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MIGRATION BY FOURIER TRANSFOdM 

R. H. STOLT* 

Wave equation migration is known to be simpler method at higher dips and frequencies. The second 

in principle when the horizontal coordinate or coor- scheme effects a Fourier transform in both space and 

dinates are replaced by their Fourier conjugates. Two time by using the full scalar wave equation in the 

practical migration schemes utilizing this concept are conjugate space, the method eliminates (up to the 

developed in this paper. One scheme extends the aliasing frequency) dispersion altogether. The second 

Claerbout finite difference method, greatly reducing method in particular appears adaptable to three- 

dispersion problems usually associated with this dimensional migration and migration before stack. 

INTRODUCTION 

The migration of seismic data has been improved in 

recent years by application of the theory of scalar 

waves. Both the difference equation techniques pio- 

neered by Jon Claerbout (1971, 1972, 1976) and 

integral equation techniques such as those developed 

by William French (1974, 1975) have been successful 

as applied. 

Described below are two new schemes for the 

migration of seismic data. Both operate in momentum 

(i.e., wavenumber or spatial frequency) space in the 

horizontal (basement) direction. The first scheme is a 

high-accuracy, high-frequency, steep dip extension 

of the Claerbout finite difference algorithm. By for- 

mulating this algorithm in momentum space, we are 

able to (a) eliminate a matrix inversion without loss 

of accuracy, (b) migrate separately each momentum 

component using an algorithm tailor-made for each, 

so as to (c) reduce dispersion (within sampling limita- 

tions) to negligible proportions. 

The second scheme is also based on the scalar 

wave equation but does not employ finite differences; 

rather, the exact wave equation is used to predict a 

transformation in frequency-momentum space. Sub- 

ject to the sampling limitations of the data, dips of 

any angle can be migrated correctly and without 

dispersion. 

Emphasis will be placed on digital migration of 

stacked seismic cross-sections. In addition, the 

second scheme will be shown to be adaptable to 

migration before stack and three-dimensional 

migration. 

THEORETICAL FRAMEWORK 

General 

In what follows, we consider the earth to be a two- 

dimensional half-space. We assume sound to travel 

as a scalar field with velocity at point (x, Z) of 

C(X, z). Every point in the earth has the ability to 

transform downgoing sound waves into upgoing 

sound waves. This property is characterized by a 

reflection strength R(x, z) whose angular dependence 

we ignore. Multiple reflections are also ignored. 

Measurements are taken at the earth’s surface by 

placing a source at point (x,, z,) and a receiver at 

(x0, z,J. The reflected sound wave] observed at 

(x0, zO) is represented by $(x8. zs, x0, z,,, r), where 

‘J, may represent a pressure, a displacement or velocity po- 
tential, or some other suitably defined parameter. Spatial 
derivatives of compressibility and density will be largely 
ignored in what follows, so the distinctions between the 
various fields will not be of concern here. $ may be thought 
of as an impulse response or Green’s function. 
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3 and 

JI.I.0.w + k,,” - ~u/C(X,,. ZOY = 0, (3) 

at all points in space-time. That is, the scalar wave 

equation governs t/r with respect to small changes in 

000 receiver or source location. 

Migration of stacked sections 

These two equations can be simplified considerably 

zoo0 
for the migration of stacked sections, if we pretend 

that ‘*stacked” sections are equiv,alent to normal 

incidence sections, where (x,, z,~) = (x0, z.J. We 

define midpoint coordinates, 

1000 
X = (x, + x0)/2 and Z = (2, + z0)/2, (4) 

and relative, or offset, coordinates, 

x = (x,, -x,)/2 and z = (2,) - zs)/2. (5) 

4000 
Setting $(X, x, Z, z, t) = Nx,, G, x0, G,, t), the 

stacked section in the new coordinate system corre- 

sponds to $(X. 0, 0, 0, t) and the migrated section to 

$(X, 0, Z, 0, 0). Equations (2) and (3) become 

_-_--- -- _---- 

FIG. 1. Migration may be viewed as a prediction 
of changes in the seismic field as sources and re- 
ceivers are moved into the earth. 

- 2$,, -4/c(X - x,z - z)2qJtf = 0, (6) 

9xX + $zz + IclX.l + $,z + 2$k,..x 

+ 2& - 4/c(X + x. z + z)2$,, = 0. 

I is the two-way traveltime from source to receiver. 

For a flat earth. ze and z,, are zero during the 

measurement. If we ignore derivatives with respect to x and z,? we 

By migration, one attempts to determine the re- are left with the single equation 

C!JIxx + @zz - 4/c(X, Z)” ILI, = 0. (8) 
flection strength R(.r, z) from $(xs, 0, a,,, 0. t) at 

the earth’s surface. This is done by predtcting what 

J, would be for sources and receivers inside the earth. Equation (8) differs from (2) and (3) by the factor of 

Then (Ctaerbout, 197 I), 4 in the I&, term. This difference is due to the fact 

R(x,,_) - $(x, i, x, i, 0). (I) 
that in (8). both source and receiver coordinates are 

required to migrate synchronously, whereas in (2) 

and (3), one set of coordinates is kept fixed. The 

That is, (x,~, :,<) and (x0, zo) are extrapolated to the form of (8) can be made identical to (2) and (3) by 

common point (.r, :) as shown in Figure 1. As they redefining t in (8) to be one-way traveltime. 

approach each other, the traveltime between source 

and receiver approaches zero, and 4, subject to 
The Claerbout coordinate transforttrution 

limitations in source bandwidth, becomes propor- In the Claerbout approach, the wave equation (8) 

tional to the reflection strength at that point. is converted to a difference equation which can be 

The changes in I/J as source and receiver migrate 

into the earth can be nredictcd bv the scalar wave 

equation. We require (using subscripts to denote 2Strictly speaking, this is hard to justify, though we can argue 

partial derivativaex). 
that as X, 2 -+ 0, first derivatives with respect to x and z 
should vanish, and second derivatives are moveout genera- 

(2) 
tors which produce mainly gradual changes of amplitude 
with time when x and z are fixed at zero. 



“WIGRATED Ymtl S~CTIOW 

FIG. 2. Migration with an explicit 15 degree finite difference scheme. An inconspicuous event beneath a reflector changes dip direction. 
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FIG. 3. A two-dimensional earth model. Velocity is 9600 fps in all layers. 

used to gradually sink the source-receiver midpoint 

coordinates (X, Z) into the earth. To make such a 

scheme practical, Claerbout defines a new coordinate 

system in which J, varies less rapidly with depth. If 

c were constant, one such transformation would be 

D = ct/2 + Z; d = Z. (9) 

ln this coordinate system,_ D is the depth of some 

reflection point, while d is the depth of the source- 

receiver midpoint. 

Setting 

$(x, d, D) = +(X, 0, Z, 0. t). (10) 

the wave equation (8) becomes (Claerbout, 1976, 

p. 211) 

b’X+~dd+2$dD=0~ (11) 

The stacked section corresponds to 

4(X, 0, D) = $(X, 0, cr/2) 

= rcl(X, 0, 0, 0, t), (12) 

and the migrated section to 

d(X, D, D) = $(X, Z. Z) 

= Jl(X, 0, Z, 0, 0). (13) 

Of course, c will normally be a function of X and Z. 

A coordinate system which casts the migration 

problem into a velocity independent form similar to 

that in equations (I l)-( 13) will be discussed later. 

To help understand equation (I l), consider a plane 

wave of angular frequency w = 2 nf traveling upward 

at angle 0 to the vertical. According to equation (8), 

such a wave will take the form 

J,=e i2o(Xsin8-Zccos8-rfi2~lc 

or, in the new coordinate system, 

(14) 

+=e i2w(XsinE+d(l-cros81~Utlc 
(15) 

From (15) it follows that for upward traveling waves 

&x is always greater than +dd. For waves traveling 

near the vertical, $dd will be negligible compared to 

&x. 

THE CLAERROUT FINITE DIFFERENCE METHOD 

Following Claerbout’s approach, we now convert 

the wave equation (11) into a difference equation. 

Since 4d(X, 0, D) is not known a priori, the equa- 

tion should not involve second differences in d. 

Since $dd is very small for waves traveling near the 

vertical, the simplest thing to do is ignore it. This 

results in the so-called 15 degree approximation to 

the wave equation (Claerbout, 1976. p. 211) 

d’,YxX + 24dD = 0. (16) 



Migration by Fourier Transform 

FIG. 4. A synthetic seismic section. Trace spacing is 120 ft. 

We now define the discrete variables j and k by 

the relations 

Dj = jAD and dk = kAd, (17) 

where AD and Ad are the increments in reflector 

depth (transformed traveltime) and source-receiver 

depth, respectively. We also adapt the shorthand 

notation 

4(X): E $(x9 dk, Dj). (18) 

The conversion of Equation (16) to a difference 

equation is not unique. Two possible lowest-order 

forms are 

(1 - T)#+’ = -(l - T)@+, 

+ (1 + r)(+:;,r+ #I (19a) 

and 

,;+t = - c#$+, + (1 + 2T)(@,:‘+ $I?), (19b) 

where 

T= ADAd d2 
-- 

8 dX2 ’ 

is an operator in X. In practice, T may be a second 

(or higher) difference operator in X. The form (19a) 

is referred to as an implicit solution for #‘+I, since 

in order to solve for that quantity, it is necessary to 

invert the operator 1 - T. Since no inversion is re- 

required in (19b), we call it an explicit solution for 

,;+,. 

The implicit form (19a) is a more expensive 

algorithm than (I 9b) but has the capacity for greater 

accuracy at steep dips. 

Under many circumstances, the cheap explicit form 

(19b) will adequately migrate a stacked section. 

Figure 2 is an example of such a migration in which 

an apparent downturn of a surface at a fault is con- 

verted into an upturn. Migration of a simple model 

shows the upturn to have developed from an incon- 

spicuous event beneath the reflector. The event ap- 

pears less prominent on the actual section. This is 

partly attributable to interference from another event 

beneath it and partly to losses of diffractive energy 

during stack. The migration depth increment Ad used 

to migrate the model was the equivalent of about 

500 msec (that is, six steps were required to migrate 

an event at 3 set). The actual section was migrated 

using a smaller increment. 

Figures 3 to 5 provide an example of the limitations 

of the explicit 15 degree algorithm. Figure 3 shows a 

two-dimensional model consisting of three reflecting 

surfaces whose depths vary sinusoidally. The maxi- 

mum dip of the bottom reflector is I5 degrees; that 

of the middle, 30 degrees; and that of the top, 45 



28 

FIG. 5. A 15 degree Claerbout migration (Ad = 860 ft). Note dispersion in regions of steeper dip. 

degrees. Velocity is constant at 9600 fps in all layers. 

Figure 3 is a synthetic normal incidence section 

constructed from this model, filtered 4-40 Hz. 

Trace spacing is I20 ft. The IS degree Claerbout 

migration of this section is shown in Figure 5. As 

one might cxpcct, the bottom reflection is migrated 

properly. The middle reflection. however, shows 

strong cvidencc of dispersion (that is, different fre- 

qucncies are migrated to different places). and the top 

reflection is less tnigrated than mangled. Migration 

step siLr used was about 860 ft or I80 msec. Use of a 

smaller Ad step would not. in this case, improve the 

migration, 

Higher order approximations to equation ( 16) are 

possible. Little is gained. however, unless the 4rl,l 

term neglected in (16) is included. 

MOMENTUM OR K-SPACE MIGRATION 

For wav’es traveling at large angles to the v*ertical. 

4,,,, (though still smaller than $x,Y) is not negligible. 

Since it is not desirable to include hdr, explicitly, an 

approximation must be found. 

It is convenient to take a Fourier transform of 4 

with rcspcct to X at this point, detining p = 2nK to 

be the Fourier conjugate of X. Though not necessary 

for the development of a higher order approximation. 

there arc scv*cral adv’antages to this step. First, the 

cotnputer time disadvantage of an implicit solution 

to the wave equation disappears, since the operator 

inversion becomes a simple division in the wave- 

nutnber domain. Second, a simpler algorithm is 

allowed because the wave equation does not mix 

traces with different p values. Third, each p value 

can be migrated separately, using an algorithm in- 

dividually tailored to it. Finally, the second derivative 

4,r.r is well approximated clear LIP to the spatial 

Nyquist frequency. 

In the wavJenumber domain, equation (I I) takes the 

form 

PZ 4 = &l + 2&U,. (21_! 

We can approximate the effect of 4rld by differ- 

entiating equation (21) with respect to D, 

J J+I J+2 

time- 

FIG. 6. The two-coeffiecint K-space migration 
operator. 
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45 degree approximation to the scalar wave equa- 

J-l J J+I J+2 . / 

Timed 
-& ((b::: + qb:^+2 - ,:_+’ - a:) - 4”, (25) 

FIG. 7. The three-coefficient K-space migration (26) 

operator. 

2 
~ (4 ,“=: - 4::: + (b$+r 
Ad(AD)* 

P’d’O = 2$‘dDD + 4ddD> (22) 

and with respect to d: -(t’:)--$dDD+ &4D. (27) 

P2$‘d = 2$ddD + $‘ddd. (23) Substitution of (25), (26), and (27) into (24) yields 

Neglecting @ddd in (23) allows us to write the single the difference equation 

equation, 

2Pz4D -P’$‘d = 44dDD. (24) 

Equation (24) represents what is commonly called a 

FREQUENCYh frqcfica of nyquml) 

TWO COEFF. 

45’ APPROX 

Ad : lOA 

I I 1 I 
loo 

I I 
209 

I 

3@ DlPh) 
400 500 240 700 

FIG. 8. An illustration of the phase error to be expected from the K-space algorithms. 
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S, = -2(8 - p2AD2)/(8 + p*ADAd), 

(29) 

SP = (8 - p’ADAd)/(8 + p2 ADAd). 

(30) 

Equation (28) allows solution for an unknown 4:” 

in terms of the five known 4 values illustrated in 

Figure 6. Stability is assured provided the poly- 

nomial, 

1 + S,Z + s2z2, 

has no roots inside the unit circle; i.e., provided its 

Levinson reflection coefficients (Claerbout, 1976, 

p. 55-57) are less than one in magnitude. This 

imposes the constraints 

and 

IS21 < 1, (31) 

PII < 11 + &I> (32) 

which are automatically met for any migration step 

size Ad larger than AD. 

Since X is generally poorly sampled compared to 

D, and since equation (28) incorporates an extremely 

accurate approximation to 4,,, it might be thought 

that equation (28) as it stands is an accurate approxi- 

mation to the wave equation. Unfortunately, that is 

not the case. the reason being that the low-order 

approximations to I#J,, and d,,oD have retained errors 

of the same magnitude as those which were 

eliminated. 

Conversion of (28) to a high accuracy equation is 

accomplished in two steps. First, we bring in more 

points along the D-axis. We write, 

4:” - 4;+2 + St@;:; - +;+, ) 

That is, the unknown point +!+I is determined from 

the seven points illustrated in Figure 7. Stability is 

assured provided the polynomial, 

1 + S,Z + s*z* + s,z3, 

FREQUENCY AS FRACTION OF NYOUlST(BEFORE YIGRATION) 

FREQUENCY AS FRACTION OF NYOUlSTlAFTER MIGRATION) 

FIG. 9. Migration in F-K space. 
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FIG. 10. Migration of a synthetic section using the 45 degree Claerbout algorithm. 
error is less than 8 degrees for frequencies below the aliasing frequency. 

Maximum phase 

has no roots inside the unit circle. Constraining the 

Levinson reflection coefficients to be less than one in 
The coefficients S,, S2, and Sn may be determined 

magnitude. we find 
by choosing higher order analogs to the difference 

operators (25)-(27). However, greater accuracy may 

I&l < 1, (34) 
be achieved by choosing S,, Sp, and S, so that the 

difference equation (33) best approximates the exact 

(35) 
wave equation (2 1) rather than the 45 degree approxi- 

mation (24). 

and 
To do this, we look at individual plane wave solu- 

tions to equation (21) setting 

(37) 

Equation (21) then gives the dispersion relation (for 

The appearance of the anti-causal term ,$,“_] in equa- upcoming waves) 

tion (33) may be somewhat disquieting, but is really 

no cause for alarm. It merely reflects the fact that 

when dealing with bandlimited data, higher order 

&!_ $$_~Z. 
c (38) 

approximations to D-derivatives at the point j + 1 

will use more points on both sides of j + 1. 
The difference equation (33), on the other hand. gives 

the relation 

sin 
cjAd 2wAD 

2+- C i 

(lad 
+ S, sinT + S2 sin 

qAd 
2 - F)+Sasin($!-!J$J?)=O; (39) 

or, solving for 4, 

_ 2 

q = z arc tan 

(S, - 1) sin 2wAD/c + S, sin4wADlc 

S, + (S, + 1) cos 2wAD/c + S, cos4wADlc ’ (40) 
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FIG. 11. Migration of a synthetic section using the F-K algorithm. 

Since 4 will in general be different from the correct 

value y, a plane wave of frequency o and wave- 

number p [dip 0 = arcsin (pc/2w)] will develop 

an error in phase E proportional to the difference 

4 - 4 and to the distance traveled: 

E = (Cj - q)d. (41) 

Values for S1, S?, and S3 may be chosen so as to 

(in some sense) minimize E. E may be forced to zero 

at any three frequencies by substituting equation (38) 

into equation (39) and solving the resultant linear 

set of equations for S1, Sz. and Sg. Substitution of 

q at more than three frequencies results in an over- 

determined system which can bc solved by least 

squares. If onr is the maximum dip present in the 

data and w, the maximum frequency, the frequencies 

chosen should lie in the range 

pc/2sin0,,,<w<w,. (42) 

Figure 8 illustrates the phase errors to be expected 

from the two-coefficient difference equation (28) 

and the three-coefficient equation (33). In this 

example, PAX = 1 radian. AX = 6AD, and Ad = 10 

AD. For the two-coefficient equation, S, = 

- 1.926174, Sp = .932886. For the three-coefficient 

equation. S, = -1.913213, S, = .914654, and S, = 

.010563. These values were chosen to give zero- 

phase error at o1 = Nyquisti2, o3 = pc/2sin45 

degrees, and o2 = (c,J~ + o.J/2. Phase error is 

plotted in degrees per second of trace, assuming a 

,004 set sample interval. Two things are apparent 

in this illustration: (1) equation (33) is more accurate 

than equation (28) over the entire range of dips and 

frequencies; and (2) by forcing three zero crossings 

for equation (33), we have actually gotten four (the 

fourth zero crossing occurs at about 50 degree dip), 

significantly extending its region of accuracy. This 

suggests that (a) modification of the coefficients of 

equation (28) could not produce accuracy com- 

parable to that of equation (33); and (b) adding a 

fourth coefficient to equation (33) is not likely to 

significantly improve accuracy. 

In practice, equation (33) is found to be accurate 

and stable for dips up to 45-55 degrees. Beyond 

this, accuracy may require an extremely small Ad, 

and stability problems may be encountered. Note 

that in general the coefficients S,, SB, and S3 and also 

the step size Ad will be different for every spatial 

frequency p, 

The phase error defined in equation (41) does not 

include error introduced by a finite sample interval 

AX inX. In principle, these error5 are zero, provided 

the maximum dip angle emax obeys 

ernar < arc sin (AD/AX). (43) 

If the maximum frequency in the data is fmax = v 
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FIG. 12. A synthetic seismic section. 

fnyq, where fnyq is the Nyquist frequency (125 Hz 

for Ar = 4 msec),, then the above relation becomes 

less restrictive: 

0 max < arc sin (AD/VAX). (44) 

Dips 0 greater than emax are migrated correctly as 

long as frequency obeys 

f<fnyq.AD/DXsive=f,. (45) 

f, will be referred to as the aliasing frequency. 

At larger frequencies, the dip will be interpreted as 

smaller than emax and will be migrated incorrectly. 

Examples of migration using the equation (33) 

algorithm will be deferred until after a discussion of 

the F - K migration scheme. 

MIGRATION IN F-K SPACE 

Suppose we take a two-dimensional Fourier trans- 

form of the surface field 4(X, 0, D): 

A(p, w) = $ 
I I 

dX dD eicPx-2Dir)$(X, 0, D), 

(46) 

so that 

$(X, 0, D) = & 
I I 

dp dwe-ic”x-zmD!c)A(p, w). 

(47) 

For upcoming waves, equation (47) generalizes at 

positive depth to 

where, to satisfy the wave equation (I I), 

q+ JF. (49) 

The migrated section 4(X, D, D) then has the form 

4 (X, D, D) 

(50) 

The substance of equations (46) and (50) is that 

migration may be accomplished by a double Fourier 

transfotm of the original data from (X, D) space into 

(p, w) space (46), followed by the more complicated 

transformation (50). If equation (50) could be con- 

verted into a double Fourier transform, a practical 

migration scheme could result. 

Fortunately, a simple change of variable from w to 
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does the trick: 

4(X, D, D) = & 1 dp 1 dk B(p, k)emi’“Sm.“D’, 

(51) 

where 

. 
(52) 

The transformation (52) represents, for a fixed p, 

a shift of data from frequency w to a lower frequency 
0’ = w2 - p2c2/4 (in fact, a “moveout cor- 

rection” where w takes the place of time and p of 

offset), plus a change of scale k/d- = o’/ o. 

The frequency shift, depicted in Figure 9, effects 

only what migrators have always known. namely 

that an apparent dip of tIa before migration translates 

into a dip, 

& = arc sin tan Ba, (53) 

after migration. 

The operations (46), (51), and (52) could easily be 

done in an analog system. On a digital computer, 

the Fourier transforms (46) and (5 I) will be carried 

out as FFTs. The transformation (52) then involves a 

dangerous interpolation of the data in the frequency 

domain. To avoid ghost events appearing on the 

section, it is usually necessary at Icast to double the 

trace length by adding zeros befot-e performing the 

initial time FFT. 

No phase error or dispersion should be seen in 

double Fourier transform migration, since the exact 

wave equation is used. The aliasing problem dis- 

cussed in the last section w/ill still he present, though 

it- is now possible to predict exac:ly where alias-ing 

may exist and conceivably even unravel it. 

EXAMPLES OF FOURIER TRANSFORM 

MIGRATION 

Migrations of the synthetic section of Figure 4 are 

shown in Figures IO and I I, Figure IO results from 

k-space finite difference algorithm (33). Maximum- 

phase error at the bottom of the section was held to 

less than 8 degrees. All three reflectors have assumed 

their proper shapes. Little dispersion is evident, ex- 

cept for a loss of high frequencies in the region of 

45 degree dip. This would be expected. since the 

aliasing frequency at that dip is 2X.3 Hz. Figure 1 I 

shows a migration using the double Fourier transform 

(F-K) algorithm. It appears very similar to the 

K-space finite difference migration (Figure IO). 

FIG. 13. A K-space migration. 
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FIG. 15. Five-fold CDP section maximum dip 35 degrees. 

$(X,X. (ZO + z,)/2, (i” - z,)/2, t) $(X, 0, Cl/L 0, 0) 

= (2.~)-~!~ 1 dw j dP . 

i~~.~-ls,-*o)~fi~,A(p,~, o). 
(57) 

where, from equations (2) and (3) 

9,$ = o/c d/I - (P - pyc2/4w2; 

40= w/c d/1 - (P + p)2cZ/4w2. 

The migrated section is 

To put (57) in the form of a Fourier transform, a 

coordinate transformation is required. We define 

two new variables which will replace p and w, 

u=q,+q();v=q,-qo. (58) 

(56) 

From equations (56) and (58) follow the relations, 

p = w/P, (59) 
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c!J= sgn(w)(c/2P) P4 + P(u2 + P) + uv, 

(60) 

and 

Jl(X, 0, cr/2,0,0) 

1-312 = (27r, 1 @ 1 & 1 dv e-iCP&-UC!13! . 

.A(P,p, w)c’(u”- v2)/4wP. (61) 

Again, a simple transformation accomplishes the 

migration process. Note that the Fourier p-integral 

becomes a simple integration over v, since only zero 

offset is relevant after migration. 

MIGRATION IN THREE DIMENSIONS 

The three-dimensional analog of equation (8) is 

+xX + JlYY + lclzz - 4/c2 $,t = 0. (62) 

When c is constant, we can write 

I/L@, r,J,_r) = &r)-3’2 1 rip e’PX / L@ eiQY . 

. doe-‘“‘A(P,Q, w,Z), 
I 

(63) 

where 

A@‘, Q, o, 0) = (2~7-~” 
I J‘ 

dX dY . 

. dt 9(X, Y, 0, t)e-i(px+Qy-ot), 
I 

(64) 

FIG. 16. A K-space migration of Figure 11. 



FIG. 17. An F-K migration of Figure 11. 

is the triple Fourier transform of the unmigrated EXTENSION TO A VARIABLE VELOCITY 

three-dimensional data. Now, A (P, Q, o, Z) satisfies 

the transformed wave equation 
The K-space migration scheme described above 

relies on a velocity which is X-independent. The 

AZz = (P’ + Q2 - 4c3/c2)A, (65) derivation of the F-K algorithm was even more re- 

which has upcoming solutions, 
strictive, requiring velocity to be constant. In order to 

use these schemes in the presence of a variable 

A(p; Q, 0, g = ,~(p, Q, w, (Jje-izv4@c2-Pr-W, 
velocity, it is necessary to transform to a coordinate 

(66) 

Hence, we can write the migrated field as, 

$(X, l’, Z, 0) = (27r-3’* j- dP /dQ / doB(P, Q, w)&~~+~~-~~‘~), 

where 

(674 

B(P, Q, co) =A{P, Q, wdl + (P’ + Q2)c2/402}/~l + (P* + Q’)c~/~&~. (67b) 
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FIG. 18. A complex lo-fold CDP section. 
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FIG. 20. A K-space migration of Figure 14. 

system in which both the wave equation and the z 
boundary conditions are velocity independent. Zl=’ azc. 

J (69) 
Beginning with the coordinate system X, Z, t of co 0 

equation (8), we first define new time and depth 

coordinates 
Since Z’ represents the apparent depth to a reflector 

at Z in a layered medium, we may expect this to be a 

(68) 
useful coordinate system for migration. Neglecting 

velocity derivatives, the wave equation becomes 
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FIG. 21. An F-K migration of Figure 14. 

Note that the coefficient of the dominant &( term is 

now constant. To define the migration limits in this 
g= Lz. 

I 0 
coordinate system, we define two new variables 

50’) and ~(1’) 
Then before migration the limits are 

’ dZ 
t’= _, 

I 0 c 

Z’ = 0, t’ > 0, 

(71) and the limits upon migration are 

and Z’ = ~(1’)/Co, t’ > 0. 

(72) 

(73) 

(74) 
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FIG. 22. A IO-fold CDP section with dips greater than 45 degress. 

Because Equation (74) is time dependent, this and 

coordinate system is not in general useable for d = Z’coD/q. (76) 
K-space or F-K migration. However, one more 

change of’variables will do the trick. Define Setting 4(X, d, D) = 4(X, Z, t), the wave equation 

D= d* (75) takesth~~n:~(X,d,D)g~~+~~~~=O, (77) 



FIG. 23. A K-space migration of Figure 18. 

where d = D, D > 0. (801 

W = 2(X, Z)D2 + g 1 _ c2(X’z)D2 All explicit dependence on X and 2 now resides in the 

+ D i > V2 
(78) coefficient W of c#I~~. W f 1 reflects the fact that 

Migration proceeds from the half-plane. 
diffractions are not pure hyperbolas in a layered 

medium. Since & is ordinarily small, it is usually 

d = 0, D > 0, (79) 
justifiable to replace W with an average constant 

to the half-plane, 
value (usually a number between .5 and 1) for a given 

section. Then (77) has almost the form of equation 



Migration by Fourier Transform 

FIG. 24. An F-K migration of Figure 18. 

45 

r. 

1 0 

! * 

1  P 

20 

1 

3 0 

(1 I), and the derivation of the K-space and F-K 

migration algorithms proceeds as outlined above, 

except for a slight modification of the dispersion 

relation (38) or (49). 

Use of K-space or F-K migration in practice, then, 

involves a time to depth conversion (75). Even 

though simple to effect, this gives rise to practical 

difficulties in that (a) the frequency content of the 

data is altered; and (b) incorrect lateral velocity 

variations will distort the reflecting surfaces and cause 

improper migration. These problems can be lived 

with, however, and at present the K-space and F-K 

migration schemes appear to be practical and useful. 
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