
Migrating towards Microservice Architectures: an

Industrial Survey

Paolo Di Francesco

Gran Sasso Science Institute

L’Aquila, Italy

paolo.difrancesco@gssi.it

Patricia Lago

Vrije Universiteit Amsterdam

Amsterdam, The Netherlands

p.lago@vu.nl

Ivano Malavolta

Vrije Universiteit Amsterdam

Amsterdam, The Netherlands

i.malavolta@vu.nl

Abstract—Microservices are gaining tremendous traction in
industry and a growing scientific interest in academia. More
and more companies are adopting this architectural style for
modernizing their products and taking advantage of its promised
benefits (e.g., agility, scalability). Unfortunately, the process of
moving towards a microservice-based architecture is anything
but easy, as there are plenty of challenges to address from both
technical and organizational perspectives.

In this paper we report about an empirical study on migration
practices towards the adoption of microservices in industry.
Specifically, we designed and conducted a survey targeting
practitioners involved in the process of migrating their appli-
cations and we collected information (by means of interviews
and questionnaires) on (i) the performed activities, and (ii) the
challenges faced during the migration. Our findings benefit both
(i) researchers by highlighting future directions for industry-
relevant problems and (ii) practitioners by providing a reference
framework for their (future) migrations towards microservices.

Index Terms—Microservice Architecture, Migration to Mi-
croservices, Industrial Survey

I. INTRODUCTION

There is no single and rigorous definition about the mi-

croservice architecture (MSA) style. The most adopted defi-

nition in scientific papers [5], is the one provided by Lewis

and Fowler, which describes this style as an approach for

developing a single application as a suite of small services,

each running in its own process and communicating with

lightweight mechanisms, often an HTTP resource API [8].

The MSA style brings both significant benefits and chal-

lenges. If on one hand microservice systems have flexible and

evolvable architectures [6], on the other hand many technical

challenges (e.g., infrastructure automation, distributed debug-

ging) and organizational challenges (e.g., creation of cross-

functional teams) need to be faced before being able to fully

benefit from them. Adopting MSAs is challenging [20], either

for developing a greenfield system, or for migrating an existing

system that suffers from issues that become more and more

difficult to solve. Typical issues of legacy systems are technical

(e.g., the system becomes highly coupled, hard to maintain,

presents side effects) or business-related (e.g., long time to

release new features, low productivity of developers). In some

cases, migrating towards MSA represents the best option for

resolving existing issues and at the same time improving the

system maintainability and the frequency of product releases.

In this study we present an in-depth investigation among

practitioners to uncover the migration practices towards MSA.

To this aim, we study (i) the activities and (ii) the challenges

faced by industrial practitioners when migrating towards MSA.

The research methodology we used relied on two main phases.

In the first phase, we designed an interview guide that we

used for conducting 5 exploratory interviews with industrial

practitioners. In the second phase, we used the interview guide

and the results of the interviews to design an online survey

questionnaire, which we distributed among our network of

practitioners. In total, 18 practitioners across 16 different IT

companies and at different professional stages participated to

our study. The high-quality data contributed by our participants

makes this a rather exciting first study in the state of the

practice in migrations towards MSA, and hence an hopefully

inspiring food for thought for future research.

The main contributions of this paper are the following:

• a survey of 18 practitioners that provides quantitative

information about migrations towards MSA;

• an analysis of the collected data that discusses practition-

ers perspectives on migration activities and challenges in

each of the three phases of: (i) architecture recovery of

the pre-existing system, (ii) architecture transformation

from the pre-existing to the new architecture, and (iii)

the implementation of the new system;

• a discussion of the obtained results in terms of practition-

ers activities and potentially relevant research directions;

• the study replication package1, featuring the raw data of

the online questionnaire.

The rest of the paper is organized as follows. In Section II

we describe the migration model for MSA we used throughout

the study. In Section III we present the design of the study. In

Sections IV, V, and VI we present the results of our survey,

followed by our reflections on the topic of migrations towards

MSA (Section VII). Threats to validity and related work are

described in Sections VIII and IX, respectively. With Section X

we close the paper and discuss future work.

II. MIGRATING TOWARDS MSA

Inspired by the horseshoe model by Kazman et al. [13],

Razavian et al. [23] framed the processes characterizing the

1http://www.s2group.cs.vu.nl/icsa-2018-replication-package



migration to services into three steps: reverse engineering,

architecture transformation, and forward engineering (thick

arrows in Figure 1). For this study, we applied the same

characterization to the process of migrating towards MSA.

As any migration is motivated by the need to modernize

a system, in part or in full, to some extent such system is

considered a legacy. In our work, we refer to the system

existing before the migration as the pre-existing system (i.e.,

the legacy asset), while we refer to the targeted microservice

system as the new system.

Fig. 1. Migration to microservices (adapted from Kazman et al. [13])

In the reverse engineering step, architects consider and anal-

yse the pre-existing system (e.g., by means of code analysis

tools or some existing documentation) and identify the legacy

elements which are candidates for transformation to services.

Then, the transformation step involves the restructuring of the

pre-existing architecture into a microservice-based one (still

at the same level of abstraction), for example by reshaping

design elements, restructuring the architecture and altering

business models and business strategies. Finally, in the forward

engineering step, the design of the new system is finalized,

implemented, and deployed (possibly in production).

III. STUDY DESIGN

In this section we describe the design of the study in terms

of goal and research questions, target population and sampling,

design of the interviews and questionnaire, and data analysis.

A. Goal and Research Questions

The main goal of this study is to characterize the activities

and the challenges faced by industrial practitioners when

migrating towards MSA. We refined our goal in the following

two research questions.

RQ1 – What are the activities carried out by practitioners

when migrating towards a microservice-based architecture?

By answering this research question we aim at characterizing

the activities performed during the overall migration process.

RQ2 – What are the challenges faced by practitioners when

migrating towards a microservice-based architecture? By an-

swering this research question we aim at characterizing the

challenges that practitioners have to face during the migration.

B. Identification of the Target Population

The target population for this survey entails industrial prac-

titioners that were involved in at least one migration of a pre-

existing system towards MSA. We included also practitioners

that were in the process of planning a migration (i.e., when the

actual implementation of the migration was not started yet).

We identified the initial group of practitioners in our network

of industrial collaborators. We contacted them directly and we

began the exploratory interviews.

We extended our network of practitioners by asking the

participants to the interviews, to nominate additional experts

in their own networks (applying the snowballing sampling

approach [15]). We also included (i) mailing lists of software

architects, (ii) IT consultancy companies, and (iii) industrial

authors that have published articles on the topic of microser-

vices. The resulting population was invited for the second

phase, the online questionnaire survey.

C. Design of the Questionnaire

In this research we follow the well-established guidelines for

interviews and questionnaire design by Oppenheim [21]. We

applied a combination of both interviews and questionnaires.

At the beginning of our investigation, we carefully designed

an interview guide used to conduct 5 exploratory interviews

with industrial practitioners with experience in the migration

towards MSA. The duration of the interviews ranged from

30 to 80 minutes. The interviewee was provided upfront with

the same horseshoe model shown in Figure 1 and a brief

description of its various phases. We also asked the interviewee

to think of a specific migration project he or she is or was

involved in. Each interview was structured as follows. The

interviewer started by introducing the participant with the goal

of the survey. The interviewer then asked some demographic

questions, followed by general questions on the migration

(e.g., domain of the application, number of teams). Afterwards,

three sets of specific questions were asked, one for each

sub-process of the horseshoe model described in Section II,

respectively addressing the following aspects: (i) architecture

recovery of the pre-existing system, (ii) architecture trans-

formation from the pre-existing to the new architecture, and

(iii) architecture-based development (i.e. the implementation

of the new system). Before concluding the interview, the

participant was always asked for comments and remarks

about relevant aspects of the migration that were possibly left

uncovered. The interviewer kept the minutes of each interview,

used afterwards for designing the questionnaire.

The questionnaire is composed of 35 questions. All manda-

tory questions are closed-ended. In 4 optional questions, the

participant was asked to add details and comments. The

structure of the questionnaire follows the structure of the

interview. Beside the introduction and some preliminary defi-

nitions, the core parts of the questionnaire are: (i) demographic

questions, (ii) general questions on the system, (iii) general

questions on the migration, (iv) general questions on the

organization, (v) questions about the recovery of the pre-

existing system, (vi) questions about the architecture transfor-

mation, (vii) questions about the new system implementation,

and (viii) questions about the challenges. Parts (i-iv) of the

questionnaire are used to collect demographic data about the

migration. The remaining parts (v-viii) are used to collect data



about the migration activities and the related challenges. The

questionnaire was created as an online form, and an invitation

was sent by email to the target population (see Section III-B).

D. Data Analysis

We analyzed the data according to the following steps.

1. Coding of interview notes. The main goal of this step

is to categorize the data obtained during the interviews in

order to make it homogeneous with respect to the structure

of the questionnaire. Specifically, we considered the detailed

notes collected during the 5 interviews and categorized them

according to the structure of the online questionnaire. In this

step we applied the closed coding technique, where codes were

pre-determined based on the specific questions and options

within the questionnaire [18]. It is important to note that this

step has been strongly eased by the fact that the data coming

from the interviews and the online questionnaire were already

aligned since the structure of the online questionnaire was

derived from the interview guide. In this step we also collected

all the segments of the interview notes that did not fit into

the structure of the questionnaire, leaving them for further

analysis. This eliminated the possibility that we accidentally

skipped any segment of the interviews.

2. Collection of questionnaire responses. We collected all

the answers provided by the participants of the online ques-

tionnaire into a single spreadsheet (with a column for each

question and a row for each participant).

3. Data analysis. This step takes as input a fully populated

spreadsheet with all the information coming from both in-

terviews and the online questionnaire. So, for each question

(i.e., for each column of the spreadsheet) we applied basic

descriptive statistics for better understanding the data about

the occurrences of each given response. The contents of the

4 optional questions have been used for understanding better

the rationale and getting additional information about their

corresponding mandatory questions (see next step).

4. Findings discovery. In this step we collected the results of

all the statistical analyses, we extracted key findings and we

aggregated them into a set of bar plots and tables. Then, we

performed a series of brainstorming meetings to elaborate on

and discuss the main findings.

IV. DEMOGRAPHICS

The participants have reported a minimum of 5 to a

maximum of 33 years of professional experience in IT (15

years in average). At the time of migrating towards MSA,

the participants were mainly involved as architects (8/18),

CTOs (4/18) or developers (3/18), while 3 participants were

involved with the specific role of DevOps engineer, industrial

researcher and VP engineer. The domains of the systems

being migrated vary significantly, as they include logistics,

e-commerce, journalism, online gambling, finance, banking,

healthcare and security.

The main customers of these systems were end-users (9/18)

(i.e., software products such as Netflix or WhatsApp) and

other companies (8/18) (i.e., the software is developed for and

shipped to other companies, which will own it). In one case,

the main customers were not known (1/18). Most participants

classified their systems as Web-based (13/18). We consider a

system as Web-based if it is developed with Web technologies,

hosted on remote servers, served via standard protocols (e.g.,

HTTP), accessed via a unique URL.

With the definition of a monolith as a software system whose

modules cannot be executed independently [6], almost all

participants (17/18) classified their systems as a monolith.

Interestingly, a subset of participants (5/17) specified that only

the core of the pre-existing system was a monolith. The typical

examples are systems that use functionalities implemented as

independent services or provided externally by third parties.

Five participants also stated that the pre-existing system could

be (broadly) classified as service-oriented (SOA) (there defined

as any distributed system that is based on services and commu-

nicate over a network using standard communication protocols

like SOAP and HTTP [4]). Interestingly, all of them also

answered that their systems were a monolith, either entirely

(2/5) or the core part (3/5). We can conjecture that in these

cases the monolith is a service of the SOA system that is the

object of the migration.

When asked about the current status of the migration, the

participants reported that in 6 cases the migration was still in

its early stages, i.e. either only planned or just started (30%

or less), while in 7 cases the migration was at 80% or 90% of

its progress, and in 3 cases the migration was fully completed.

The number of microservices deployed in the new system

while the migration is still in progress varies from a minimum

of 2 up to 250, with an average of 36. Differently, the number

of microservices deployed upon completion of the migration in

the new system varies from a minimum of 5 up to 250, with an

average of 59. The expected time to fully migrate the system

varies significantly among participants (from 9 to 60 months).

On average, it is expected that the migration requires ∼28

months. The participants were also asked about the position

of the management about the migration. In most of the cases,

the management reacted positively to the migration, being

easy to convince in (7/18) and supportive in (10/18). Maybe

not too surprisingly, in some cases the management was not

easy to convince (5/18) or not supportive (2/18). When asked

about the alignment of the technical solution (IT) with business

strategies, goals and needs (or ’Business-IT alignment’), more

than half of the participants (11/18) have reported that the

alignment was 80% or higher.

The participants also provided an estimation of both the

number of teams and the average number of people per team,

both at the beginning and upon completion of the migration. At

the beginning of the migration the number of teams spanned

from 1 to 20 (6.7 in average). Upon completion of the

migration, the number of teams was estimated to be from

1 to 30 in the end (8 in average). The number of people

per team before the migration spanned from 4 and 20, with

an average of 8.3. Upon completion, the number of people

per team ranged between 2 and 12, with an average of 6.5.

We observe that, after the migration, the average number of



teams increased and the average number of people in each

team decreased. This result is a confirmation of the fact that

MSA encourages both small services and small teams (e.g.,

following the Amazon’s notion of the Two Pizza Team [8]).

V. MIGRATION ACTIVITIES (RQ1)

A. Reverse Engineering

Table I shows the various forms of information about the

pre-existing system which participants use when migrating to-

wards MSA. Interestingly, participants relies on two important

’low-level’ sources of information, respectively: the source

code (13/18), and the test suites (11/18).

At an higher level of abstraction, the participants seem to

prefer written documents in the form of: textual documents

(11/18), architectural documents (e.g., architectural views)

(11/18), data models or schema (10/18), and box and lines

diagrams (9/18). Relevant knowledge about the system also

resides inside the people within the organization (e.g., devel-

opers, architects, engineers) (9/18). Information is commonly

shared by means of meetings (10/18), slides (8/18) and pre-

sentations (7/18). Less common among participants is the use

of: UML diagrams (5/18), contracts with customers (3/18),

architecture recovery tools for information extraction (1/18),

and performance data (1/18). Although participants reported

the source code as the main source of information on the pre-

existing system, we have had a conflicting opinion about it,

which we report below.

”Of the old system we consider it as so bad that we

do not look at the source code.”

TABLE I
INFORMATION ABOUT THE PRE-EXISTING SYSTEM CONSIDERED FOR THE

MIGRATION

Answers Occurrences

Source code 13
Textual documents 11
Architectural documents 11
Tests 11
Meetings 10
Data models/schema 10
Box and lines diagrams 9
Unwritten knowledge among developers and engineers 9
Slides 8
Presentations 7
UML diagrams 5
Contracts with customers 3
Information extracted from architecture recovery tools 1
Other 1

During the migration, the information about the pre-existing

system can be used for several purposes. As shown in Table

II, participants have reported this information to be very

important for understanding the pre-existing system (14/18),

and for generating the knowledge for architecting the new

system (14/18). In addition, the information about the pre-

existing system can be relevant for: the definition of processes

and APIs (12/18), the identification of dependencies in the pre-

existing system (11/18), and the definition of tests for the new

system (9/18). At some point during the migration, it seems

rather frequent that this information is used also for deciding

whether it is better (i.e., less costly in terms of budget or effort)

to implement new functionalities in the pre-existing system or

in the new system (6/18). Less common for participants is the

need to use this information for: performing analysis (e.g., via

metrics) on the pre-existing system (3/18), for improving its

documentation (1/18), or for understanding what to keep or

what to discard in the new system (1/18).

TABLE II
PURPOSE OF THE INFORMATION ABOUT THE PRE-EXISTING SYSTEM

Answers Occurrences

Understanding the pre-existing system 14
Architecting the new system 14
Defining processes and APIs in the new system 12
Finding dependencies in the pre-existing system 11
Creating tests for the new system 9
Trade-off analysis for deciding whether to implement
new functionalities in the pre-existing system or in the
new system

6

Perform analysis on the pre-existing system 3
Documenting the pre-existing system 1
Other 1

B. Architecture transformation

For investigating how practitioners design the new microser-

vice architecture, we asked participants to identify what were

the major activities involved in this process. As reported in

Table III, respondents identified as the most relevant activities:

domain decomposition (i.e., divide the domain into several

subdomains) (11/18), service identification in the new archi-

tecture (11/18), application of domain-driven design (DDD)

practices [7] (10/18), and system decomposition (i.e., cutting

the pre-existing system into smaller components) (9/18). These

four activities together indicate that it is of particular signifi-

cance for practitioners to have a crystal clear understanding of

the domain of the system in order to identify the bounded con-

texts properly. Presumably this allows practitioners to define

sharp service boundaries in the new architecture and to start

with the most suitable system decomposition technique for

their systems. Immediately after these activities, participants

identified as very important the need to get an immediate

feeling (and directly experiment) with microservices: either

by building proof-of-concept services to investigate the fea-

sibility of the migration (8/18), or by implementing services

as Minimum Viable Products (MVPs) (i.e., an artefact that

may be incomplete in functionality or quality, but already

showing the key characteristics for determining its customer

value) [19] (7/18). Among the major activities performed when

transforming the architecture, there is also the need to identify

boundaries (8/18) and dependencies (7/18) in the pre-existing

system.
Less common activities are related to the careful design

of the business workflows processes (6/18), and the need to

reduce risks in the network layer (3/18). An interesting quote

about the risks in the network is the following.

”Once you start going from the monolith to the

microservice-based architecture your network com-

ponent becomes a really big part of your system and

as we all know the networking side of things it is

notoriously difficult to debug.”



TABLE III
ACTIVITIES PERFORMED WHEN DESIGNING THE NEW ARCHITECTURE

Answers Occurrences

Domain decomposition 11
Identification of the services for the new system 11
Application of domain-driven design practices 10
System decomposition 9
Building proof-of-concept services to assess feasibility
of the migration

8

Boundary identification in the pre-existing system 8
Implementing services as Minimum Viable Products 7
Dependencies identification in the pre-existing system 7
Careful design of the business workflows 6
Reduce risks in the network layer 3

When asked how the new architecture is documented, the

participants have mainly reported the use of: architectural

documents (14/18), textual documents (13/18), and box and

lines diagrams (11/18). Presentations (9/18) and slides (6/18)

are also commonly adopted for documenting the new design.

In some cases, annotations and well structured source code

are used for documenting the design (7/18). Differently, the

adoption of semi-formal and formal modeling languages is

less common among participants. Indeed, UML diagrams

were reported only by 5 participants, while domain-specific

language models only by 2 participants (cf. Table IV).

TABLE IV
HOW DID YOU DOCUMENT THE DESIGN OF THE NEW ARCHITECTURE?

Answers Occurrences

Architectural documents 14
Textual documents 13
Box and lines diagrams 11
Presentations 9
Well written source code with annotations 7
Slides 6
UML diagrams 5
Notes 4
Domain-specific language models 2
Video 1
Other 1

When asked about the main driver of the migration, half

of the participants have identified it in the functionalities (i.e.,

migrate iteratively according to new or prioritised function-

alities). In the remaining cases, the main driver was very

scattered. In two cases, the driver was the type of customer of

the system (i.e., migrate according to customer’s inputs and

needs), while only in one case the driver of the migration was

the management or the business (i.e., migrate according to the

specification given by the management or business).

Participants have expressed as other drivers the following,

each with one occurrence: (i) business-IT alignment (i.e.,

migrate trying to align as much as possible the services to

the functional domain), (ii) customer processes separation (i.e.

the system was split by analyzing each type of customer

interaction), (iii) trade-off between costs and benefits of each

migration of functionality (see quote below).

”If we want a new feature or some performance gain

or whatever incentive to change something that is

already there, then we basically look at the cost that

we sustained since we started building that part of

the old system and we look at the cost that it would

take to migrate to a separate system, and then we

decide everyone to move forward and remove it from

the monolith application, or if you want to keep it

there and maybe add some layer or something like

that. It depends on the benefits that we get and also

on the expected investment that we want to make on

that specific domain of the application.”

Interestingly, in none of the cases the migration was driven

by the data schema or data structure (i.e., migrate according

to the necessary changes in the data structures) (cf. Table V).

TABLE V
DRIVER OF THE MIGRATION

Answers Occurrences

The functionalities (i.e., migrate iteratively according
to new or prioritised functionalities)

9

The type of customer of the system (i.e., migrate
according to customer’s inputs and needs)

2

Management/business (i.e., migrate according to the
specification given by the management/business)

1

Other 4
Don’t know 1
No information 1

As reported in Table VI, in 17 out of 18 cases the partic-

ipants implemented new functionalities during the migration,

as one of them nicely summarised:

”It was like an upgrade of the system, not only a

migration. Thinking in terms of workflows helped

us comprehend better the business of our customers

and so we ended up with an architecture that had

better similarities to the actual business.”

TABLE VI
WERE NEW FUNCTIONALITIES IMPLEMENTED DURING THE MIGRATION?

Answers Occurrences

Yes 17
No 1

C. Forward Engineering

We have asked the participants to indicate how they actually

started with the implementation of the migration. As reported

in Table VII, participants either started the implementation

by adding new functionalities as independent microservices

(10/18) or by reimplementing existing functionalities in the

pre-existing system as microservices (9/18). In 5 cases, the

participant started directly by implementing the new system

with a different architecture. Less common, but still interesting

is the fact that some participants (4/18) started the migration by

reimplementation existing functionalities as Minimum Viable

Products.

To get more details on the initial phase of the migration,

we asked participants to provide additional information on how

the initial set of functionalities to migrate from the pre-existing

system was identified (see Table VIII).



TABLE VII
HOW DID YOU START WHEN IMPLEMENTING THE MIGRATION

Answers Occurrences

Implementing new functionalities as microservices 10
Reimplementing existing functionalities as microser-
vices

9

Implementing the new system 5
Reimplementing existing functionalities as Minimum
Viable Products

4

Other 1
No information 1

In 6 cases, participants have reported that they identified the

functionalities among the ones with less dependencies in the

pre-existing system. Presumably this choice allows to extract

the functionalities with little impact on the architecture of the

pre-existing system. In 2 cases, the functionalities were identi-

fied among the less used by the users (see quote below). In the

remaining cases, the initial set of functionalities were identified

as follows: (i) by the MVP requirements, (ii) among the most

important to the customers, (iii) extraction of integration code

based on existing CQRS/event-based architecture, and (iv)

among functionalities affected by problems that were difficult

to fix on the monolith. Notably, none of the participants have

selected the functionalities to migrate among the less used in

the system.

”Once the architecture was defined, we started to

test how the [pre-existing] system would react. We

started to migrate the parts which had minor impact

on the users, mainly for testing purposes and to get

more confidence. If things went wrong, then this

would not had a big impact on the system, otherwise,

if everything went well, you could already test if

and how much the improvement was important. You

could immediately notice it.”

TABLE VIII
HOW DID YOU IDENTIFY THE FIRST FUNCTIONALITIES TO MIGRATE?

Answers Occurrences

Less dependencies 6
Less used by the users 2
Other 4
Don’t know 2
No information 4

Practitioners were asked what method they used for adopt-

ing the new systems in production (see Table IX). Mainly, the

new system was deployed with a phased adoption (i.e., the new

system is created in a series of pre-determined steps and over

a period of time) (14/18). The well-known strangler pattern2

belongs to the phased adoption. In 3 cases, the participants

reported a parallel adoption (i.e., both the complete old system

and the new system run simultaneously for some time after

which, if the criteria for the new system are met, the old system

is disabled). Interestingly, in one case a big bang adoption (i.e.,

the old system moves to the new system in a single major

event) was used.
2https://www.martinfowler.com/bliki/StranglerApplication.html

TABLE IX
HOW DID YOU ADOPT THE NEW SYSTEM?

Answers Occurrences

Phased adoption 14
Parallel adoption 3
Big bang adoption 1

Table X shows how participants have handled the pre-

existing data during the transition to the new system. In

the majority of cases (11/18), the data was kept ’as is’,

without modifying its structure. Differently, in 2 cases the

data was migrated to the new system by implementing data

migration procedures and making the new services responsible

for handling both old and new data. In 5 cases, participants

have reported that either there was no need to migrate the data

(3/5) or the services were mostly dataless (2/5).

TABLE X
HOW DID YOU CONSIDER PRE-EXISTING DATA IN THE NEW SYSTEM?

Answers Occurrences

The data was kept ’as is’ in the pre-existing system 11
The data was migrated to the new system by im-
plementing data migration procedures. New services
handle both old and new data

2

Other 5

VI. CHALLENGES (RQ2)

In this section we analyse the challenges faced by partici-

pants in the three subprocesses of the horseshoe model.

A. Reverse Engineering

The main challenges faced by participants in the pre-existing

system are reported in Table XI. Almost all participants

(15/18) have acknowledged the long time to release new

features as the main challenge faced in the pre-existing system.

From an architectural perspective, we can see how participants

find challenging the high degree of coupling among modules

(13/18) in the pre-existing system.

[The main challenge was] ”the high degree of cou-

pling: creating new features was longer and longer,

and much harder.”

Moreover, one participant reported the coupling even in the

process.

”The problem was that the coupling was in the

process: when we built the whole thing it was built in

a huge client-server process. It was coupling together

all modules.”

Significant on the architecture level is the fact that pre-

existing systems are hard to maintain (13/18) and sometime

hard to test (7/18). On a more technical perspective (i.e., the

developers’ perspective), a significant challenge is related to

side effects.

[One of the events behind the decision of changing

the architecture] ”I was the architect at the time.

Once a developer came in and told me, ’would you

mind taking a look at my code change, because

last time I changed something in this module, it



had a side effect in this one which crashed a third

one’. The three modules were nothing related to each

other.”

The participants also faced challenges concerning the low

developers’ productivity and developers interfering with each

other (7/18). Some other challenges are related to the lack

of a proper documentation of the system (6/18), knowledge

degradation (5/18), and unknown boundaries of functionali-

ties/modules (5/18). In 4 cases, the participants also identified

a challenge in convincing the business/management that mi-

gration was a necessary step to perform.

TABLE XI
MAIN CHALLENGES - REVERSE ENGINEERING

Challenges Occurrences

Long time to release new features 15
High coupling 13
Hard to maintain 13
Side effects 10
Low productivity of developers 9
Hard to test 7
Developers interfering with each other 7
Lack of documentation 6
Knowledge degradation 5
Unknown boundaries of functionalities or modules 5
Poor confidence on the source code 4
Convincing the business/management that migration
was necessary

4

Making information explicit 4
Issue with the programming language 2
Other 4
Don’t know 1

B. Architecture Transformation

Table XII reports the challenges faced by participants when

transforming the pre-existing architecture in the new architec-

ture. The most relevant challenge is the high level of coupling

among parts of the pre-existing system (9/18). Understandably,

when transforming the architecture towards MSA, the more the

modules are coupled with each other, the more difficult it is

to extract functionalities from the pre-existing system. Other

challenges include: the identification of service boundaries

(7/18), decomposition of the pre-existing system (6/18), and

the need to reduce the coupling among services in the new

architecture (6/18). Participants have also reported as chal-

lenging the configuration/setup of the automation support for

testing (e.g., in continuous integration and continuous delivery

pipelines) (6/18). Less common challenges are related to the

Business-IT alignment (5/18), domain decomposition (4/18),

and the difficulties in bringing domain experts into the process

of designing the new system (2/18). Among the other, some

participants reported as challenging the following: (i) diffi-

culties in taming the project, the people and the management,

and also find agreement on the architecture as too many people

were involved, (ii) implementing new features in the old/new

system while migrating, (iii) the need to change the MVP

according to business goals modifications, keeping up with

changes still being made to the existing system was really

hard, making parts of the new system still work with the old

system was technically challenging, and the communication

between stakeholder and developer teams was poor.

TABLE XII
MAIN CHALLENGES - ARCHITECTURE TRANSFORMATION

Challenges Occurrences

High coupling among parts of the pre-existing system 9
Identification of the boundaries of each service 7
Decomposition of the pre-existing system 6
Automation support for testing 6
Reduce coupling among services in the new architec-
ture

6

Finding the best Business-IT alignment 5
Decomposition of the domain 4
Finding the proper service granularity 4
Lack of proper documentation of the system 3
Bring domain experts into the process of designing the
new system

3

Undocumented/uncommented code 2
Other 6

C. Forward Engineering

Table XIII reports the challenges faced when implementing

the new system. Half of the participants have acknowledged

the main challenge in the setup of the initial infrastructure

for microservices to properly work. Immediately after, the

different mindset for developers is among the most relevant

challenges (see quote below).

”Most of the developers were quite used to get

everything in one database, so if they wanted some

information, they would just pick it up from the right

table. And now you have got to make them under-

stand that they have got to do an HTTP call to get

this data. So they have got to think in a completed

different way because an HTTP call is expensive.

It is going to add some matters of authentication,

identification, when you call one microservice to the

other it could be through a dedicated account, while

before you would just make the SQL.”

TABLE XIII
MAIN CHALLENGES - FORWARD ENGINEERING

Challenges Occurrences

Setting up the initial infrastructure for microservices
to work

9

Different thinking for developers 7
Distributed monitoring 6
Knowledge sharing, effective communication 6
Distributed logging 5
Distributed debugging 5
Create uniformity across services 5
Testing the new system 4
Get the initial team to work together 4
Using standards and norms 2
Get the initial prototype working 1
Other 6

Knowledge sharing was also perceived as challenging when

implementing the new architecture (6/18). Distributed aspects

related to monitoring (6/18), logging and debugging (5/18)

were also reported as challenging. An interesting challenge is

related to achieving uniformity across services.

”I think actually that the biggest problem that we try

to tackle is uniformity across all of our services, so

once you start working with 30 services you want a

mix between creating freedom for your engineers to



experiment and try out new systems and new frame-

works etc., but at the same time you want uniformity,

so that a single engineer does not have to learn 20

different languages or 10 different frameworks to

work with all the systems that we have within the

company. So uniformity is the biggest challenge that

we have.”

Some additional challenges involve: testing the new system

(4/18) and getting the first team to work together (4/18). Some

participants have reported more specific challenges: (i) we

were afraid of the impact on the system of the new services

being deployed as microservices (it was partially unknown),

(ii) work together with the business, and get business availabil-

ity to do the testing in the right way, (iii) needed infrastructure

for container management, service discovery and registration,

(iv) even though the development of the initial system went

really well, the transition plan became the actual problem of

the migration.

VII. DISCUSSION

A. Reflections on the obtained findings

A first reflection is on the migration process itself. As

reported by two participants, in some cases the migration

towards MSA is organized in small increments, rather than

a big overall migration project. In those cases, the migration

is implemented as an iterative and incremental process, as

also confirmed by the high number of occurrences reported

for the phased adoption (cf. Table IX). A similar observation

has been reported for migrations towards SOA in the industrial

survey of Razavian and Lago [24]. Moreover, it must be noted

that in some cases the migration has a starting point, but not

necessarily a defined-upfront end-point. As an example of this

recurrent phenomenon, see the following quote from one of

the participants.

“The most important thing is that there is no reengi-

neering project or something that is as a single goal

of rebuilding the system, we are doing that as part

of our daily work.”

In migrating towards MSA, semi-formal models (i.e., UML

specifications) and domain-specific models are not used much,

neither for designing the architecture nor for describing the

migration. A similar trend about the little application of

models was observed in the literature about MSA [5], with

some exceptions [11], [12], [28], [29].

Agility seems to be a very relevant aspect when migrating

towards MSA. Almost all participants added new functional-

ities during the migration, which means that the pre-existing

system was impeding the addition of new functionalities.

This is also confirmed by the challenges faced with the pre-

existing system (cf. Table XI). If we consider the information

we gathered on the migration implementation, we can notice

that participants start implementing new functionalities or

reimplementing existing functionalities as microservices, but

they also reported that one of the most challenging task is the

setup of the initial infrastructure for running microservices

(cf. Table XIII). We can conjecture that there is room for

improvement here, e.g., by applying Domain-Driven Design

practices. Moreover, there could be room for improvement

also in the techniques for the identification of the initial

microservices to be migrated (cf. Table VIII).

Surprisingly, more than half of the participants have re-

ported that existing data during the migration is not being

migrated (cf. Table X). This does not align well neither

with the “hide internal implementation detail“ principle of

microservices [20], nor with the typical MSA characteristic of

decentralized data management [8]. Not migrating data may

possibly hinder the ability of evolving services independently,

but also the possibility to scale up both services and their data.

However, it seems reasonable to think that if companies do not

have stringent needs for scalability, they do not put effort in

the migration of the data.

The main challenges in architecture transformation are

represented by (i) the high level of coupling, (ii) the difficulties

in identifying the boundaries of services, and (iii) system

decomposition. There could be room for improvement in this

area, for example by providing techniques for the identification

of services to be migrated at the architectural level, possibly

with the support of architecture recovery tools.

Finally, from the data we can observe that participants

are reaching a good level of Business-IT alignment. As also

fundamental for SOA applications, this is promising and an

indication of the fact that practitioners are building their

microservice-based systems by following the “model around

business concepts” of microservices [20].

B. Action points

Even though the sample of our survey is small and taking

into account the threats to validity of our study (see Section

VIII), we have elaborated a few action points for practitioners

and researchers that are worth considering. For practitioners,

we identified three main action points. First, share your

success stories: build and share reusable technical compe-

tence/knowledge, (i) to kickstart a MSA, and (ii) to reuse

solutions. Second, check business-IT alignment: that’s a key

concern during migration. Third, monitor the development

effort and migrate when it grows too much: we observed a

relatively high correlation between migration to microservices

and increasingly prohibitive effort in implementing new func-

tionalities in the monolith.

For researchers, we have identified a main action point, which

is: address the (apparently open problem) of how to migrate

pre-existing data (e.g., legacy databases) to microservices.

VIII. THREATS TO VALIDITY

We designed and conducted this study so to avoid biases

as much as possible. Specifically, we have been very careful

while characterizing the target population, in the design and

wording of the questionnaire, and during the data analysis and

synthesis phases. In the following the main threats to valid-

ity and our corresponding mitigation strategies are reported

according to the Cook and Campbell classification [3].

Conclusion validity. It concerns the relationship between the

extracted data and the obtained results [27]. In this context, one



of the most important threats to validity relates to the fact that

other researchers may identify questions and possible closed-

ended answers different from the ones in our questionnaire. We

mitigated this potential threat by (i) letting the closed-ended

responses of the questionnaire emerge from the data obtained

from the interviews, (ii) piloting the online questionnaire

several times with the help of independent researchers, and (iii)

having the data extraction process conducted and checked by

two researchers. Moreover, our study involves 18 participants

across the world and at different professional stages. We are

aware that the sample size of our study is limited with respect

to the potential large set of MSA practitioners and that this

prevents us to perform a statistical analysis of the obtained

data [14]. This is a consequence of the specificity of the

targeted population (i.e., practitioners who have been directly

and recently involved in a migration towards microservices).

We mitigated this potential threat by do not performing any

statistical correlation analysis (which may have inevitably led

to a low statistical power).

Internal validity. It refers to the causality relationship be-

tween treatment and outcome [27]. Firstly, we employed

basic descriptive statistics during the data analysis phase, so

the threats with respect to the correctness of the performed

analysis were minimal. During the data analysis we also cross-

analyzed the answers of different questions of each participant

in order to make a sanity test of the extracted data. Secondly,

we did not have the possibility of directly interacting with

participants filling the online questionnaire, potentially risking

them to do not fully understand the questions and their possible

closed-ended responses. Also, in those cases we could not

ask follow-up questions to the participants. We mitigated this

potential bias by (i) providing a set of definitions at the

beginning of the questionnaire that are used consistently in

the survey to help them to answer the questions, (ii) asking a

set of open-ended questions in which participants may freely

give their comments on specific aspects of their migration to

microservices, and by contacting participants by email with

the link to the online questionnaire; this allowed participants

to fill in the questionnaire as soon as they had time to do it,

and to reason about their answers as long as they wished.

Construct validity. It deals with the relationship between

theory and observation [27]. One of the most recurrent threats

in questionnaire-based surveys regards the phrasing adopted to

define statements, questions, and responses for closed-ended

questions. Similarly to what we did for mitigating threats to

conclusion validity, we let the closed-ended responses emerge

from the interviews and piloted the online questionnaire.

Moreover, during the design of the questionnaire, we also

piloted the questionnaire internally several times and refined

the language in each of its parts extensively. Finally, since the

questionnaire contains several closed-ended questions, poten-

tially we could have risked that for some questions participants

did not find any suitable response in the set of available ones.

We mitigated this risk by (i) defining the set of responses

of each question by systematically analysing the interview

notes, and (ii) by always including an ”Other” alternative

for each question; i.e., an open textual field which allows

participants to freely add their own answers. As a confirmation

of the comprehensiveness of our questionnaire, a relatively low

number of participants used such a free textual field.

External validity. It concerns the generalizability of obtained

results [27]. As described in Section III, in this study we

applied a combination of convenience and snowball sampling.

Convenience and snowball sampling helped us in selecting

study participants in a precise and accurate manner. However,

we are aware that this choice may have had a negative impact

on the size of the set of subjects of our study. We mitigated

this potential threat to validity by ensuring that they are an

heterogenous sample in terms of professional experience, size

and domain of their company, migration phases in which they

are involved, etc. (refer to Section IV for the details about

the demographics of the participants). This indicates a good

spread of participants’ profiles and increases the confidence

that the results of this study do not suffer from severe biases

with respect to the sampling method we applied, despite the

small sample size.

IX. RELATED WORK

Taibi et al. [25] have performed a questionnaire survey on

migration towards MSA, filled by 21 practitioners. Although

their approach is similar to ours, their focus differ deeply. In

our work we perform an in-depth investigation of migration

activities and challenges, considering them in great detail in

each phase related to: the recovery of the pre-existing system

architecture, architecture transformation, and the development

of the new system architecture. Taibi et al., in turn, just

skimmed on these aspects, and instead analyzed in greater

depth other aspects of the migration, like the motivations

behind the migration to MSA, and the benefits they provide.

Another significant difference between the two works is the

fact that Taibi et al. focus only on migration projects from

monolithic applications to MSA, while we consider also the

cases when the migration is performed starting from SOA.

To the best of our knowledge, no other investigations have

been performed on migration practices to MSA. A similar

study on SOA migration approaches has been performed by

Razavian and Lago [24]. This work differs from ours for

the specific target of the migration, as they focus on SOA

instead of MSA. A number of secondary studies have been

published on the topic of microservices. In their work, Pahl

and Jamshidi [22] identify migration towards microservices

among the major research trends. Similarly, the results of

our mapping study on architecting microservices [5] confirm

that migration towards MSA is one of the most relevant

research perspectives. Differently, two secondary studies of

Alshuqayran et al. [1] and Vural et al. [26] do not directly

address the migration towards MSA in their works. All the

above-mentioned secondary studies differ from our work in

two ways: we directly involve industrial practitioners; and we

specifically focus on the migration activities and challenges

for the adoption of MSA.

Balalaie et al. [2] generalize their experience by defining and

describing an initial set of microservices migration patterns.



These patterns can be used as a reference during the planning

phase of a migration towards microservices.

More in general, a number of primary studies, e.g., [9],

[10], [16], [17] have addressed somehow the topic of migration

towards MSA (e.g., techniques, approaches, analyses, experi-

ence reports); however, they differ from our work as we aim

at identifying more generalizable and common insights from

industry while the focus of the primary studies is typically

on specific case study or domains. A complete reference of

primary studies is out of scope of this research.

X. CONCLUSIONS AND FUTURE WORK

This paper presents an empirical study of how practitioners

deal with the migration of software systems towards microser-

vice architectures. We first performed exploratory interviews

with 5 practitioners with the aims of (i) becoming familiar with

the practitioners’ perspectives on the topic and (ii) guiding the

design of an online questionnaire. The questionnaire has been

proposed to a number of practitioners among our collaboration

network and eventually 13 of them successfully completed

it. Both the questionnaires and the interviews have been

structured around the horseshoe migration model proposed by

Kazman et al. [13].

The data extracted from the interviews and questionnaires

shed light on the various activities and challenges faced by

practitioners when migrating to MSA, which can benefit both

(i) researchers who are interested in better shaping their

methods and techniques according to the actual state of the

practice about the migration to MSA, and (ii) practitioners

who are planning to migrate to MSA and need to learn from

how such a potentially disruptive activity is performed in other

industrial contexts.

As future work, we are planning to design an architecture-

centric method for supporting the three migration phases of the

horseshoe model in the context of MSA. Such a method will

be based on the model-driven engineering paradigm, where ar-

chitecture models will be represented by means of a dedicated

domain-specific language for MSA. Having a domain-specific-

language-based representation of an MSA will empower ar-

chitects to (semi-)automatically extract, transform, and re-

engineer existing systems, while preserving key properties

(e.g., models consistency, correctness) across each step of

the migration. Furthermore, we plan to expand the sample

size with the goal of enhancing our analysis and improve its

representativeness for migration.

REFERENCES

[1] N. Alshuqayran, N. Ali, and R. Evans. A Systematic Mapping Study in
Microservice Architecture. In Proc. of the 9th International Conference

on Service-Oriented Computing and Applications. IEEE, IEEE, 2016.
[2] A. Balalaie, A. Heydarnoori, and P. Jamshidi. Microservices migration

patterns. Technical report, Tech. Rep. TR-SUTCE-ASE-2015-01, Au-
tomated Software Engineering Group, Sharif University of Technology,
Tehran, Iran, 2015.

[3] T. D. Cook, D. T. Campbell, and A. Day. Quasi-experimentation:

Design & analysis issues for field settings, volume 351. Houghton
Mifflin Boston, 1979.

[4] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weer-
awarana. Unraveling the web services web: an introduction to soap,
wsdl, and uddi. IEEE Internet computing, 6(2):86–93, 2002.

[5] P. Di Francesco, I. Malavolta, and P. Lago. Research on architecting
microservices: Trends, focus, and potential for industrial adoption. In
IEEE International Conference on Software Architecture (ICSA), pages
21–30. IEEE, 2017.

[6] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina. Microservices: yesterday, today, and
tomorrow. arXiv preprint arXiv:1606.04036, 2016.

[7] E. Evans and R. Szpoton. Domain-driven design. Helion, 2015.
[8] M. Fowler and J. Lewis. Microservices a definition of this new architec-

tural term. URL: http://martinfowler.com/articles/microservices.html,
Last accessed: Jan 2018.

[9] A. Gopu, S. Hayashi, M. D. Young, R. Kotulla, R. Henschel, and
D. Harbeck. Trident: Scalable compute archives-workflows, visualiza-
tion, and analysis. 2016.

[10] J.-P. Gouigoux and D. Tamzalit. From monolith to microservices:
Lessons learned on an industrial migration to a web oriented ar-
chitecture. In Software Architecture Workshops (ICSAW), 2017 IEEE

International Conference on, pages 62–65. IEEE, 2017.
[11] G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino,

and A. Di Salle. Towards recovering the software architecture of
microservice-based systems. In Software Architecture Workshops (IC-

SAW), 2017 IEEE International Conference on, pages 46–53. IEEE,
2017.

[12] G. Granchelli, M. Cardarelli, P. D. Francesco, I. Malavolta, L. Iovino,
and A. D. Salle. Microart: A software architecture recovery tool for
maintaining microservice-based systems. In Proceedings of the 14th

International Conference on Software Architecture (ICSA), pages 298–
302. IEEE, 2017.

[13] R. Kazman, S. G. Woods, and S. J. Carrière. Requirements for
integrating software architecture and reengineering models: Corum ii.
In Reverse Engineering, 1998. Proceedings. Fifth Working Conference

on, pages 154–163. IEEE, 1998.
[14] L. Kish. Survey sampling. Wiley Classics Library. Wiley, 1995.
[15] B. Kitchenham and S. L. Pfleeger. Principles of survey research: part 5:

populations and samples. ACM SIGSOFT Software Engineering Notes,
27(5):17–20, 2002.

[16] H. Knoche. Sustaining runtime performance while incrementally
modernizing transactional monolithic software towards microservices.
In Proceedings of the 7th ACM/SPEC on International Conference on

Performance Engineering, pages 121–124. ACM, 2016.
[17] D. S. Linthicum. Practical use of microservices in moving workloads

to the cloud. IEEE Cloud Computing, 3(5):6–9, 2016.
[18] M. Miles and A. Huberman. Qualitative Data Analysis: An Expanded

Sourcebook. Sage, Thousand Oaks, 2 edition, 1994.
[19] J. Münch, F. Fagerholm, P. Johnson, J. Pirttilahti, J. Torkkel, and

J. Jäarvinen. Creating minimum viable products in industry-academia
collaborations. In Lean Enterprise Software and Systems, pages 137–
151. Springer, 2013.

[20] S. Newman. Building microservices: designing fine-grained systems.
O’Reilly Media, Inc., 2015.

[21] A. N. Oppenheim. Questionnaire design, interviewing and attitude

measurement. Bloomsbury Publishing, 2000.
[22] C. Pahl and P. Jamshidi. Microservices: A Systematic Mapping Study.

In Proceedings of the 6th International Conference on Cloud Computing

and Services Science, Rome, Italy, pages 137–146, 2016.
[23] M. Razavian and P. Lago. Understanding SOA migration using a

conceptual framework. Journal of Systems Integration, 1(3), 2010.
[24] M. Razavian and P. Lago. A survey of SOA migration in industry. In

ICSOC, pages 618–626. Springer, 2011.
[25] D. Taibi, V. Lenarduzzi, and C. Pahl. Processes, motivations, and issues

for migrating to microservices architectures: An empirical investiga-
tion. IEEE Cloud Computing, 4(5):22–32, 2017.

[26] H. Vural, M. Koyuncu, and S. Guney. A systematic literature review on
microservices. In International Conference on Computational Science

and Its Applications, pages 203–217. Springer, 2017.
[27] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and

A. Wesslén. Experimentation in Software Engineering. Computer
Science. Springer, 2012.

[28] E. B. H. Yahia, L. Réveillère, Y.-D. Bromberg, R. Chevalier, and
A. Cadot. Medley: An event-driven lightweight platform for service
composition. In International Conference on Web Engineering, pages
3–20. Springer, 2016.

[29] M. Zúñiga-Prieto, E. Insfran, S. Abrahao, and C. Cano-Genoves.
Incremental integration of microservices in cloud applications. 2016.


