage. NK1 receptor antagonists inhibit substance P-induced vasodilation of pial 

arteries in vivo.49 However, changes in vascular tone evoked by elec trical stimulation of the 

trigeminal ganglion are unaffected by NK1 receptor antagonists.64 Hence, receptors and 

neurotransmitters other than NK1 and substance P are pivotal in evoking neurogenic 

vasodilation.

The CGRP receptor complex is found in the trigeminal ganglion in all investigated species.
65 Although CGRP is expressed in C-fibres, receptor components are found in the thicker 

Aδ-ibres. Furthermore, receptor components are found in neurons of the trigeminal 

ganglion. Stimulation of the CGRP receptor increases intracellular cyclic adenosine 

monophosphate (cAMP) by activating adenylate cyclase.66 CGRP is also a ligand for the 

amylin receptor.66 The potential role of the amylin receptor in migraine is unknown.

PACAP binds to several G-protein coupled receptors including pituitary adenylate cyclase-

activating polypeptide type I receptor (PAC1), vasoactive intestinal polypeptide receptor 1 

(VPAC1), and VPAC2, which results in increased intracellular cAMP concentra tions.56 The 

mRNA of these receptors is found in several structures including the trigeminal ganglia and 

otic ganglia, and all three receptors are found in cerebral and cranial blood vessels. The 

VPAC1 and VPAC2 receptors mediate vasodilation and mast cell degranulation, whereas the 

PAC1 receptor is involved in multiple biological processes.56 Notably, the released contents 

from mast cell degranulation activate C-fibres innervating the dura mater.67 Furthermore, a 

PAC1 receptor antagonist attenuates nociception in models of inflammatory and chronic 

pain, emphasising its role in nociception.68,69 Central activation of the PAC1 receptor 

appears to mediate the effects of PACAP on central trigeminovascular neurons.70

Neurogenic inflammation

Plasma extravasation and vasodilation are both important components of the neurogenic 

inflammatory response, and substantial additional evidence suggests a role for other 

signaling markers of inflammation in migraine.71 Neurogenic inflammation develops 

because of release of sensory neuropeptides such as substance P and CGRP from innervating 

fibres, and this release of neuropeptides might also occur in extracranial pain sensitive 

structures.71,72 Studies focused on the dura mater, a structure that contains vessels outside of 

the blood–brain barrier, and perivascular nerves and mast cells, showed that chemical and 

electrical stimulation induces plasma extravasation in the dura mater but not the brain, which 

remains protected behind the blood–brain barrier.73 Administration of indometacin, 

acetylsalicylic acid (aspirin), ergotamine tartrate, dihydroergotamine, or triptans blocked 

neuro genic extra vasation in the dura mater in animal models, as did substance P receptor 

antagonists.14,74,75 The same studies implicated prejunctional mechanisms and pep tide 

release inhibition by ergot alkaloids and triptans. Several substance P receptor antagonists 

blocked plasma protein extravasation in preclinical models.49 However, human clinical trials 

were ineffective when testing oral and intravenous administration of a substance P receptor 
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antagonist, which indicated that substance P-induced neurogenic inflammation is not 

sufficient to explain human migraine headache; nevertheless, it could be a useful biomarker 

indicative of a meningeal inflammatory response.49

However, the CGRP-induced neurogenic vasodilation component of inflammation could be 

more clinically relevant than is substance P-induced vasodilation. Although neuropeptide 

release from sensory fibres is getting increasing attention in neuroimmune modulation, 

research on tissues suggests that the role of neuropeptide release in pain generation remains 

to be elucidated. Despite these uncertainties, models of neurogenic inflammation provided 

the data to support pursuing new therapeutic targets (eg, the 5-HT1F receptor subtype) as 

well as the therapeutic use of monoclonal antibodies.76 Antisera directed against CGRP and 

substance P blocked the peripheral actions of these peptides, which was a discovery 

predating that of the efficacy of therapeutic monoclonal antibodies in migraine by 30 years.
13

Clinical imaging evidence for trigeminovascular migraine mechanisms

Results from neuroimaging studies have given novel insights into migraine pathophysiology. 

Although the aura has been notoriously difficult to study, aura-like episodes with 

corresponding regional blood flow changes consistent with CSD follow carotid puncture.77 

Blood flow studies and fMRI studies during spontaneous and evoked visual auras confirm 

and extend these aura findings77 and reveal spatial and temporal changes in blood oxygen 

level-dependent signals characteristic of CSD in preclinical models.78,79

Regarding headache, simple vasodilation does not appear to explain the complex phenotype 

long considered to be the cause of migraine pain. For example, conflicting results were 

reported using magnetic resonance angiography of the middle meningeal artery, perhaps 

because of timing variations from attack onset. Results ranged from no dilatation, to 

ipsilateral dilatation on the pain side, and to dilatation in the early phase followed by 

bilateral dilatation.27,30,80 By contrast, spontaneous attacks are accompanied by intracranial 

but not extracranial arterial dilatation,28 and the magnitude of the dilation is minimal. From 

these studies, it appears unlikely that middle meningeal artery dilation generates migraine 

pain. Instead, observed changes in vessel diameter could reflect changes in the chemical 

milieu of the perivascular space and autonomic pain-related reflexes.22

Neuroimaging studies confirm the involvement of trigemi nal structures in migraine. PET 

studies show increased blood flow in the pons (a surrogate for activation) both during 

spontaneous attacks and those induced by glyceryl trinitrate.17,81 Lowered basal spinal 

trigeminal nucleus activity was shown outside of migraine attacks in patients with migraine 

compared with controls (healthy volunteers who did not have a history of migraine), and this 

basal level of activity increased at closer timepoints to an episode of migraine.82 Studies in 

humans also showed increased hypothalamic activity before spontaneous attacks (one 

patient monitored for 30 consecutive days) and in the premonitory phase of attacks induced 

by glyceryl trinitrate.83,84 Furthermore, spontaneous migraine attacks were associated with 

altered functional coupling between the hypothalamus with the spinal trigeminal nucleus the 

day before and during onset of the attacks.84
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Development of drug targets

Putative mechanisms and targets identified in preclinical experiments require translation and 

at least partial validation in a human model, because migraine could be a uniquely human 

experience. However, spontaneous attacks are difficult to identify and investigate, especially 

at their onset. To overcome this challenge, a human model was developed in which migraine 

attacks were provoked by administering substances to patients with a history of migraine. 

Attacks, though painful, are fully reversible, making experimentally induced migraine an 

acceptable model for studying the complex pathophysiological events that occur during a 

migraine attack.85

In this human model, CGRP, PACAP, or drugs that target downstream signaling cascades 

following neuropeptide receptor engagement (presumably in proximity to the 

trigeminovascular pathways) cause typical migraine headaches after infusion. 60–70% of 

patients experience attacks after infusion of CGRP or PACAP.85 Higher attack rates (>80%) 

can be observed following administration of phosphodiesterase 3 and 5 inhibitors, 

implicating the second messengers cAMP and cyclic guanosine mono phosphate. 

Amplification of both second messengers could suggest a shared target such as modulation 

of an ion channel (eg, KATP channels).85,86 These studies further emphasise the role of 

neuropeptides as crucial mediators of migraine and potential drug targets for mechanism-

based migraine treatment (table 2).

Since the introduction of the triptans, other drug classes with equivalent clinical efficacy but 

that do not induce vasoconstriction have been sought for treatment of acute migraine. 

Candidates include agonists at the 5-HT1F receptor that is expressed on trigeminovascular 

afferents. One of these agonists, lasmiditan, showed a therapeutic effect similar to 

sumatriptan in a phase 3 randomised multicenter study with 1856 patients with migraine.87 

A high frequency of CNS-related adverse events, such as dizziness and somnolence, 

suggests that this drug (unlike most triptans) penetrates and possibly targets receptors in the 

brain. However, these adverse effects are unlikely to hinder a future approval of the drug.

The first drug specifically targeting CGRP was the small molecule CGRP receptor 

antagonist, olcegepant. Although the drug was never commercialised because it is poorly 

absorbed via oral administration and had limitations when adminstered intravenously, a 

proof of concept study with 34 patients with migraine showed that 71% of attacks treated 

with the highest dose resulted in complete relief of symptoms.24 Nowadays, other gepants 

(atogepant, rimegepant, and ubrogepant) might be nearing use in clinical practice because 

phase 3 trials for acute migraine attacks and phase 2 trials for preventive treatment are 

ongoing. Anti-CGRP mAbs have been approved by both the Food and Drug Administration 

and European Medical Agency and are highly effective and well tolerated; however, 30–40% 

of patients do not respond to mAbs.88

The site of action of gepants and mAbs is probably outside of the blood–brain barrier 

(similar to the ergot alkaloids and triptans) as they do not readily cross it. Possible sites of 

action include meningeal nociceptors and cells and other targets within the trigeminal 
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ganglion.48,89 Two mAbs against PACAP (ALD1910 [preclinical stage]) and against PAC1 

receptor (AMG-301 [phase II trial, NCT03238781]) are being developed and tested.

Conclusion and future research

Fundamental insights and discoveries to understand migraine pathophysiology have led to 

the emergence of new therapies and targets. However, as in most drug discovery research, 

the road from bench to bedside has not been straightforward. The time from concept to 

bedside drug therapy can be more than 30 years, which holds true for therapeutic 

developments in migraine coming to fruition—2019 will mark the 40-year anniversary of the 

first publication of the trigeminovascular hypothesis.90

The original trigeminovascular hypothesis successfully anticipated the therapeutic 

importance of identifying and targeting for therapy neuromediators within a final common 

pathway transmitting pain signals for headache; offered a more coherent understanding of 

triptan and ergot action also relevant to the role of released neuropeptides; reinforced the 

notion that clinically effective drugs do not require blood–brain barrier penetration; provided 

novel concepts concerning activation and sensitisation of trigeminal afferents by meningeal 

inflammatory stimuli as well as by intense endogenous brain activity; and emphasised the 

trigeminal nerve as a target for substances originating within the circulation or released from 

the brain that trigger headache.

The final common migraine pathway continues as an exciting avenue for discovery and as a 

vehicle to resolve pressing unanswered questions, such as the exact molecular mechanisms 

responsible for the initation of migraine attack. Future studies will aim to define the role of 

candidate mutations or polymorphisms that better inform about the initiating or suppressing 

mechanisms within the trigeminovascular system that lead to headache. Potential research 

avenues for clinically useful drugs might be found among ion channels ex pressed on 

trigeminovascular afferents or in meningeal tissues (eg, transient receptor potential vanilloid 

family, acid-sensing ion channels, potassium channels). Finally, future studies will 

investigate other aspects of migraine pathogenesis including the role of inflammation as well 

as vascular factors—eg, endothelial dysfunction.

Drugs targeting key signaling pathways in the trigeminovascular system will continue to 

transform clinical practice, thus supporting the development of mechanism-based migraine 

treatment. The hypothesis published in The Lancet in 1979 changed the research direction 

and focus at that time and was undoubtedly the first important building block upon which 

migraine research nowadays is based. With the emergence of new tools and technologies to 

study pain and neurovascular mechanisms, we anti cipate that the next 40 years will bring 

keystone discoveries to better understand and treat this enigmatic disorder.
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Search strategy and selection criteria

We identified articles published in English through searches of PubMed, Science Direct, 

Ovid Medline, Embase, and OVID, with use of the search term “trigeminovascular 

system”. No publication date restrictions were applied. We also identified papers from the 

authors’ own files and from references cited in relevant articles. We emphasised original 

and first to publish research and the references were chosen to reflect the laboratory 

credited with those original discoveries. Reviews were chosen when space did not permit 

a more comprehensive treatment of a topic or when limited space did not permit coverage 

of areas relevant to migraine but not necessarily of immediate importance to 

developments related to the trigeminovascular system. We generated the final reference 

list on the basis of articles’ relevance to the topic of this Personal View.
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Figure: Schematic overview of the trigeminovascular system
Adapted from Burstein et al.36 Thalamic trigeminovascular neurons project to a wide array 

of cortical areas that mediate symptoms associated with migraine, such as transient amnesia 

and cognitive decline, phonophobia, photophobia, and expressive aphasia. Inputs to SpV 

arise from meningeal dural blood vessels and pial blood vessels (not shown). Green: 

projections from SpV. Blue: thalamo-cortical projections. Yellow: afferent projections from 

meningeal blood vessels. Orange: afferent projections from cervical dorsal root 

ganglions.Peach: efferent projections to meningeal blood vessels. Au=Auditory cortex. 

ECT= ectorhinal cortex. Ins=insular cortex. LP=lateral posterior thalamic nucleus. 

M1=primary motor cortex. M2=secondary motor cortex. PAG=periaqueductal gray. 

PB=parabrachial nucleus. Po=posterior. PtA=parietal association cortex. Pul=pulvinar. 

RS=retrosplenial cortex. S1=primary somatosensory cortex. S2=secondary somatosensory 

cortex. SpV=spinal trigeminal nucleus. SSN=superior salivatory nucleus. V1=primary visual 

cortex. V2=secondary visual cortex. VPM=ventral posteromedial
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