
MIGRATING A HONEYPOT TO HARDWARE

Vukašin Pejović1, Ivana Kovačević2, Slobodan Bojanić1, Corado Leita3,
Jelena Popović2 and Octavio Nieto-Taladriz1

1 Departamento de Ingenierı́a Electrónica, ETSI Telecomunicación,
Universidad Politécnica de Madrid, Madrid, España

2 Department of Electronics, School of Electrical Engineering,
University of Belgrade, Serbia

3 Institut Eurécom,
BP193, F-06904 Sophia Antipolis cedex, France

ABSTRACT

A honeypot apparatus, as a perspective security technology
has proven itself worth deploying by various malicious rec-
ords made. The next step in deploying the technology can
be an independent hardware device with the incorporated
honeypot behaviour. Such a solution would bring an ease
in deployment together with a high throughput it would be
able to support to the area of network auditing and moni-
toring. Initial investigation and implementation steps have
been conducted. A flexible base for a honeypot platform in-
tended to be implemented on a modern Field Programmable
Gate Array device, as a potential destination technology, has
been developed. Correspondent results with a relevant set of
details are being presented together with future perspectives
and further investigation and deployment potential. No sim-
ilar attempts have been documented.

1. INTRODUCTION

In a modern digital society the information security has an
indisputable importance. Different technologies, all with
their respective virtues and flaws, have been developed in
order to enforce the safety of information. Some of these are
globally accepted and deployed even in everyday life such as
antivirus programs, firewalls, Virtual Private Networks and
intrusion detection and prevention systems. The goal of this
work is to present a step forward towards deploying a rela-
tively new security technology, a honeypot that is becoming
more and more actively used [8].

The essence of the functionality behind the honeypot
mechanism is to provide a tool for detection and identifica-
tion of hitherto unknown or unidentified security threats [2].
Honeypot is a decoy network, or a fake part of one. It has the

This work has been funded in part by the Spanish Ministry of Educa-
tion and Science under project TEC2006-13067-C03-03 and by the Euro-
pean Comission under Tempus Project CD-JEP-17028-02

intention to deceive an attacker by imitating a real network
surrounding, a whole system or sometimes just a single sys-
tem service. If it is well deployed, an attacker is unable
to distinguish weather he communicates with the original or
the artificial (honeypot based) servers or services. Two types
of honeypots are generally distinguished: a low and a high
interaction honeypot [9].

If an attacker was to determine the nature of the platform
it communicates with, he would need to probe and actually
perform some kind of an attack on all the potential targets,
platforms of unknown type. While doing so, there is a great
possibility of probing a honeypot platform, thus revealing
an attempt and alerting a network administrator or another
supervising entity.

A honeypot, being in a way a fake network device, must
not have anybody interacting with it, since it has no produc-
tion value at all. This creates a simple, straight forward, de-
tection environment. Specifically, the only thing that a hon-
eypot should do is to detect every presence and perform cor-
responding tasks in one such situation. Normally, the tasks
consist in making the record of an event in order to anal-
yse it later. In comparison with other security technologies,
which have mostly defensive approach, honeypot is based
on a proactive interaction principle with a goal to obtain use-
ful data and prevent future attack scenarios.

Honeypots are generally implemented on the top of an
operative system using its networking capabilities, to be more
specific, TCP/IP stack. One such example certainly a low in-
teraction HoneyD [1] honeypot platform. In order to clarify
further the functionality that is behind the honeypot word
the HoneyD mechanism will be described shortly.

HoneyD monitors the unused IP address space [1] within
a local area network it is installed at. After noticing a con-
nection attempt to an unused IP address the HoneyD inter-
cepts the connection and then interacts with an attacker pre-
tending to be a victim machine. This action is lead by a fact

International Conference on Emerging Security Information, Systems and Technologies

0-7695-2989-5/07 $25.00 © 2007 IEEE
DOI 10.1109/SECURWARE.2007.35

151

that no legitimate communication can be established with
an entity behind an unused address. A fundamental part of
the platform is an operative system emulator implemented
by scripting techniques and used to execute the interaction
process.

2. A HARDWARE BASED HONEYPOT

The motivation for the work being exhibited is a potential
that might be noted when observing a honeypot apparatus
and the intention it has been engineered for. As previously
mentioned, the most important role that a single honeypot
platform has to play is to maintain a network communication
with a potential intruder as long as possible, as it was a real
system and not a fake honeypot one. All of this as to gather
as much data as possible related to an intrusive communica-
tion it has been a part of. In such a context, more honeypots
would provide more useful information. A hardware based
honeypot can also be seen as a faciitation concept for the
deployment of the Honeypot Sensors [?].

Actually, the approach used for the deployment of hon-
eypots requires a PC platform on which a honey pot cn be
installed at. Dependability of installed software and sys-
tem characteristics applies here too, without any doubt. It
is highly probable that a modern PC will not be used only
as a honeypot device. In such a case, scheduling of active
processes within an operative system, generally directly de-
pendant of a type and a number of processes being executed
at a certain moment of time, might cause a honeypot process
to loose the processor at a crucial moment and not to be able
to maintain an ongoing communication. On the other hand,
older PCs that might be used as a honeypot only machines
might not be fast enough to sustain traffic at high speeds
such as 10 Gbps Ethernet, which is expected to be more ac-
tively invoked in a near future.

In order to overcome the cited problems an independent
hardware honeypot device is proposed. As a consequence
of its nature the device would be compact, easy to deploy,
and hopefully of low cost. The basis of the device is im-
plemented on an FPGA platform. It is expected that the fi-
nal instance of the design becomes a fully functional, highly
mobile and easily deployable honeypot system.

Transition of up to now purely software concept towards
a hardware concept, proposed here, is based on a model pre-
sented in the work of Leita et al. [4]. The honeypot engine in

Fig. 1. Block scheme

the mentioned model behaves accordingly to the previously
developed set of state machines. These state machines de-
scribe the server-client communication, which honeypot has
to be aware of in order to behave as it was a real system and
not an intentionally replicated one. The finite state machines
are attained from gathered and analysed traffic records. The
records are being processed with a especially designed set
of algorithms [4] with a goal to develop a minimal yet suf-
ficient state machine set to permit a honeypot platform to
function to its best.

Originally, state machines are described by three attrib-
utes [4]. These can be represented as a set of strings. More
detailed explanation of the state machines related facts are
encountered later on. Important fact now is that the string
based model [4] can be easily stored in the memory resources
of a hardware device. This will allows for the hardware de-
sign to up to certain extent program itself and behave ac-
cording to the stored descriptions.

The design, presented in more details later, thus has as a
foundation the shortly described model. Inputs of the design
are state machine descriptions, whilst the outputs are exci-
tations of a TCP/IP stack. More precisely, the outputs are
payload values to be sent by the stack. Visual representation
is in Fig. 1.

3. THE DEVELOPED SYSTEM

The destination platform for the described system was a chip
from the Xilinx Virtex4 FX family [3]. This family permits
a simultaneous usage of both logic-centric [5] design con-
cept, as an essential virtue of FPGA technology, and micro-
processor design concept, as a characteristics from the em-
bedded system design background. The chip features a 700
DMIPS PowerPC [3] [6] embedded microprocessor hard-
ware core which can be instantiated and used together with
other mostly logic-centric soft core based parts of a design,
comprising together a fully functional design.

As mentioned, input data for the system is a set of state
machines used to mimic the behavior of real-world network
communication. State machines, to be more specific, do de-
scribe the server side of communication, which coincides
with the mechanism envisaged for the honeypot function-
ing in general. Honeypots, just to remind, are not used for
any useful work except the detection of the intruders, so no
client-side communication should be generated on such plat-
forms.

The communication with clients should be happening as
follows. After a request is sent by a client the information
about the port and protocol of a service requested is com-
pletely defined. An active and valid connection should be
established over a TCP/ IP stack. Simultaneously with that
a corresponding state machine set is downloaded to the in-
ternal memory of the designed system. A TCP/IP stack for-

152

Fig. 2. Detailed block scheme

wards the client request to the system which triggers inter-
nal logic actions destined to find the appropriate server an-
swer from the preselcted and loaded state machine. Further
data exchange between a client and the system simulating a
server continues following the just described schema. The
structural block diagram of the system is on Fig. 2. Down-
loading functionality, however, has not been implemented,
since the focus of this initial work has mostly been at hard-
ware aspects, with the simple goal of estimating the efforts
and providing the initial platform concept for a complete
system.

3.1. State Machine Format

Each state of a state machine stored in the memory is ini-
tially [4] described by three types of attributes. The first
attribute is a list of transitions to next states. This can be
seen as a list of strings or specifically a set of names of next
states. This list is accompanied by transition conditions that
could also be represented as a set of strings. A correct tran-
sition is made by satisfying equlity conditions between an
incoming client request and an appropriate transition label.
Transition conditions have a frequency values assigned to
them. Frequency values are used to decide which transition
should be chosen in the case that more transitions have stis-
fied a transition condition.

The second attribute is a list of labels. A label corre-
sponds to information that is to be sent back to a client as a
consequence of a servers state. Label can be seen as the pay-
load to be encapsulated in a packet. A label is additionally
marked with a label frequency value, simply because there
might exist more answers to be sent from a single state, and
frequency value, presents a mechanism for deciding which
answer option is the best or excatly the one used more often.
Both mentioned frequency values, label and transition, are
deducted from the number of their respective occurrences in
the state machine generation process performed on the orig-
inal traffic records.

Finally, the third attribute is a list of signals. A signal
can be seen as information to be exchanged with another
state machine, potentially active in another communication
process in the same time, and carrying a certain amount of
significance at the particular currently executed case. En-

Table 1. Memory design details

MEM0 MEM1 MEM2 MEM3 MEM4 MEM5 TOT

18Kb blocks used 1 15 15 1 2 2 36

Write port width 32 32 32 8 16 16

Write port depth 7 13 13 11 11 11

Read port width 8 32 32 8 8 16

Read port depth 9 13 13 11 12 13

hancement of interoperability is implemented in this way as
it might be important for types of communication that in-
clude utilisation of multiple ports.

The described original structure had to be adapted to fit
the hardware implementation proposed. Therefore, the third
attribute was not given significance as it had to have in the
case of implementation of the fully functional model, though
it was implemented up to some extent.

3.2. The Memory Storage Block

Having in mind the previously described state machine for-
mat, a memory storage block was carefully crafted to permit
an easy access to different segments of the relevant data. It
is composed of six smaller blocks, implemented as RAM
cores, again, to minimise the number of clock cycles re-
quired to write and read the data.

The first functional memory block, marked with MEM0
in Fig. 3, contains general information relevant to every state
in a state machine. That information is composed of the
number of transitions from each state, the number of sig-
nals corresponding to that state and the number of states la-
bels. This general information is necessary to allow a con-
trol block, described later, to move through the memory sys-
tem and obtain the relevant data. The second block, marked
with MEM1, contains the list of all the labels for all the
states, whilst the third block, MEM2, contains the list of all
the transitions. Values of label frequencies are stored in the
fourth memory unit, MEM3. The transition frequency and
the future state values are stored in the fifth MEM4 block.
The list of intercommunication signals was memorised in
the sixth memory block, MEM5.

Fig. 3. Memory storage structure

153

From the implementation perspective, each memory block
is a dual-port RAM dedicated to one type of the informa-
tion. The design targeted the smallest chip from the Virtex4
family, the XCV4FX12 [3], on the Xilinx ML403 develop-
ment board [7]. The sizes of memories were selected so as
to achieve the maximum utilisation of the available RAM
blocks. Details are presented in Table 1. The memory space
on the selected chip equals to 36 18Kb RAM block units [3].
The maximum number of states in a state machine was fixed
at 120, which for the initial state of the design development
seemed completely acceptable equaly from the functional
and implementation perspective.

3.3. Control Block and Buffers

The control block presents the core of the design. This part
of the design coordinates all the other parts of the design,
six memory units and TCP/IP interfaces, namely, to achieve
a fully functional design. It has been designed as a state
machine that combines the comparison of distinct factors as
an essential part of its functionality.

The control block is foreseen to work according to the
following scenario. Each client request triggers the start sig-
nal, presented by transition from sx to s0 state in Fig. 4.
The assumption is that memory blocks are filled correctly
with the state machine related with the initial client request.
The mechanism applied to fulfil this condition is still to be
developed, but it is envisaged that this task will need to be
implemented as a supervising software module.

Fig. 4. Synthesized control block state machine

The State s0 represents a process of reading the infor-
mation from MEM0. To recall, MEM0 contains the number
of transitions from each state together with other general in-
formation, which is needed to correctly establish the reading
depth from all other memories. Machine then passes to state

Table 2. Xilinx Logic Utilization Summary Overview

Used Resources Available Resources Utilization

Slices 1303 5472 24%

LUTs 1501 10944 13%

RAMBs 36 36 100%

s1, which represents the selection process of an answer with
the highest frequency value matching the payload received
from a TCP/IP stack. This matching has to correspond to
the initially received and recognised request sent by a client.
After the selection of the answer with the highest frequency
value the process continues by a simple retrieval of the cor-
respondent reply from the MEM1 in the state s2.

The future state of the server side of the communication
is then established in states s3 and s4. Certain shifting be-
tween these two states is necessary in order to obtain the
state with the highest frequency value. The state s3 repre-
sents the reading process from MEM2 and s4 from MEM4.
The state s5 is rarely used. It is implemented for the pur-
pose of the communication with the supervising software
and mentioned inter-state-machine communication that was
not fully deployed, while endfsm state represents the send-
ing of the determined best server answer to a TCP/IP stack.
Finally, buffers in Fig. 2, are simply used to communicate
with TCP/IP stack, they might develop themselves into FI-
FOs in future, whilst currently being represented as simple
register structure.

3.4. Implementation and Results

The design as shown in Fig. 2, has been implemented on a
Xilinx ML403 development board with a Virtex4 XCV4FX12
chip, using VHDL as a hardware description tool. The syn-
thesis has been performed by Synplicity’s SynplifyPro 8.6.2
tool; the simulation and functional verification in Aldec Ac-
tive HDL 6.2 simulator; while place and route functions
were performed by the Xilinx ISE Foundation 8.1 environ-
ment. The design has been tested in hardware, on mentioned
board as a proof of proper and correct execution. The short
Xilinx implementation summary is in Table 2.

4. CONCLUSION & FUTURE WORK

A view on potentials of the migration of a honeypot func-
tionality to a hardware platform was given. The presented
design should be seen as an initial work on the topic. It is
clear that further work must include completion of the full
design concept, including the supervising software and ad-
ditional hardware components. In order to obtain a fully
functional honeypot device it will be necessary to conduct
more tests and to try different approaches for the TCP/IP

154

stack implementation, here referring to microprocessor op-
tion, using PowerPC core, or logic implementation of the
stack.

Usage of bigger chips, from the same Virtex4 family,
containing more block RAMs and more logic resources, even
more PowerPC cores [3] might be suitable for complete tran-
sition of the design to an embedded platform. Two PowerPC
cores would in that case allow an implementation of super-
vising software together with desribed hardware parts within
a single embedded platform, thus the progress to a hardware
based honeypot would obtain its usable form.

5. REFERENCES

[1] ”Developments of the Honeyd Virtual Honeypot”, available
on-line at: http://www.honeyd.org

[2] S. Baldwin, ”Lance Spitzner: Using Honeypots to Track the
Bad Guys”, available on-line at: http://www.raeinternet.com/
newsletter/interview spitzner 050604.html

[3] Xilinx Inc., “Virtex4 User Guide“, 2006.

[4] C. Leita, K. Mermoud, M. Dacier, “ScriptGen: an automated
script generation tool for honeyd,“ 21st Annual Computer Se-
curity Applications Conference, Dec. 2005.

[5] P. James-Roxby, G. Brebner and D. Bemmann, “Time-Critical
Software Deceleration in an FCCM,“ IEEE Symposium on FP-
GAs for Custom Computing Machines (FCCM04), pp. 3-12,
April 2004.

[6] Xilinx Inc., “PowerPC 405 Block Reference Guide,“ July
2005.

[7] Xilinx Inc., “Ml401/402/403 Evaluation Platform User
Guide,“ May 2006.

[8] A. Lamb, “Survey of Trends in Honeypot Tech-
nology Users,“ March 2006, available on line at:
http://www.rit.edu/ arl7969/whitepapers/alamb-3-2006.html

[9] The Honeynet Project: Tools for Honeynets, available on-line
at: http://www.honeynet.org/tools/index.html

[10] P.T. Chen, C.S. Laih, F. Pouget and M. Dacier, “Compar-
ative Survey of Local Honeypot Sensors to Assist Network
Forensics,“ International Workshop on Systematic Approaches
to Digital Forensic Engineering, November 2005.

155

