
GPCE’15

Migrating Large Object-oriented
Applications into Component-based ones

Instantiation and Inheritance Transformation

Zakarea Alshara Abdelhak-Djamel Seriai Chouki Tibermacine
Hinde Lilia Bouziane Christophe Dony Anas Shatnawi

LIRMM, CNRS and University of Montpellier, France
{alshara, seriai, tibermacin, bouziane, dony, shatnawi}@lirmm.fr

Abstract
Large object-oriented applications have complex and numerous de-
pendencies, and usually do not have explicit software architectures.
Therefore they are hard to maintain, and parts of them are difficult
to reuse. Component-based development paradigm emerged for im-
proving these aspects and for supporting effective maintainability
and reuse. It provides better understandability through a high-level
architecture view of the application. Thereby migrating object-
oriented applications to component-based ones will contribute to
improve these characteristics (maintainability and reuse). In this
paper, we propose an approach to automatically transform object-
oriented applications to component-based ones. More particularly,
the input of the approach is the result provided by software ar-
chitecture recovery: a component-based architecture description.
Then, our approach transforms the object-oriented source code in
order to produce deployable components. We focus in this paper
on the transformation of source code related to instantiation and in-
heritance dependencies between classes that are in different com-
ponents. We experimented the proposed solution in the transforma-
tion of a collection of Java applications into the OSGi framework.
The experimental results are discussed in this paper.

Keywords Component, Object, Code Transformation, Refactor-
ing, Inheritance, Encapsulation, Class Instantiation, Java, OSGi

1. Introduction
Most existing large legacy applications are object-oriented (OO) [19].
These applications have complex and numerous internal depen-
dencies. Usually, they do not have explicit architectures, in which
coarse-grained high-level entities and their dependencies are de-
scribed. This makes these applications hard to maintain (understand
and change), and hard to reuse.

Conversely, component-based (CB) applications have coarse-
grained high-level architecture views [7]. They have loosely cou-
pled and highly cohesive entities that have explicit dependencies.
Therefore, these applications are easy to understand through their

[Copyright notice will appear here once ’preprint’ option is removed.]

architecture views, and it is easy to reuse their coarse-grained en-
tities [5, 9]. Thus migrating these OO applications to CB ones
contributes to improve their maintainability, in addition to their
reusability by feeding existing component repositories [12].

The migration process is composed of two main steps [1]: the
first step is CB architecture recovery where components and their
dependencies are identified. The second step is code transformation
where OO code is transformed into equivalent CB one.

The step of CB architecture recovery was largely treated in the
literature [2–4, 7, 9]. Most of these works aim to identify compo-
nents as clusters of classes. They use clustering algorithms, among
other techniques, aiming at maximizing intra-component cohesion
and minimize inter-component coupling to identify the architec-
tural elements (components and connectors). CB architecture re-
covery aims to identify components and connectors but not to cre-
ate them. It does not transform these clusters of classes into a con-
crete component model. Moreover, the dependencies between clus-
ters remain OO ones.

Code transformation (The second step) aims at creating pro-
gramming level components by transforming OO code. It aims
at creating components based on given clusters of classes. Com-
ponent encapsulation (i.e., Interaction through explicit provided
and required interfaces) is a main characteristic of components
and therefore a major difference between the component and ob-
ject concepts [16]. Thus, object to component transformation con-
sists on transforming OO dependencies between classes belong-
ing to different clusters to interactions through interfaces to avoid
component encapsulation violation. It needs the transformation of
OO mechanisms used at the implementation level (i.e. instantia-
tion, inheritance, exception handling, etc.) into ones related to CB
(interface-based connections) [12].

This paper proposes a method that automatically transforms an
OO application code to a CB one. We assume that an existing CB
architecture recovery method provides us architecture descriptions
as an input to our method. Based on the taxonomy of component
models proposed in [11], we chose, as the target of our transfor-
mation, an object-based component model (i.e. components imple-
mented based on OO source code). These component models are
implemented as an extension of mainstream OO programming lan-
guages (e.g. OSGI is an extension of Java [13], CCM is an exten-
sion of C++ [11]). This choice allows us to reuse the OO source
code to be migrated. In this work, we experimented the proposed
solution on the transformation of Java applications into the OSGi
framework.

The remainder of this paper is organized as follows. Section 2
presents the migration process and its related issues. Section 3 ex-
plains the proposed solution to transform class instantiation depen-

Transform instantiation and inheritance for decoupling classes in different components 1 2015/8/24



dencies. Section 4 describes our solution to transform OO inheri-
tance relationships. Section 5 presents implementation and exper-
imental results. Before concluding, we present the related work in
Section 6.

2. Problem Statement
To better illustrate the problem and solutions related to the OO-
to-component migration, we introduce an example of a simple
Java application. This application simulates the behavior of an
information screen (e.g. a software system which displays on a
bus’s screen information about stations, time, etc.).

In Figure 1, ContentProvider class implements methods which
send text messages (instances of Message), and time information
obtained trough Clock instances based on the data returned by
TimeZone instances. The DisplayManager is responsible for view-
ing the provided information through a Screen.

Figure 1. Information screen class diagram.

2.1 Component-based Architecture Recovery
Architecture recovery was largely studied in the literature [3]. In
these works a software component is recovered as a cluster (set) of
classes that collaborate with each other to provide the component
functionalities [6]. In most of these works, a cluster is identified
based on the definition of a fitness function and a clustering algo-
rithm. For example, in our previous works [4, 9], we have proposed
an approach which aims to recover component-based architectures
based on a fitness function and a search-based algorithm. The fit-
ness function is based on quality measurements on the component-
based architecture (i.e. maintainability, reliability, autonomy, speci-
ficity and composability). The search-based algorithm aims to max-
imize this fitness function.

Figure 2 shows the result of architecture recovery step applied
on our example. The recovery step identifies five clusters, each
cluster contains one or several classes. For example Component1
is responsible for displaying information on the screen through the
collaboration of its classes, Screen and DisplayManager. A cluster
is composed of two types of classes: internal classes and bound-
ary classes. Internal classes are classes that do not have depen-
dencies (e.g. a method invocation or an inheritance relationship)
with other classes placed into other clusters (e.g. GpsLocation and

Screen). And the boundary classes are classes that have depen-
dencies with classes placed into other clusters (e.g. TimeZone and
Clock). We consider a component-based architecture as a set of
components connected via interfaces, where interfaces are identi-
fied from boundary classes.

Figure 2. Architecture recovery for the information screen.

2.2 Code Transformation
In this paper we use clusters of classes obtained based on recovery
approaches as an input of the source code transformation step. To
transform clusters of classes to components we need to solve two
main problems:
1) Explicit component encapsulation violation: the component
must hide its internal structure and behavior [16]. It should provide
its services without exposing the classes that implement it. Two
source code expressions fall under this category. First, “class in-
stantiation”, where a class (in one component) creates an instance
of another class (residing in a different component). For exam-
ple, Clock class creates an object of TimeZone class, while these
classes belong to two different clusters. Second, “method invoca-
tion”, where a method defined in a given class of a cluster invokes
a method defined in a class placed in another cluster.
2) Implicit component encapsulation violation: It is related to
implicit dependency between components caused by OO mech-
anisms, such as inheritance, exception handling and event han-
dling. For instance, for the inheritance mechanism, a class and
its subclasses cannot be necessarily placed in the same cluster.
This is the case in Figure 2 for Clock and Message subclasses of
Content Class. In this case, the inheritance relationship between
these classes crosses component boundaries, facing an implicit de-
pendency between the underlying components. Since component
models do not all support inheritance (e.g. ComponentJ, COM,
etc.) [15], source code related to inheritance need to be trans-
formed.

In this paper we focus on solutions related to source-code trans-
formations of explicit component encapsulation violation (instanti-

Transform instantiation and inheritance for decoupling classes in different components 2 2015/8/24



ation and method invocation) and OO inheritance which is a case
of implicit component explicit violation.

3. Instance Handling Transformation
Considering the result of the recovery step, a class belonging to a
component (cluster) can be instantiated in a method of class be-
longing to another component by using directly this class construc-
tors. This causes a violation of the principle of component encapsu-
lation. Our approach proposes two steps to transform direct instan-
tiation dependencies: (i) Uncoupling classes belonging to different
components (clusters) by creating object interfaces. (ii) Defining
specific component interfaces playing the role of object factories.

3.1 Creating Object Interfaces: Uncoupling Boundary
Classes

We transform direct references (method calls) between classes of
different components to interface-based calls. Thus when a class A
uses class B where A and B are parts of two different components,
we create a couple of the same provided and required interfaces
(IB). The provided one will be defined in the component of the
class B and the required one in the component of the class A. Theses
interfaces define the same methods of all public methods of class
B. In addition they define other methods to access public attributes
of this class (i.e. setter and getter methods). Each direct use of class
B in the class A will be refactored as a use of the required interface
(IB) added to the component of A.

To illustrate this, consider our illustrative example, where Clock
creates an instance of TimeZone. This is depicted in Listing 1. We
create ITimeZone interface for class TimeZone. ITimeZone specifies
the signatures of all public methods in TimeZone. Moreover, it
declares setter and getter methods for its public attribute (time).
Listing 2 shows the result of our transformation in both Clock and
TimeZone classes.

Listing 1. Instantiation dependency in Java code.
public class Clock extends Content{
public Clock() {
TimeZone timeZone = new TimeZone();
String time = timeZone.getTime();}
...

}

public class TimeZone {
public String time;

public TimeZone() {...}
public String getTime(){...}

}

Listing 2. Creating object interfaces.
public class Clock extends Content{
public Clock() {
ITimeZone timeZone = new TimeZone();
String time = timeZone.getTime();
}
...

}

public class TimeZone implements ITimeZone{ ... }

public interface ITimeZone {
public String setTime();
public String getTime();

}

3.2 Using Component Interfaces through the Factory Pattern
The second step of this transformation is based on the Factory
design pattern. Thus the expression in the source code related to
the instantiation of a class B by a class A where these classes
are parts of two different components is transformed to a use of
a component interface playing the role of an object factory. This
interface is defined as provided by the component of class B. It
contains methods that return objects instantiated from classes of the
component of class B. Each method of this interface corresponds
to an existing class constructor. The methods of this interface are
implemented in a factory class which is added to the classes of the
component of the class B.

Figure 3. Transforming class instantiation based on the factory
pattern.

In Figure 3, we create a provided factory interface whose meth-
ods are implemented in the factory class. It has a method create-
TimeZone() that returns a new ITimeZone() instance. The Clock
class invokes this method instead of creating the instance. It does
not expose the class that implements the interface, but exposes only
the interface. Thereby, client code does not know the internal struc-
ture of Component5. Listing 3 shows how Clock class gets a new
instance of type ITimeZone using the Factory class.

Listing 3. Transforming class instantiation based on the factory
pattern in OSGi code.
public class Clock extends Content{
public Clock() {
ITimeZone timeZone = Factory.createTimeZone();
}

...
}

public class Factory{
public static ITimeZone createTimeZone() {
ITimeZone timeZone = new TimeZone();
return timeZone;
}

public static ITimeZone createTimeZone(int cod) {...}
... // other provided factory methods

}

4. Inheritance Transformation
Inheritance links between classes belonging to different compo-
nents need to be transformed. Our solution to transform these in-
heritance dependencies is based on the delegation pattern [18]. In
the case of object-oriented code, delegation pattern related to two
objects A and B corresponds to an explicit transfer (forward) for
all method invocations received by A (called delegator) to B (called
delegatee) trough methods of B. All internal method invocations in
methods of B related to this transfer must be transfered to delegator.
This avoids the problem of the lost of the initial receiver [8, 10].

Transform instantiation and inheritance for decoupling classes in different components 3 2015/8/24



4.1 Replacing Inheritance by Delegation
Our solution to transform the inheritance link consists in imple-
menting the delegation pattern, but at component level (see Figure
4). Thus, inheritance link between two classes A and B (A subclass
of B) which belong to two different components is transformed as
follows. From the one hand, all methods invoked on the class A are
transferred (delegated) to the component of B (considered as the
delegatee) through a required interface. The required interface is
implemented by the component of A (considered as the delegator)
which is connected to a provided interface defined by the delega-
tee component. The provided interface defines all methods of the
superclass B. From the other hand, all internal method invocations
in the superclass B must be transferred to the delegator component
through a required interface. This interface is implemented by the
delegatee component and connected to a provided interface defined
by the delegator component. This interface defines all methods of
the subclass A.

Figure 4. Implementation of the delegation pattern at level of
component.

At class level, the transfer of method invocations between dele-
gator and delegatee components and vice versa is realized by cre-
ating an instance of superclass B in the subclass A and by invok-
ing the concerned method in this instance. This instance is created
each time the class A is instantiated. Attributes of the instance of
the class B are initialized using values given in the constructor of
class A. The transfer of a method invocation from the delegatee to
the delegator is realized in the same way by invoking this method
on the instance of A. The reference of the instance of A is com-
municated to the instance of B as an additional parameter in each
method invocation transferred from delegator to delegatee.

Figure 5. Replacing inheritance by delegation.

Figure 5 describes the transformation of inheritance between
Message subclass and Content superclass. A new interface ICon-
tent is created for superclass Content into delegatee component
(Component2). Then, a variable is added to assign the initial re-
ceiver of type IMessage (this). Finally, the factory design pattern is
applied to provide IContent object interface. On the other side, we
create a new interface IMessage for subclass Message. Then a new
instance of the superclass object interface IContent is composed to
delegate incoming method invocations.

Listing 4 describes the result of transforming inheritance to
delegation. As we mentioned before, the transformation concludes
into three steps: (i) create new interfaces IMessage and IContent;
(ii) Message is composed of an instance of type IContent as super
interface; (iii) IContent is composed of an object interface of type
Message as this interface.

Listing 4. Replacing inheritance by delegation.
public class Message implements IMessage{
IContent _super = new Content(this);

public void getContent(){
_super.getContent();

}
...

}

public class Content implements IContent{
private IContent _this;

public Content(IContent initReceiver) {
_this = initReceiver;

}
public void getContent(){...}
...

}

Our solution transforms inheritance dependency but produces
another dependency which is instantiation, where a subclass cre-
ates an instance of its superclass. So we apply here the solution
proposed in the previous section (cf. Section 3).

4.2 Handling Subtyping
This section proposes a solution for the problem of breaking the
supertype chain. In particular, a variable of superclass type can be
assigned a reference to an instance of subclass type (polymorphic
assignment), but the necessary assignment compatibility (subtyp-
ing) is removed by replacing inheritance with delegation. Another
case occurs when a casting to superclass or a type test (instanceof
in Java) exists in the program. For example, a variable (content) in
class ContentProvider is typed with Content. It can be assigned an
instance of Message or Clock. However, after transformation, this
variable can not be assigned Message nor Clock instances.

Our solution suggests to use interface inheritance, which is the
most common way to form subtypes between components [16].
We introduce subtyping by adding inheritance between component
interfaces providing methods of the subclass and its the component
interface providing methods of the superclass. In the example of
Figure 5, IMessage interface must inherit IContent interface. In
the same way, IClock interface inherits from IContent interface.
Therefore, a type of IContent can be assigned an instance of both
types IMessage and IClock. Moreover, fields defined in IContent
are now available in both IMessage and IClock by setter and getter
methods (e.g. setContent(c : String) in class Message).

4.3 Dealing with Abstract Superclasses
As we explained before, a delegator is composed of an instance of
a delegatee to delegate method invocations. However, what if the
superclass is abstract? An abstract class cannot be instantiated, so
no delegatee can be created.

Our solution is based on the proxy pattern [18]. We use a third
class as a proxy that breaks the inheritance between the subclass
and its superclass when the latter is abstract. Thus the subclass in-
herits from this proxy, the proxy class inherits the abstract super-
class. The proxy class defines the same methods with the same sig-
natures of the abstract superclass. These methods are considered

Transform instantiation and inheritance for decoupling classes in different components 4 2015/8/24



as proxy methods. Each of these methods delegates the received
message to the abstract class when this class provides a concrete
implementation of this method. In the case of an abstract method
on the superclass, the corresponding method on proxy reforwards
the message to subclass.

Actually, in our example (see Figure 1) Content is an abstract
class and has an abstract method getContent(). Factory interface
can not return an instance of this class. So we need to apply proxy
pattern before applying delegation pattern. In Figure 6, we create
a Proxy class that inherits from Content abstract class and imple-
ments IContent interface. Then Factory class provides an object
interface of type IContent to Message which is placed in Compo-
nent4. This enabled us to decouple the inheritance dependency be-
tween the abstract superclass Content and its subclass Message that
is placed in a different component.

Figure 6. Handling abstract superclass based on proxy classes.

Listing 5 shows the result of transforming inheritance that have
abstract superclass to proxy pattern. ProxyContent class was cre-
ated to break the inheritance between Message and Content. The
new class implemented all abstract methods inherited from it’s su-
perclass (Content). The calling of these methods are backward del-
egated to it’s caller using our initial receiver variable this. The non-
abstract methods is called usually under the inheritance relationship
between ProxyContent and Content and the composition between
Message and ProxyContent. Consequently, the inheritance relation-
ship that has un abstract superclass is transformed by using proxy
pattern.

Listing 5. Handling abstract superclass based on proxy classes.
public class ProxyContent extends Content implements IContent{

IContent _this = new Content(this);

public ProxyContent(IContent initReceiver) {
_this = initReceiver;

}

public void getContent(){
_super.getContent();

}

...
}

public class Message implements IMessage{
private IContent _super;

public Message() {...}
public void getContent(){...}

}

5. Experimental Evaluation
This section reports on some experiments we conducted to evaluate
our approach.

5.1 Experiment Design and Planning
Research Questions

RQ1: Does the transformation result avoid component encapsula-
tion violation?
Our approach transforms the OO code to avoid component
encapsulation violation by making the dependencies between
components explicit. The transformation aims at creating and
using component interfaces to achieve component encapsula-
tion. Thus, the aim of this research question is to measure the
contribution of our approach to transform OO dependencies to
CB ones.

RQ2: To which extent does the automatic transformation reduce
the developer’s effort?
The aim of this research question is to measure the saved ef-
forts of developers when using our automatic transformation
approach instead of using manually one.

Evaluation Methods The research question RQ1
To answer RQ1, we need to evaluate how much the OO depen-

dencies are transformed to interface-based ones. This can be mea-
sured by the ratio of number of interface-based dependencies to the
total number of dependencies between components after transfor-
mation. The Abstractness metric proposed by Martin [17] for eval-
uating OO software fulfill this goal. This metric represents the ratio
of abstract types (interfaces and abstract classes) in a package to
the total number of types in that package. The range for this metric
is 0.0 indicating a completely concrete package to 1.0 indicating a
completely abstract package. In the context of CB software, This
metric has been adapted by [25] to measure the quality of a compo-
nent’s interfaces, where the classes that represent the component’s
provided interfaces are grouped in a package to compute Abstract-
ness. Therefore, we used this metric in the same way as [25] to
answer RQ1. Based on this metric, a well designed component is
supposed to provide only interfaces. Therefore, a component with
high Abstractness means a high component encapsulation (i.e., it
avoids the component encapsulation violation).

To answer RQ2, we compared the estimated efforts expressed
by time spent by developers through manual transformation to the
time made by our automatic transformation. We compute the time
for each type of transformation, instance handling and both inheri-
tance with and without an abstract superclass transformations.

Data Collection We have conducted our transformation approach
on 9 Java projects in order to validate our approach. The projects
have been selected from Qualitas Corpus [26]. In order to guide
project selection in such a way that the coverage of a sample is
maximized, we have followed the following selection criteria:

i project size: We have selected projects with different sizes.

ii Domain: We have selected projects from different domains to
avoid the influence on experimental results of characteristics
associated to a specific domain.

iii Development team: We have selected projects that have been
developed by different teams to avoid the characteristics related
to programming team habits to influence on experimental re-
sults.

Table 1 provides some descriptive measures about these projects.
It provides each project name and it’s version. We can observe the
differences of these projects through it’s sizes and domains. We
can infer the deferences of development teams by the deferences of

Transform instantiation and inheritance for decoupling classes in different components 5 2015/8/24



owned company, where each project developed by different com-
panies.

Table 1. Data collection.
Application Version Domain No of classes Code Size (KLOC)

Tomcat 7.0.71 middleware 1359 196
Ant 1.9.4 parsers/generators/make 1233 135
Checkstyle 6.5.0 IDE 897 63
Freecol 0.11.3 games 669 113
JFreeChart 1.0.19 tool 629 98
HyperSQL 2.3.2 database 539 168
Colt 1.2.0 SDK 288 35
Log4j 1.2.17 testing 220 21
Galleon 0.0.0-b7 3D/graphics/media 137 26

Protocol For architecture recovery, we used our method called
ROMANTIC [4, 9] which enables to identify a component-based ar-
chitecture from an existing Java application1. We applied ROMAN-
TIC on our selected Java projects (Table 1). ROMANTIC clusters
each project as a set of disjoint clusters (components).

For code transformation, we developed a tool (an Eclipse plu-
gin) that automatically transforms the result of architecture recov-
ery (clusters of java code) to OSGi components (bundles). Our tool
parses the source code using the Abstract Syntactic Tree (AST)
generated by Eclipse’s JDT. After that, it makes transformations on
this AST for the instantiation, method invocation and inheritance
dependencies between components.

We conducted two experiments to answer our two research
questions respectively. In the first experiment we compare the Ab-
stractness between the recovered components before transforma-
tion (i.e., OSGi components with direct OO dependencies) and the
same components after transformation (i.e., OSGi components with
dependencies though provided and required interfaces)2. We volun-
tarily limited the number of types to those which are provided and
required by components that depend each from the other. In the
second experiment, we compare developers’ efforts (time) between
manual transformation with automatic transformation. It is obvious
that the automatic transformation provides better results (small val-
ues for the transformation time), but what we would like to show
here is the estimated average time to perform transformations man-
ually on a whole Java project. The time to do it automatically is
measured to estimate the multiplying factor between the two trans-
formation processes.

In this evaluation we firstly computed Abstractness for compo-
nents (clusters) that resulted from architecture recovery step. To
compute Abstractness for a component C, we start by searching for
classes of C that are used by classes of other components (provided
types). Then we compute the ratio of the number of interfaces and
abstract classes that belong to provided types to the total number
of provided types (see Equation 1). After that, we used our trans-
formation tool to transform Java clusters into OSGi components
(bundles) with provided and required interfaces. Then we recom-
pute Abstractness as described in equation 1 for OSGi components.
finally, we compare the Abstractness values to answer our research
question RQ1.

1 It is worth recalling that the experiment can be conducted using another
recovery method. Only the output (in which we “trust”), which takes the
form of a set of class clusters, is important for the remaining steps.
2 OSGi model allows creating components with either direct OO depen-
dencies between classes composing these components or through interface-
based connections [13]

Abstractness(C) = Na/Np (1)

where Na is the number of interfaces and abstract classes that
belong to provided types of component C,
and Np is the number of provided types of component C.

In the second experiment, we performed the transformation man-
ually. To this end, we selected from our data collection three
projects that have different sizes. We chose Log4j as a small project,
JFreeChart as a medium project and Tomcat as a large project. We
selected just three representative projects from the nine compos-
ing our data collection (cf. Table 2). We do this selection to adapt
the manual experimentation to the available resources (persons and
time). We invited 15 developers to transform Java source code.
To make sure that we obtain a relatively fair valuation, we split
this group of persons into three groups, five persons for each. Ta-
ble 2 provides descriptive information about these persons. Before
starting the experimentation, we checked that these persons have
well understood the steps presented in our approach to applied for
transforming OO to CB code. In each group, we provided each
person the source code. In addition, we gave them the information
about three components with different sizes (small, medium and
large) in each project (9 components in total). Then we asked them
to randomly select three classes from each project and from dif-
ferent components. The selected classes must be transformed by
satisfying our condition: selected instantiation and/or inheritance
dependencies that must be transformed must be related to classes
belonging to other component(s). We measured the time for three
types of transformation: instantiation, inheritance and inheritance
with an abstract superclass.

Table 2. Information about persons involved in the experiment.
Persons # persons Group Experience in Java

Ph.D Students 5 1 3-6 years
Developers 5 2 4-6 years

M.S. Students 5 3 2-4 years

5.2 Results
5.2.1 Architecture Recovery Results
Table 3 provides some descriptive statistics about architecture re-
covery results (on the whole data collection, and not on the three
projects selected for manual transformation). It displays the num-
ber of components recovered from each project (16-129). More-
over, it shows the nature of the components; average number of
classes per component (8.5-20.7) and how strongly components are
related te each other using Afferent Couplings (10.33-24.85). Affer-
ent Couplings (also known as Outgoing Dependencies) is a metric
that measures the number of types outside a component that depend
on types inside the component. According to the obtained results,
we observed that the number of components is almost directly pro-
portional to the project size except in case of Tomcat and Freecol
projects.

5.2.2 Code Transformation Results
Table 4 provides descriptive statistics about transformation types
for our data collection. It describes the number of transforma-
tions that must be performed according to our approach for each
project. The results show that instantiation is the most transforma-
tion type with an average of 69.9% from all transformation types in
all projects. Then transforming inheritance that have abstract su-
perclass with an average of 16.3% (except for HyperSQL, Clot
and Galleon, where transforming inheritance is slightly bigger than

Transform instantiation and inheritance for decoupling classes in different components 6 2015/8/24



transforming abstract superclass). Finally, transforming inheritance
with an average of 13.8%.

Table 3. Architecture recovery results.

Application # components Avg. number of classes
per component

AVG. Efferent coupling
per component

Tomcat 125 10.8 13.87
Ant 129 9.5 10.33

Checkstyle 63 14.5 13.98
Freecol 36 18.5 22.47

JFreeChart 40 15.7 15.63
HyperSQL 26 20.7 24.85

Colt 23 12.5 10.70
Log4j 23 9.5 10.74

Galleon 16 8.5 15.56

Table 4. Statistics of transformation types.

Application # instantiation
transformations

# inheritance
transformations

# inheritance with abstract
class transformations

Tomcat 350 49 79
Ant 364 50 54

Checkstyle 249 37 41
Freecol 164 28 34

JFreeChart 116 22 38
HyperSQL 99 20 19

Colt 70 17 13
Log4j 62 16 28

Galleon 56 18 14

According to the obtained results in Table 4, we observed that
the number of transformations is (in most cases) directly propor-
tional to the number of components. As can be seen in Figure 7,
the relationships between the transformation types and the number
of components for our data collection. However, a small exception
of that relationship occurred in case of Tomcat and Freecol projects.

Figure 7. Relation between number of transformations with num-
ber of components.

Abstractness Results Table 5 shows the difference of Abstract-
ness values between the components before and after transforma-
tion. Moreover, it gives the multiplying factor between the two Ab-
stractness measures. The improvement factor ranges from 2.93 for
Tomcat, which basically has a good design from the abstractness
point of view, to 7.33 for HyperSQL. The improvement of the level
of abstractness depends thus on the analysed software system. On
average in the considered data collection, our approach improved
Abstractness by 4.33 times (answer to RQ1).

We can observe that the Abstractness for all applications is sig-
nificantly improved. This improvement lies behind our transforma-
tion approach, where we transform OO direct dependencies into

Table 5. Improvement of abstractness after transformation.

Application Abstractness
before transformation

Abstractness
after transformation Improvement factor

Tomcat 0.28 0.82 2.93
Ant 0.18 0.83 4.61

Checkstyle 0.12 0.84 7.00
Freecol 0.17 0.81 4.76

JFreeChart 0.22 0.81 3.68
HyperSQL 0.12 0.88 7.33

Colt 0.26 0.83 3.19
Log4j 0.19 0.87 4.58

Galleon 0.21 0.88 4.19

AVG. 0.194 0.841 4.33

component interface dependencies. Another observation is that the
values of Abstractness does not reach the optimal value (1.0). That
because we have not yet transformed all OO direct dependencies
between components to interface-based ones (e.g. exception and
event handling, etc.). For example, we improve the Abstractness of
Tomcat at 82%. The remaining unimproved value, which is 18%,
is caused by the others dependencies that must be transformed but
were not presented in this paper.

Manual vs. Automatic Transformation Results The results of
the second experiment are presented in Table 6. It shows the re-
sults of manual transformation for the three selected projects. The
first two columns present the selected projects (Tomcat, JFreeChart
and Log4j) and the transformation types. The number of needed
transformations that must be achieved according our approach are
presented in the third column. Then the fourth and the fifth columns
show the number of the transformations that were performed man-
ually. The values of the fourth column shows all these transfor-
mation while the values of the fifth column present only the num-
ber of unique transformations (i.e. transformations on dependencies
done only buy one developer). For instance, the number of manu-
ally transformed instantiation in Tomcat is 35. But the number of
different manual transformation is 20. That mean 15 classes from
35 were repeatedly transformed by different persons. For exam-
ple, class WebappLoader that belong to Tomcat was transformed
three times. We note that the ratio of the number of realized man-
ual different transformations to the number of all transformations
automatically achieved is about 22%. This ratio constitutes a good
base to compare results of manual and automatic transformations.

The sixth column shows the number of wrong manual trans-
formations. A wrong transformation corresponds to a case where
this transformation is not properly done. For example, it is the case
when a person transformed OO inheritance between two classes
which belong to the same component. As we have noted before,
the persons manually transformed source code have highly under-
stood our approach before we did the experiments. Therefore, the
wrong transformations are not the result of misunderstanding of our
approach. The ratio of the number of wrong transformations to the
number of total number manual transformations is about 18%. This
means that approximatively one fifth manual transformations was
wrong.

The transformation time is presented in the rest of the table (last
four columns). The first three ones represent statistics about the
manual transformation time in seconds for each selected project
presented following the type of transformation. We can observe
that the mean time for each type of transformation realized in dif-
ferent selected projects (AVG. time column) is approximatively the
same. For example, the mean time taken to transform inheritance
is ranged from 1053 to 1106, where the difference is just 53 sec-
onds which is a small value compared with the transformation time
(i.e. 1053 or 1106). The Min/Max time shows the minimum and the
maximum time for the corresponding types of manual transforma-

Transform instantiation and inheritance for decoupling classes in different components 7 2015/8/24



Table 6. Estimated time for manual transformation.

Application Transformation type # needed
transformation

# manual
transformation

# different manual
transformation

# wrong
transformation

AVG.
time (s)

Min/Max
time (s)

STD
time (s)

AVG. estimated
time (h)

Instansiation 350 35 20 2 367 230/1008 126 35.68
Tomcat Inheritance 49 3 3 6 1106 928/1380 241 15.05

Abstract superclass 79 16 9 2 1310 1019/1803 195 28.75

Instansiation 116 37 16 0 395 192/901 169 12.73
JFreeChart Inheritance 22 16 15 2 1053 862/1301 148 6.44

Abstract superclass 38 11 3 2 1198 1012/1405 135 12.65

Instansiation 62 34 17 0 377 248/869 158 6.49
Log4j Inheritance 16 9 6 11 1054 892/1401 188 4.68

Abstract superclass 28 6 6 5 989 982/1106 64 7.69

tions which indicates to the variation of the transformations time.
Moreover, a standard deviation is provided in the column STD time
to better illustrate the amount of variation or dispersion of the man-
ual transformation time. The little standard deviation values com-
pared to the mean reflect a small amount of variation of the trans-
formations time values.

The mean of the estimated time in hours to manually realize
a type of transformation for each selected project is presented in
the last column (AVG. estimated time). We compute these values
by multiplying the number of the needed transformations for each
project by the mean values of manually transformation time. The
conclusion related to this column is that the manual transformation
is not an easy task. For example, to completely transform Tomcat,
JFreeChart and Log4j manually, we need 79.48, 31.82 and 18.86
hours respectively. For example, in the case of Tomcat, this corre-
sponds to more than two weeks of work compared to French work
lows. In addition, we did not compute the cost caused by wrong
transformations that have an error percentage about 18%.

On the contrary, our tool transforms Tomcat for example in a
few minutes (about 6 minutes) without any wrong transformation.
The ratio between the manually and the automatically transforma-
tion times for Tomcat is 795. Thus, we can answer RQ2 that our
automatic approach effectively reduces the developer’s efforts es-
pecially on large projects.

5.2.3 Threat to Validity
Internal threats: one internal threat needs to be considered when

interpreting our experimentation results. This is related to the
used architecture recovery approach in our experiment. For ex-
ample, we observed that the number of the needed transforma-
tion depends on the number of the recovered components. The
number of components depends on the used architecture recov-
ery approach. Consequently, the improvement ratio of Abstract-
ness and the saved transformation efforts obtained by our ap-
proach can be affected following the architecture recovery ap-
proach that are used (ROMANTIC approach [9]). For example,
Tomcat have 350 instantiation dependencies that must be trans-
formed (see Table 6). As the architecture recovery approach
is responsible for identifying components (i.e., find clusters of
classes), the number of dependencies between these compo-
nents differs depending on the used recovery approach. Thus,
the 350 instantiation dependencies that must be transformed in
Tomcat may be less or more depending on this architecture re-
covery used approach.

External threats: External validity refers to generalizability of the
results. In this study, we have two threats to external validity
to generalize our results. The first one is related to our data
collection and the second one is related to the types of persons
whom applied our approach manually.

Data Collection We performed our experiments on nine
different-sizes, several-domains, well-known and open-source
Java projects. Moreover, the projects are selected from different
development teams. Because the variety of our data collection,
we can say that our results can be generalized to involve most
Java projects.

Types of Persons We experimented our approach manually on
three groups, five person in each group. The groups are PhD stu-
dents, Java developers and master students (MS). By reference
to Table 2, all these groups have an experience in Java develop-
ment ranging from 2 to 6 years. Additionally, the experiments
were applied on the three groups under the same conditions.
In this threat we need to validate that the time consumed by
manually transformation does not affected by the persons types
if they know Java development. In addition, we need to vali-
date that the errors cased by manually transformation does not
affected by the persons types also. Figure 8 shows the time con-
sumed by each group for each transformation type. We can see
that the transformation times are closed to each other for the
three groups. For transforming instantiation, the manual trans-
formation time ranged between 315 to 397 seconds. For trans-
forming inheritance, the manual transformation time ranged be-
tween 1073 to 1106. For transforming inheritance that has ab-
stract superclass, the manual transformation time ranged be-
tween 1231 to 1258. Consequently, the differences of time con-
sumed by the three groups is negligible. Thus we can emphasize
that the time consumed to manual transformation is indepen-
dent from person type.

Figure 8. The mean of manual transformation time for each group.

Table 9 shows the error percentage caused by manual transfor-
mation for each group. We can observe that the results is almost
the same. The percentages of error transformation were 15%,

Transform instantiation and inheritance for decoupling classes in different components 8 2015/8/24



16% and 17% for PhD students, developers and MS respec-
tively. Thus, we can emphasize that the error caused by manual
transformation is independent from person type.

Figure 9. The error percentage of manual transformation for each
group.

6. Related Work
Migrating OO applications to CB ones has two types of related
works. The first relates to CB architecture recovery, and the second
relates to code transformation. Many works have been proposed
for recovering CB architectures from OO legacy code. A survey on
these works is presented in [7] and [3]. However, only few works
have proposed a transformation from OO code to CB one.

The approach proposed by [1] applies in transforming Java ap-
plications to OSGi. The approach uses OO concepts to implement
components. They use the Facade design pattern to implement
component required interfaces and the Adapter design pattern to
implement component provided interfaces. But in contrast to this
work, in our approach we deal with inheritance. In addition, in the
transformation of instantiations, we take into consideration argu-
ment passing (by creating customized Factory methods), while in
their work they do not deal with this aspect. Besides, in their ap-
proach, for a single connector between components, they create an
adapter class, a facade class and a provided interface, with many
duplicated code. In our approach, only a factory class and its pro-
vided interface are created.

Another method for transforming Java applications into the Jav-
aBeans framework is proposed in [19]. They developed an auto-
matic refactoring method that can identify components from OO
programs using a graph which models class relations. After that,
their method modifies the surrounding parts of the extracted com-
ponents in the original programs. The modification solves the de-
pendencies appeared into class relation graphs, using the Facade
interface and other code refactoring. This approach did not treat all
dependencies in an OO application. They solve a subset of these
dependencies (e.g. instantiation and method invocation), while in
our work we deal, in addition, with other dependencies that exist in
OO applications, such as inheritance.

In the context of distributed computing, Eli et al. [27] proposed
J-Orchestra system that transforms a centralized Java program into
a distributed one. J-Orchestra is a semiautomatic transformation
process that composed two steps. In the first step, a partitioning
tool takes as input a centralized Java program and location infor-
mation supplied by a user for the program. The tool divides the
program code into parts that can run in the desired location (sup-
plied by the user). In the second step, J-Orchestra transforms any

communication between parts (resulted from the first step) at dif-
ferent locations into remote one by using Java RMI. It transforms
constructor calls, method calls, direct references and inheritance.
Constructor calls replaced with call to factory methods. Booth
method calls and direct references replaced by proxy pattern and
proxy references respectively. Finally, transforms inheritance hier-
archy between classes into the same inheritance hierarchy but be-
tween proxy classes. The transforming of constructor calls, method
calls and direct references fit with target transformation (distributed
computing). But in contrast, this work transforms inheritance but
by inventing new one (inheritance between proxy classes). Thus,
the inheritance between parts still used. Moreover, it did not pro-
pose a solution for abstract superclass.

In the context of OO software engineering, many works have
been proposed for refactoring instantiation and inheritance. For
refactoring instantiation, Friedrich et al. [20] developed a new
refactoring approach for the extraction of interfaces in order to
decouple classes. The extracted interface infers from the type of
variable declarations (interface-as-type) and automatically inserts
it into the code. The refactoring approach is applied on Java that
is available as an Eclipse plugin. Tip et al. [21] proposed an ap-
proach that extracts interfaces for replacing the access to a class
via a newly created interface. The approach uses type constraints
to verify the preconditions as well as to determine the allowable
modifications on source code. The approach is implemented in the
standard distribution of Eclipse. These two approaches aim to de-
couple classes buy using interface-as-type instead of class-as-type.
However, they did not have preconditions or scenarios (on our ap-
proach is the direct dependencies between components) to apply
the refactoring on all project automatically. The developer decides
which types of variable declarations should be refactored.

For refactoring inheritance, Hauck [22] proposed an approach to
replace inheritance by a special kind of aggregation. The approach
introduces two kinds of fields, super and self fields. The super filed
is placed in the subclass and points to an instance of the superclass.
The self field is placed in the superclass and points to the instance
of the subclass. Inherited methods are called via delegation and re-
verse delegation using super and self fields, respectively. However,
the approach did not analyses all inheritance cases. For example it
did not provide a solution for abstract super class. Genssler et al.
[23] presented a refactoring approach that transforms inheritance
to delegation (or, as they call it, composition). The approach intro-
duces certain design patterns (namely Bridge, Strategy, and State)
to replace inheritance with composition. INTELLIJ IDEA [24] in-
troduces a refactoring tool that replaces inheritance with delegation
for Java. The tool performs a program analysis and refactors inher-
itance to delegation using inner classes. However, the refactoring
introduces delegation by adding an inner class into a subclass. The
inner class delegates inherited methods to delegatee. It does not in-
troduce reverse delegation therefore it prevents overridden methods
in a subclass from being called.

7. Conclusion
In this paper, we proposed an approach to automatically trans-
form object-oriented applications to component-based ones. We
targeted the transformation of applications which are built using
object-oriented languages into applications built with an object-
based component model. We focus on the transformation of source
code in order to produce decoupled components that are compliant
with the architecture recovered in a previous step. We proposed a
solution for dealing with instantiation, method invocation and in-
heritance dependencies.

The experimentation results shows that our approach improves
Abstractness and as consequence reduce the violation of compo-

Transform instantiation and inheritance for decoupling classes in different components 9 2015/8/24



nent encapsulation. Moreover, it effectively reduces the developer’s
transformation efforts especially on large projects.

As a future work, we plan to deal with others object-oriented
mechanism’s transformations, like exception and event handling
transformation. The ultimate goal is to produce a code which will
be completely based on connections of component interfaces.

References
[1] S. Allier, S. Sadou, H. Sahraoui, and R. Fleurquin. From object-oriented

applications to component-oriented applications via component-oriented
architecture. In Software Architecture (WICSA), 2011 9th Working
IEEE/IFIP Conference on, pages 214–223, June 2011.

[2] Simon Allier, HouariA. Sahraoui, Salah Sadou, and Stphane Vaucher.
Restructuring object-oriented applications into component-oriented
applications by using consistency with execution traces. In Lars Grunske,
Ralf Reussner, and Frantisek Plasil, editors, Component-Based Software
Engineering, volume 6092 of Lecture Notes in Computer Science, pages
216–231. Springer Berlin Heidelberg, 2010.

[3] Dominik Birkmeier and Sven Overhage. On component identification
approaches classification, state of the art, and comparison. In GraceA.
Lewis, Iman Poernomo, and Christine Hofmeister, editors, Component-
Based Software Engineering, volume 5582 of Lecture Notes in Computer
Science, pages 1–18. Springer Berlin Heidelberg, 2009.

[4] S. Chardigny, A. Seriai, M. Oussalah, and D. Tamzalit. Extraction
of component-based architecture from object-oriented systems. In
Software Architecture, 2008. WICSA 2008. Seventh Working IEEE/IFIP
Conference on, pages 285–288, Feb 2008.

[5] Eleni Constantinou, Athanasios Naskos, George Kakarontzas, and
Ioannis Stamelos. Extracting reusable components: A semi-automated
approach for complex structures. Information Processing Letters,
115(3):414 – 417, 2015.

[6] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M.R.V. Chaudron. A
classification framework for software component models. Software
Engineering, IEEE Transactions on, 37(5):593–615, Sept 2011.

[7] S. Ducasse and D. Pollet. Software architecture reconstruction: A
process-oriented taxonomy. Software Engineering, IEEE Transactions
on, 35(4):573–591, July 2009.

[8] W. Weck et al. Do we need inheritance?, 1996.
[9] S. Kebir, A.-D. Seriai, S. Chardigny, and A. Chaoui. Quality-centric

approach for software component identification from object-oriented
code. In Software Architecture (WICSA) and European Conference
on Software Architecture (ECSA), 2012 Joint Working IEEE/IFIP
Conference on, pages 181–190, Aug 2012.

[10] Hannes Kegel and Friedrich Steimann. Systematically refactoring
inheritance to delegation in java. In Proceedings of the 30th International
Conference on Software Engineering, ICSE ’08, pages 431–440, New
York, NY, USA, 2008. ACM.

[11] Kung-Kiu Lau and Zheng Wang. A taxonomy of software component
models. In Software Engineering and Advanced Applications, 2005. 31st
EUROMICRO Conference on, pages 88–95, Aug 2005.

[12] Kung-Kiu Lau and Zheng Wang. Software component models.
Software Engineering, IEEE Transactions on, 33(10):709–724, Oct
2007.

[13] Osgi Service Platform. The osgi alliance, release 6, 2015.
[14] A.-D. Seriai and S. Chardigny. A genetic approach for software

architecture recovery from object-oriented code. In proc. of SEKE,
2011.

[15] Petr Spacek, Christophe Dony, Chouki Tibermacine, and Luc
Fabresse. An inheritance system for structural &#38; behavioral reuse
in component-based software programming. In Proceedings of the 11th
International Conference on Generative Programming and Component
Engineering, GPCE ’12, pages 60–69, New York, NY, USA, 2012.
ACM.

[16] Clemens Szyperski. Component Software: Beyond Object-Oriented
Programming. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2nd edition, 2002.

[17] Martin, Robert Cecil. Agile software development: principles,
patterns, and practices. Upper Saddle River, NJ: Pearson Education.
ISBN 9780135974445. 1st edition, 2002.

[18] John Vlissides, Richard Helm, Ralph Johnson, and Erich Gamma. De-
sign patterns: Elements of reusable object-oriented software. Reading:
Addison-Wesley, 49(120):11, 1995.

[19] Hironori Washizaki and Yoshiaki Fukazawa. A technique for
automatic component extraction from object-oriented programs by
refactoring. Science of Computer Programming, 56(12):99 – 116, 2005.
New Software Composition Concepts.

[20] Steimann, Friedrich and Mayer, Philip and Meisner, Andreas.
Decoupling Classes with Inferred Interfaces. In Proceedings of the 2006
ACM Symposium on Applied Computing, SAC ’06, pages 1404–1408,
New York, NY, USA, 2006. ACM.

[21] Tip, Frank and Kiezun, Adam and Bäumer, Dirk. Refactoring for
Generalization Using Type Constraints. In Proceedings of the 18th
Annual ACM SIGPLAN Conference on Object-oriented Programing,
Systems, Languages, and Applications, OOPSLA ’03, pages 13–26,
New York, NY, USA, 2003. ACM.

[22] Hauck, Franz J. Inheritance Modeled with Explicit Bindings: An
Approach to Typed Inheritance. Inheritance Modeled with Explicit
Bindings: An Approach to Typed Inheritance, SIGPLAN Not., pages
231–239, New York, NY, USA, 1993. ACM.

[23] T Genssler, B Schulz. Inheritance Modeled with Explicit Bindings:
An Approach to Typed Inheritance. Transforming inheritance into
composition A reengineering pattern, proc. of 4th EuroPLoP, 1999.

[24] IntelliJ IDE. http://www.jetbrains.com.
[25] Hamza, S. and Sadou, S. and Fleurquin, R. Measuring Qualities for

OSGi Component-Based Applications. Quality Software (QSIC), 2013
13th International Conference on, pages 25-34, 2013.

[26] Tempero, E. and Anslow, C. and Dietrich, J. and Han, T. and Jing
Li and Lumpe, M. and Melton, H. and Noble, J. The Qualitas Corpus:
A Curated Collection of Java Code for Empirical Studies. Software
Engineering Conference (APSEC), 2010 17th Asia Pacifice, pages 336-
345 2010.

[27] Tilevich, Eli and Smaragdakis, Yannis. J-J-Orchestra: Automatic
Java Application Partitioning: Automatic Java Application Partitioning.
In Proceedings of the 16th European Conference on Object-Oriented
Programming, ECOOP ’02, pages 178–204, London, UK, UK, 2002.
ACM.

Transform instantiation and inheritance for decoupling classes in different components 10 2015/8/24


	Introduction
	Problem Statement
	Component-based Architecture Recovery
	Code Transformation

	Instance Handling Transformation
	Creating Object Interfaces: Uncoupling Boundary Classes
	Using Component Interfaces through the Factory Pattern

	Inheritance Transformation
	Replacing Inheritance by Delegation
	Handling Subtyping
	Dealing with Abstract Superclasses

	Experimental Evaluation
	Experiment Design and Planning
	Results
	Architecture Recovery Results
	Code Transformation Results
	Threat to Validity


	Related Work
	Conclusion

