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Migration error in transversely isotropic media

with linear velocity variation in depth

Ken Larner and Jack K. Cohen

ABSTRACT

Given the sensitivity of imaging accuracy to the velocity used in migration,

migration founded (as in practice) on the erroneous assumption that a medium is

isotropic can be expected to be inaccurate for steep reflectors. Here, we estimate

errors in interpreted reflection time and lateral position as a function of reflector

dip for transversely isotropic models in which the axis of symmetry is vertical and

the medium velocity varies linearly with depth. We limit consideration to media

in which ratios of the various elastic moduli are independent of depth.

Tests with reflector dips up to 120 degrees on a variety of anisotropic media

show errors that are tens of wavelengths for dips beyond 90 degrees when the

medium (unrealistically) is homogeneous. For a given anisotropy, the errors are

smaller for inhomogeneous media; the larger the velocity gradient, the smaller the

errors. For gradients that are representative of the subsurface, lateral-position er-

rors tend to be minor for dips less than about 60 degrees, growing to two to five

wavelengths as dip passes beyond 90 degrees.

These errors depend on reflector depth and average velocity to the reflector

only through their ratio, i.e., migrated reflection time. Migration error, which is

found to be unrelated to the ratio of horizontal to vertical velocity, is such that

reflections with later migrated reflection t_raes tend to be more severely over-

migrated than are those with earlier ones.

Over a large range of dips, migration errors that a_ise when anisotropy is

ignored but inhomogeneity is honored tend to be considerably smaller than those

encountered when inhomogeneity is ignored in migrating data from isotropic,

inhomogeneous media.
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INTRODUCTION

Difficult and unreliable as it is to measure anisotropy in the field, and as infre-

quently as it is done, it is nevertheless currently recognized that the Earth's subsur-

face is anisotropic--often, considerably so. For example, a frequently used measure

of anisotropy for p-waves, the ratio of velocity in the horizontal direction to that in

the vertical direction, is commonly found to be 1.05 to 1.1, and is often as large as

1.2 and higher (Seriff, 1986). For typical seismic wavelengths, the anisotropy may be

either an intrinsic property of the rocks or the result of thin layering of different rock

types. The distinction here is immaterial--the essential result is that waves travel

with different speeds in different directions.

Given the general increase in wave speed with depth in the subsurface, reflections

from steep interfaces--dips of 90 degrees and beyond--involve raypaths that sweep

through a wide range of angles from vertical. Consequently, for inhomogeneous,

anisotropic media, the energy propagates at different speeds due not only to variation

in velocity with position but also to its variation with direction of propagation. Given

the sensitivity of imaging accuracy to the velocity used in migration and given that

migration, in practice, is founded on the assumption that the subsurface is is.tropic,

it is useful to analyze the positioning errors that arise from using migration algorithms

that assume isotropy when the subsurface medium is not is.tropic. This issue should

be particularly relevant to the use of large-dip algorithms such as those that use

turning waves (Hale, Hill, and Stefani, 1991) to image flanks of overhanging salt
domes.

While anisotropy exists for both p-waves and s-waves, and s-wave anisotropy has

been given the greater attention in the literature, most imaged reflection seismic data

involve p-waves, and that is what we treat here. Moreover, although anisotropy can

take on all manner of complexity, we assume the relatively simple, but plausible, form

of transverse isotropy with a vertical mis of symmetry. That is, the velocity of plane

waves (i.e., phase velocity) varies only with angle from the vertical; velocity is the
same in all azimuthal directions.

Also, since the Earth's subsurface is not homogeneous (otherwise, among other

things, turning waves would not exist), studies of migration error restricted to aniso-

tropic models that are homogeneous can yield conclusions that, as we shall see, are

greatly misleading. Again, actual subsurface inhomogeneity can be complicated and

endlessly varied, so we limit consideration to a particularly simple form--media in

which the pertinent elastic moduli vary only with depth z. Moreover, the allowed spa-

tial variation will be such that ratios among the moduli remain independent of depth.

Cerven3_ (1989) refers to such media as factorized auisotropic inhomogeneous (FAI),

and shows simplifications that arise when ray tracing in FAI media, lhlrthermore,

following Shearer and Chapman (1988), we gain considerable efficiency in ray-trace

modeling of traveltimes with our assumption that velocity variations are linear with

depth.
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Here, we do numerical studies of errors in interpreted reflection time and lateral

position as a function of reflector dip for models of the type described above. We treat

only post-stack migration, and do so by considering only errors in the imaged position

of sloping reflections for media with no lateral velocity variation. Those positioning

errors are estimated from analysis of diffraction traveltime curves obtained by ray

tracing; thus, they rely solely on traveltime information, ignoring amplitude and

phase contributions to imaging.

Anisotropy and inhomogeneity can have a pronounced influence on the shape of

diffraction curves, as evidenced by the comparison of diffraction curves for four mod-

els shown in Figure 1. All four curves pertain to a scatterer at depth D = 1500 m,

beneath midpoint y = 0, in media having the same vertical average velocity from the

surface to the reflector• They differ in that the different subsurface models represent

the four combinations of homogeneous/inhomogeneous and isotropic/anisotropic me-

dia. Here and throughout this paper, the anisotropy is FAI transverse isotropy, with

vertical axis of symmetry. The two inhomogeneous models (solid curves) involve lin-

ear v(z), where v represents any of the velocity-equivalents of the four elastic moduli

describing p-wave behavior in a transversely isotropic medium.

For those models, the vertical p-wave velocity is given by

v(z) = vo + kz, (1)

with the gradient k - 0.6 s-1, and the vertical-direction velocity at the surface v0 is

such that the vertical average velocity down to D - 1500 m is 3306 m/s, the value of

vertical velocity for Levin's shale-limestone listed in Table 1. For the homogeneous,

transversely isotropic model, the four elastic moduli (A, C, F, and L, in the notation

of White [1983]) are those of the shale-limestone medium listed in Table 1. Actually

listed in the table are velocities associated with the various moduli (i.e., Vc =

--where p is bulk density--is the p-wave velocity in the vertical direction; VA is the

p-wave velocity in the horizontal direction; VL is the s-wave velocity in the vertical

direction; and VF is a velocity-like quantity associated with the elasticity modulus F).

For the anisotropic model with linear v(z), the moduli are such that their associated

average velocities between the surface and the scatter at depth are equal to their

constant-velocity counterparts in the homogeneous model.

In Figure 1, the curve for the homogeneous, isotropic model is a hyperbola, as ex-

pected, and the curves for the two inhomogeneous models are clearly non-hyperbolic,

with inflection points at midpoints beyond which reflections pertain to turning waves

(Hale et al., 1992). While the diffraction curve for the homogeneous, anisotropic

model differs from that for the homogeneous, isotropic one, it is not evident from

this figure whether or not the curve is hyperbolic. As it happens, it is not: a plot of

the instantaneous slope of the T 2 versus y2 line indicates that, while the T 2 versus

y2 is almost straight, it is not strictly so. Instantaneous "stacking" velocity based on

the instantaneous slope of T2(y 2) increases with increasing midpoint value y, from a
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Berea sandstone 4206 4210 1961 2664

Shale-limestone 3306 3721 2076 1819

Cotton Valley shale 4721 5320 3095 2890
Pierre shale 2202 2235 1803 969

Table 1. Velocity-type quantities related to the four elastic moduli that are pertinent
to p-waves in transversely isotropic media. The four media listed are the same as
those studied by Levin (1990).

value close to the velocity in the vertical direction at y = 0 to one that is close to

that for propagation in the horizontal direction as y/D becomes large.

It is not obvious that the differences seen in the curves of Figure 1 would give

rise to sizeable errors in migration when the wrong curve is used for the migration.

As we shall see, however, for reflections from steep reflectors (i.e., for regions of the

diffraction curves where y is large), the migration errors can be large--even tens of

wavelengths. As it happens, the largest errors arise when isotropy is assumed for

media that are both anisotropic and homogeneous, rather than inhomogeneous.

ERROR COMPUTATION

The quality of a migration algorithm is usually assessed by applying the algorithm

to synthetic and, ultimately, field data. Typical test data consist of reflections from

plane-dipping reflectors, diffractions from point scatterers, and impulses. With data

from plune reflectors, one measures the positioa of the migrated reflection relative

to its known true location; with diffractions, one qualitatively assesses how well or

poorly the diffractions collapse about the apex; and with impulses, one studies the

shape of the impulse response.

Here, we are less interested in the quality of a particular migration algorithm

than in errors that arise when the migration is based on an _rroneous assumption

(e.g., isotropy) about the velocity model. In the context of thf rchhoff-summation

view of migration, errors arise because the wrong diffraction '.'e is used to do the

migration: points on sloping reflections are migrated to the _ g apex locations.

Consider migration of the schematic, zero-offset, sloping ction sl. __'n in Fig-

ure 2. In migrating the portion of the reflection irt the vicinity of point (T, y), where

T is unmigrated reflection time, we first find the diffraction curve that is tangent

to the reflection at (T, y). If the velocity model is correct, migration will image the

point (T,y) at the correct migrated position (Tm, ym). Suppose, instead, that the
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FIG. 1. Diffraction curves T(y), where T is two-way time between a surface source
at midpoint y and a scatterer at depth D = 1500 m beneath y = 0, for four related
media characterized by the same vertical average velocity. (a) transversely isotropic,

with linear v(z)--black solid, (b) homogeneous, transversely isotropic--black dash,

_ isotropic with linear v(z)--gray solid, and (d) homogeneous, isotropic--gray dash.
e latter curve is the only hyperbolic one.

wrong velocity model is used for the migration. Then, after migration, as depicted in

Figure 3, the point (T, y) goes to the erroneous position (To, ye) instead of to (Tta, ym).

Note that the point (Te, y_) is at the apex of the erroneous diffraction curve that

is tangent to both the correct diffraction curve and the reflection at the unmigrated

position (T, y). For the numerical estimates of migration error as a function of reflector

dip, we do not actually compute reflections from plane-dipping reflectors. Instead,

we work with just diffraction curves, recognizing that any point along a diffraction

curve may be associated with a dipping reflector whose reflection is tangent to the

diffraction curve at that point. The estimation of migration error involves three steps:

1. Compute diffraction curves associated with a buried point scatterer (such as

those shown in Figure 1).
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midpoint (y)
.::_

reflection

(Tm, Ym) ip
(Tm, Ym)P

(T,F)

migration diffraction

FIG. 2. Schematic time section showing the _lationship between the unmigrated
position (T, y) on a sloping reflection and the ,)osition (Tm,ym) to which it should
migrate. The migrated position is at the apex oi"the diffraction curve that is tangent
to the reflection (slope - p) at the unmigrated position.

2. Estimate the erroneous position (Te, ye) to which any given point on the true

diffraction curve for the anisotropic medium migrates when an algorithm that

erroneousJy assumes isotropy is used for the migration.

3. Estimate the error in interpreted temporal and lateral position of a migrated

reflection by determining the departures in position and time of the erroneously

migrated point from the correctly migrated reflection.

Computation of diffraction curves

While traveltime computation in inhomogeneous media generally first requires

computationally intensive numerical integration to obtain raypaths, such numerical

integration can be averted for special classes of media. For example, in isotropic media

with constant gradient in velocity, raypaths are circular so that two-point ray tracing

and traveltime computation can be done analytically. Shearer and Chapman (1988)

have developed an efficient method for ray tracing in the type of media considered

here--FAI media with constant velocity gradient. For transversely isotropic media,

the core of their result is the remarkable property that raypaths simply are scaled,

rotated versions of the slowness curve, the curve that relates horizontal and vertical

slowness at any point in the medium.

With this observation, Lamer (1992) shows that, when the axis of symmetry for

the transverse isotropy is parallel to the velocity gradient, two-point ray tracing can

be done by solving a quadratic equation for x2 as a function of x 2 followed by a
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midpoint (y) "=._

reflection

® (Tm,Ym)E
ilmma

*" T,y)

true diffraction (Te, Ye)
curve erroneous diffraction

curve

FIG. 3. Schematic time section showing the relationship between the unmigrated

position (T, y) on a sloping reflection, the position (Tta, ym) to which it should migrate,

and the position (Te, ye) at which it is actually imaged when the data are migrated
with an erroneous velocity function.

secant search to determine the ray parameter Pl. As shown in Figure 4, (xi,x3) is

position along the raypath, where x3 is the coordinate in the gradient direction, with

x3 = 0 being the line along which the linear velocity function is zero, and xi is the

coordinate in the orthogonal direction, such that xi = 0 at the ray's turning point.

The coordinate x3 is just a translated version of the depth z obtained by rewriting

equation (1) as

v(z)- _ kX3,

where

v0 (2)
x3=z +-_.

Note, in Figure 4, that reflectors such as the one shown, in general are not per-

pendicular to zero-offset raypaths when the medium is anisotropic. For anisotropic

media, reflectors are orthogonal to the phase direction rather than the ray direction

(Byun, 1984).

Different solutions of the quadratic equation for x_ give raypaths for p-waves

and for sv-waves (Lamer, 1992). Here, we are interested in only the p-wave solu-

tions. Once the ray parameter is determined, numerical integration is still required

to obtain traveltime; Cerven3_ (1989), however, shows the form of the integrand to

be particularly simple, and the integration thus efficient, for the particular type of
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,', Vo/k/ I

z=O ' '
/ I #

_,_ / II S**

j= , "" _ zero-offset
a. (Xl, x3). " ray path
° i\reflector ,

,, ; turning point

1 '
I I

I

J - '_3

1
FIG. 4. Raypath in an FAI transversely isotropic, linear v(z) half-space, shown in

(Xl,X3) coordinates. The medium's surface, z = 0, is equivalent to x3 = vo/k. Also,
xi = 0 at the turning point. If this is a zero-offset raypath, then the line shown with
dip ¢ represents a hypothetical reflector; the solid portion of the raypath pertains to
a source-receiver location to the left of the reflector, and the dashed portion contains
a turning ray that would image the underside of the reflector from the right. Note
that the reflector is not perpendicular to the raypath except at the turning point.

anisotropic medium under consideration here. The procedure for computing T(yj) at

uniformly sampled midpoint distances yj is described in Larner (1992). There, it is

also shown that, for zero-offset rays in media of the type studied here, reflector dip ¢

at any point (xl,x3) is given by

tan ¢ = ---,x3 (3)
Xl

as indicated in Figure 4.

Estimation of erroneous migrated position (Tc, yc)

As illustrated in Figure 3, to find the erroneous migrated position (Tcj,ycj) at

which a point (Tj, yj) is imaged, we must find the diffraction curve that is associated

with the migration-velocity model and is tangent to the true diffraction curve T(y) at

(Tj,y j). Specifically, the erroneous diffraction curve should have slope pj at (Tj,y j),

where p/is computed as

Tj+-Tj_,
pj--

yj+l - Yi-1

This would be no problem if the migration process were based on the assumption that

the medium were homogeneous and isotropic. In that case, the migration diffraction
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curve would be a hyperbola, given by

4(yj - yej) 2

where V,, is the migration velocity. Differentiating this equation gives the slope at

4(y -
PJ - dyj V2Tj

or

pY2T
Yej = Yj 4 "

Also, the erroneously migrated time would be given by

Tes= TjcosOs,

where

sin0j = PsVm (4)
2 '

Assume instead that the data are migrated with an algorithm that honors vertical

variation in velocity, but is founded on the assumption that the subsurface medium

is isotropic (e.g., the phase-shift method of Gazdag [1978]). Then, the depth zs of

the scatterer that would give rise to the migration diffraction curve with slope PS

at (Tj, ys) is unknown at the outset, and hence, the migration velocity required to

generate that migration diffraction curve is initially unknown.

To find that scatterer depth and associated velocity, we match the slopes of the

true and migration diffraction curves at the point (Ti,ys), as follows. Let the erro-

neous, migration diffraction curve be given by t(x), where, referring to Figure 3,

z-y-ye (5)

is the migration distance. We assume that the velocity model used for migration is

isotropic, with velocity given by equation (1). That is, the velocity at any depth z

is identical to the velocity in the vertical direction in the true, transversely isotropic

medium. (Below, we shall modify this assumption somewhat.) For such a medium,

raypaths are circles, and, using Slotnick (1986; equation (17), p. 237), the two-way

time t between a surface point at midpoint y and a scatterer at depth (y_, z) is given

by

2 cosh_l ( k2x2 + v2 + v2(z) )t= 2ov(z)

_- 2 cosh-I (ax 2 + Z)
k

__ 2 cosh_ 177, (6)
k
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where

k2

2roy(z)

_ +
2roy(z)

r} =_ ax 2 + fl = cosh kt
2 (7)

Differentiating equation (6) gives the slope of the diffraction curve

dt 4ax

P = dz k _/ri2 - 1 (8)

Given measurements of Tj (= t) and pi, and assuming that the constants v0 and k in

equation (1) are known, we eliminate x from equations (7) and (8). The result is a

quadratic equation for v(zj), whose appropriate solution is

v(zj) = v0(cosh 8 + sinh_ix/1 - g:)
1 + g2 sinh 2 8 ' (9)

where

6 = kt--Ld
2

pjvo (10)g = -T"

Once v(zj) has been determined, the depth zj is obtained from equation (1), xj

from equation (8), and y_j from equation (5). Finally, the vertical reflection time to

the scatterer is given by

Z_ da 2 v(zj)
Tel = 2 = -log--. (11)

vo + ka k vo

Estimation of migration error

We have just seen how the erroneous migrated position (Tej, Yej) is computed. In

addition, the correct position (Tta, Ym) is known to be just the apex of the diffraction

curve (Tj, yj) obtained by ray tracing in the FAI transversely isotropic medium. At

first thought, it might seem from Figure 3 that the sought-after errors in migrated

time and position are just (Te - Tta) and (Ye - Ym), respectively (from here on, the

subscript j is dropped). While in a sense that is true, such measures will not suffice for

assessing errors in the positions of reflections that confront interpreters. Interpreters

rarely identify how individual points in data move when data are migrated. Instead,

10
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they generally focus attention on reflections that, if not planar, are often locally

approximately so.

Consider the sloping reflections in the schematic, migrated zero-offset section

shown in Figure 5a. In practice, the incorrectly migrated reflection through migrated

point (Te,ye) would be approximately parallel to the correctly migrated reflection

through (Tm,y,_), as depicted in the figure. The quantities Ay and AT shown in

the figure are the measures of error that would be apparent to the interpreter. Note

that given (Te, Yc) and (Tm,ym), Ay and AT are dependent on the slope Pm of the

migrated reflection. That is, one has to know, or estimate, pm in order to compute

Ay and AT. This fact becomes obvious when Figures 5a and 5b are compared. Fig-

ure 5b depicts a situation where the apex positions (Tc, Ye) and (:Fm,Ym) are identical

to those in Figure 5a, but the slopes of the reflections differ greatly in the two figures.

Figure 5a might pertain to a reflector dip that is less than 90 degrees, and Figure 5b

to one that exceeds 90 degrees. As a result, the migration errors Ay and AT differ

considerably in the two figures.

The dependence of Ay and AT on the slope Pm is readily seen in the geometry of

Figure 5. We have

Tc-Tru

Pm

=

So, these two interrelated measures of migration error can be fully estimated once

we know the slope Pm of the correctly migrated reflections. That slope is readily

computed from knowledge of v(z) and the reflector dip ¢. Such a reflector is depicted

in Figure 6. Also shown are vertical "paths" from two surface points separated by the

distance Ay down to the reflector. Migrated reflection time at the two surface points

is just the two-way time along these vertical paths. Locally, the migrated reflection

slope is taken as constant, given by

AT,, dTm

pm - A----y-_ dy

dTm dz ¢ dT,_
= dz dy = tan "-_z'

But, for any v(z) medium,

" daTm = 2 v(a---_'

SO

dTm 2

dz v(z)

11
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1 midpoint (y) • >

erroneously migrated
reflection

(rnvYm)Q

E /(Te, Ye)

m

true migratedreflection

a
DI

midpoint (y) -_

1
f : trua migrated

Pml : reflection
(r,,, :

• .A:,,**,,
E :

!

,.**** _ erroneously migrated

b reflection

FIG. 5. Schematic time sections showing the erroneously migrated (dashed) and
correctly migrated (solid) reflections through the erroneously and correctly imaged
positions (Te,y_) and (Tru,y,,,). The lateral error in imaged reflection position is Ay,
and the time error is AT. Figures 5a and 5b differ only in that the slope pm of the
migrated reflection differs in the two cases.

12
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Fm. 6. Schematic depth section showing a dipping reflector beneath a v(z) medium.
Migrated reflection times at two neighboring points on the surface are simply two-way
times along the vertical paths.

from which we get
2 tan ¢

P"-- v(z) " (13)

Note that this result, which is familiar for homogeneous media, holds for any v(z)

medium, even a generally anisotropic one. For our error studies, then, we have all

the information required to compute the migration errors Ay and AT once we can

associate any point (Tj, yj) along the true diffraction curve (for a scatterer at depth z)

with a reflector dip Cj. That dip is available from the ray-tracing result, equation (3).

WHAT FORM OF VELOCITY TO USE FOR MIGRATION

Reiterating, our estimates of migration error come from relating the true diffrac-

tion curve (i.e., that for an FAI transversely isotropic medium with linear v(z) de-

pendence) to the diffraction curve associated with the time-migration process used.

Almost universally in practice, that migration process is based on the assumption

that the subsurface is isotropic and vertically inhomogeneous• As is known, if the

medium were homogeneous and isotropic, no issue would arise as to which form of ve-

locity to use in the migration--migration velocity = root-mean-square (rms) velocity

= stacking velocity (assuming horizontal reflectors) = medium velocity. Equally well

known, for vertically inhomogeneous, isotropic media, stacking velocity (obtained by

13
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T 2 - X 2 analysis over a finite spreadlength X) exceeds rms velocity, approaching it

as the spreadlength approaches zero. When the medium is anisotropic (even when it

is homogeneous), the situation becomes more complex.

Levin (1979) has shown that, in a transversely isotropic medium with vertical a_xis

of symmetry, stacking velocity for p-wave reflections from horizontal interfaces differs

from the vertical velocity, even in the limit as spreadlength X approaches zero. The

limiting stacking velocity can be larger or smaller than the vertical velocity, depending

on ratios among the four pertinent elastic moduli. Moreover, Thomsen (1986) shows

that, for so-called weak anisotropy, the relationship between these two types of velocity

is totally independent of the ratio of horizontal-direction velocity to vertical-direction

velocity, VA/Vc--the most commonly quoted measure of degree of anisotropy. As we

shall see, this same discrepancy between zero-offset-limit stacking velocity and vertical

velocity in homogeneous media carries over into a difference between zero-offset-limit

stacking velocity and vertical rms velocity for inhomogeneous media.

Given this complexity, for studies of migration error and, indeed, when doing

migration in practice, which form of velocity should we use--vertical rms velocity,

stacking velocity based on finite spreadlength, or the limiting stacking velocity as

offset approaches zero?

Figure 7 shows computed lateral position errors Ay for reflector dip ranging from

0 to 120 degrees, for four different choices of migration velocity. Results are shown

for the shale-limestone and Cotton Valley shale tabulated in Table 1 (for all but the

shale-limestone, the quantities shown in Table 1 are computed from the parameters

of Thomsen [1986]). The media treated in Figure 7 have linear velocity increase with

depth, with vertical average velocity matching the Vc = _ values in Table 1 (e.g.,
the vertical average velocity for the inhomogeneous shale-limestone medium is 3306

m/s). For these tests, the reflector depth is 1500 m, and the gradient k = 0.6 s -x in

the vertical-velocity expression v(z) = vo + kz.

Not surprising, as seen in Figure 7, the position errors depend on the velocity

function used for the migration. For both the shale-limestone and Cotton Valley

shale, migration errors are smallest for the migration-velocity function v(z) that is

based on stacking velocity computed when the spreadlength is comparable to reflector

depth--a satisfying result since, in. practice, velocity is most often estimated in this

way. From the figure, the poorest choice of velocity function for migration is that

based on the vertical rms velocity, such as might be obtained from sonic-log data.

Perhaps most striking in the Figure 7 is the dramatically anomalous error behavior

for the Cotton Valley shale when the migration velocity is based on the rms velocity.

For the shale-limestone, errors for stacking velocity approach those for rms velocity

as the spreadlength shrinks to zero. Such is not the case for the Cotton Valley shale.

This behavior for migration error is consistent with Thomsen's (1986) predictions that

the small spreadlength stacking velocity for transversely isotropic media can depart

significantly from vertical velocity.

14
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FIG. 7. Position error Ay versus reflector dip for shale-limestone (top) and Cotton
Valley shale (bottom). For each, the reflector depth is D = 1500 m and the vertical

velocity gradient is k = 0.6 s -]. For the dashed curve, the v(z) velocity function
used for migration is derived from the vertical rms velocity to the reflector. For the

other three curves, the v(z) velocity function used for migration is derived from the
stacking velocity to a horizontal reflector at depth D, with different choices of ratio
of spreadlength to depth X/D used in the stacking-velocity computation.
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Medium VA/Vc V_taek/Vrms

X/D = 1.0 X/D = 0.5 X/D = 0.1 Thomsen

Berea sandstone 1.001 1.01 1.02 1.02 1.02

Shale-limestone 1.126 1.06 1.02 1.00 1.00

Cotton Valley shale 1.127 1.16 1.18 1.19 1.19

Pierre shale 1.015 1.0.4 1.05 1.06 1.06
_

Table 2. For the four media treated in this study, columns 3-5 list the ratio of stacking
velocity to vertical rms velocity for three values of the ratio of the spreadlength to
reflector depth. For comparison, column 6 contains the ratio of zero-offset stacking
velocity to rms velocity predicted by Thomsen (1986). Column 2 lists the ratio of
horizontal to vertical medium velocity--the most frequently quoted measure of degree
of anisotropy.

Table 2 gives a summary of the ratio V, tack/V,m_ measured in our studies with

transversely isotropic, linear v(z) media. For comparison are shown Thomsen's predic-

tions, which were derived for homogeneous transversely isotropic media. The equality

of values in columns 5 and 6 of the table shows that Thomsen's predictions extend to

inhomogeneous media. Moreover, also in agreement with Thomseu's predictions, note

the considerable differences between the values in column 6 for the shale-limestone

and Cotton Valley shale despite the fact that the ratios of horizontal to vertical ve-

locity for the two media (column 2) are nearly ident'cal.

In summary, based on the curves shown in Figure 7, along with those for the other

media studied (Berea sandstone and Pierre shale, not shown here), the migration-

velocity function that is derived from stacking velocity computed when the spread-

length is comparable to reflector depth yields the smallest of the errors. Thus, both

in accord with these results and mimicking common practice, the velocity function

that we use for all the migration-error tests below is based on stacking velocity (for

horizontal reflectors) with X/D = 1, and the migration action that we simulate fully

takes into account velocity variation with depth.

MIGRATION-ERROR RESULTS

Anisotropy versus inhomogeneity

Figure 8 shows position error Ay (top) and time error AT (bottom) as a function

of reflector dip ranging from 0 to 120 degrees for three different models, ali of which

have properties related to those of the transversely isotropic shale-limestone listed in

Table 1. For all three curves, the reflector depth is 1500 m. The solid gray curves

pertain to a homogeneous medium with just the properties listed in Table 1. The solid

black curves are for a v(z) = vo + kz medium with gradient k = 0.6 s -1, and with v0
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such that the vertical average velocity to tile reflector is 3306 m/s. Consider, first, just

the position errors. The gray curve exhibits large error for dips greater than about

60 degrees. Clearly, if we limited our analysis to just homogeneous media, we would

conclude th,_t failure to take anisotropy into account would lead to migration errors

that are intoicrably large for steep reflectors. However, we find that the combination

of anisotropy and velocity variation with depth (solid black curve) leads to much more

acceptable errors--even for dips as large as 120 degrees. As we shall see below, in

some sense the shale-limestone is the most extreme of the four types of media studied

here. For the other media, the errors, even for the homogeneous models, are not

so large as those shown here. In all cases, nevertheless, errors are smaller for the

inhomogeneous models than for their (unrealistic) homogeneous counterparts.

Now, consider the dotted curve in the top part of the figure. This curve pertains

to an isotropic medium with v(z) identical to the vertical-velocity function in the

transversely isotropic shale-limestone. If we were to migrate data from such a medium

with an algorithm that honors the v(z) behavior, such as the phase-shift method, of

Gazdag (1978) as extended for turning '-:Cavesby Hale, et al. (1992), then we would

get near-zero error for all dips. The dotted curve, however, simulates errors that

would arise if the data were migrated with a Kirchhoff-type time-migration algorithm

(Schneider, 1978) that siIaplistically uses a hyperbolic diffraction curve based on the

stacking velocity. Such a limited algorithm is known to yield unacceptable errors for

s_eep reflectors; the dotted curve, then, shows the size of error that is corrected when

a phase-shift-tyi)e migration approach is used.

Stated differently; the dotted curve gives the errors when inhomogeneity is not

properly treated in the migration of an inhomogeneous, isotropic medium, while the

gray curve gives the errors when anisotropy is not taken into account in the migration

of a homogeneous, transversely isotropic medium with the shale-limestone properties.

Significantly, for dip less than about 60 degrees, anisotropy is the considerably less
serious issue.

Comforting as it may be that errors are not so large when the medium is both

inhomogeneous and anisotropic, we should still note that the errors for the poorly mi-

grated isotropic medium are correctable (with, for example, a phase-shift algorithm),

whereas those for the anisotropic medium would require that we have adequate in-

formation _bout the four pertinent elastic moduli of the medium and that we use an

imaging algorithm that takes the anisotropy into account.

The time-error curves in the lower part of Figure 8 tell a comparable story, but

they also show what appears to be a disturbing instability near 90-degree dip. Ac-

tually, the behavior is not so troubling as it may appear. For a plane reflector near

vertical, a huge error in reflection time would not be noticeable to the interpreter

since the temporal period of migrated reflections becomes large without bounds as

dip approaches 90 degrees. Similarly, a seemingly large error Ay in lateral position

is inconsequential for small dip since the apparent wavelength in the lateral direction

becomes large as dip approaches zero. Whether it be time error or position error,
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FIG. 8. Position error Ay (top) and time error AT (bottom) versus reflecLor dip for
three different cases related to the transversely isotropic shale-limestone. Solid black:
The actual medium is inhomogeneous with v(z) = v0 + 0.6z and anisotropic; the
inhomogeneity is honored in the migration, and the plotted errors are due to neglect
of the anisotropy. Gray: The medium is the anisotropic shale-limestone, but now
velocity is constant; the plotted errors are again due to the neglect of anisotropy in
the migration. Dotted: Now the actual medium is isotropic but inhomogeneous, with
linear v(z), as above; the plotted errors are due to neglect of the inhomogeneity (e.g.,
migration is done with a Kirchhoff-type algorithm that uses hyperbolic diffraction
curves based upon stacking velocity).
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the interpreter will be concerned only with errors that are large relative to a period,

or wavelength, as the case may be. For that reason, henceforth, we shall study er-

rors normalized, as follows, so that they are expressed in terms of multiples of the

dominant period and wavelength in the migrated data.

Earlier, we saw that migration increases the slope of a reflection from p before

migration to pm = 2tandp/v(z), afterward. Migration also lowers frequencies such

that horizontal wavelength A is preserved. Consequently,

1

-_= fmPm= f p, (14)

where f is frequency in the unmigrated reflection wavelet, and fm is the frequency

after migration.

Subsequent position-error curves in this paper are plotted in terms of normalized

wlues given by
Ay

A_ = _., (15)

where, from equation (14),
1

= _ (16)
_d fdP

is the horizontal wavelength after migration, corresponding to some assumed domi-

nant frequency fd in the unmigrated reflections.

If we similarly normalize time errors such that

= AT
Td

Td = pm_d, (17)

from equation (12) it follows that, simply,

=

Note, that since pm < 0 for dips exceeding 90 degrees, rd as defined in equation (17)

is also negative for those large dips. This unusual choice, rather than defining Tdto be

always positive, is a convenience that ensures that the normalized time error is contin-

uous at 90-degree dip--indeed that it is just the negative of the normalized position

error. This being the case, henceforth we show ali migration errors as normalized

position errors A_.

Figure 9 shows the normalized position error A_ corresponding to the error Ay

in Figure 8. For the normalization here and in subsequent figures, the dominant

frequency is taken as 30 Hz.

While the errors for the homogeneous shale-limestone can be very large for steep

reflectors (more than ten wavelengths for dips exceeding about 60 degrees), errors
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for the inhomogeneous counterpart are about two wavelengths for vertical reflectors,

and just four wavelengths at 120-degree dip. Again, these errors are much smaller

than the errors for isotropic media that are corrected when a phase-shift algorithm,

as opposed to one that involves hyperbolic diffractions, is used for migration.

A
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•- / ........ _ _ ; I
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a. 0 50 100
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FIG. 9. Same as the top part of Figure 8 except that the position errors are now the
normalized quantities Ag, expressed in multiples of lateral wavelengths corresponding
to unmigrated reflections with dominant frequency 30 ttz.

Dependence on velocity gradient

With reflector depth fixed at 1500 m and the vertical average velocity at 3306 m/s,

Figure 10 shows the dependence of normalized position errors on the velocity gradient,

k, for the shale-limestone, and Figure 11 shows the normalized position errors for the

four media listed in Table 1. For ali four media, the failure to take anisotropy into

account in migration is a less serious issue when the medium is inhomogeneous than

if it were homogeneous, but the difference is truly significant only for the shale-
limestone.

Not surprising, errors in most cases tend to be larger for larger reflector dip. Of

the four media, the Berea sandstone is most weakly anisotropic, and gives errors that

are least influenced by the inhomogeneity. The shale-limestone is anomalous in that

the position errors for larger dips are positive, whereas errors for the other media

are negative. Thus, steep reflectors in the shale-limestone are under-migrated when

anisotropy is not taken into account in the migration algorithm, while those in the

other media are o_er-migrated. Intuition might lead one to predict that the presence

of anisotropy would cause data to be under-migrated since isotropy-based migration

algorithms fail to adapt to the higher propagation speeds that arise for waves that
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FIG. 10. Normalized position errors (at 30 Hz) as a function of reflector dip for

the shale-limestone, with velocity gradients k=O.O, 0.2, 0.6, and 1.2 s -1. Ali models
have the same vertical average velocity, 3306 m/s, and the reflector depth is 1500 m
in all cases. In all cases the medium is inhomogeneous and anisotropic, and the
inhomogeneity is honored in the migration. The plotted errors are due to neglect
of the anisotropy in the migration. Each curve shows the errors for the indicated
velocity gradient.
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FIG. 11. Normalized position error (at 30 Hz) as a function of reflector dip for the

four media listed in Table 1, with velocity gradients k=O.O, 0.2, 0.6, and 1.2 s -1. The
reflector depth is 1500 m in ali cases.
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turn close to horizontal. As often happens, intuition fails when it comes to anisotropy.

The diametrically opposing behavior of errors for the shale-limestone and the Cotton

Valley shale is particularly striking, again because the ratm of horizontal to vertical

velocity, VA/Vc, is almost identical in the two media.

Based on the migration errors in Figure 11, we would infer that the shale-limestone

has the greatest degree of anisotropy, followed by the Pierre shale and Cotton Valley

shale, and finally the Berea sandstone---not quite the order that would be predicted

on the basis of VA/Vc. Note that errors for the Cotton Valley shale are somewhat

less dependent on the velocity gradient than are those for the Pierre shale (the curve

for gradient k = 1.2 s-1 in Pierre shale is not shown).

While linear v(z) is generally not expected for the earth's subsurface, to the extent

that linear v(z) holds, k = 0.6 s-1 is a somewhat representative value: k = 1.2 s-1 is

on the high side, and k -- [}.2s-1 is clearly too small to yield the velocity increases with

depth that are normally encountered. Thus, for all four media the "representative"

case, k = 0.6 s-1, exhibits errors no larger than three or four wavelengths (and

periods) even for dips as large as 120 degrees.

Dependence on reflector depth and on stacking velocity

Focusing our attention on the shale-limestone medium, Figure 12 s}_ows the de-

pendence of migration error on medium velocity and reflector depth. As throughout

this paper, the ratios of the four velocity quantities characterizing the transverse

isotropy are independent of depth and match those for the velocities listed in Table

1. In generating the three curves shown in the top portion of the figure, the vertical

velocity at the surface v0 was set so as to yield vertical average velocities of 3000 m/s,

2?.00 m/s, and 1500 m/s at the reflector depth. For linear v(z) media characterized by

equation (1), the relationship between surface velocity v0 and vertical average velocity

Va,g(z) is given by

Va_g(z) = f_ ga k z (18)da --"

Zoo+olog(1
So, given kz and Va,,o, we have

kz

vo = k, ' (19)
exp (v--_) -1

In Figure 12, the solid black curve pertains to parameters that are close to those

that generated the solid black curve in Figure 10. The dependence of errors on

average velocity and on depth exhibit much similarity. The errors tend to become

less positive with either increasing reflector depth or decreasing velocity. Inspection of

, Figure 12 suggests that the shape of an error curve is independent of either the depth

or average velocity so long as the rati9 of the two is held constant and the reference

frequency (30 Hz in all these tests) is fixed. Since this ratio is proportional to migrated

reflection time, we infer that the shape and, indeed, the sign of the error curve for
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FIG. 12. Velocity dependence (top) and depth dependence (bottom) of normalized
position errors as a function of reflector dip for FAI shale-limestone. Ali models
have the "representative" velocity gradient, k - 0.6 s-1. Depth is held constant
(1500 m) for the velocity tests on the top, and vertical average velocity is held constant
(3000 m/s) for the depth tests on the bottom.
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the shale-limestone is governed by the migrated reflection time. Thus depending on

the migrated reflection time the data may be either over-migrated or under-migrated

when anisotropy is not taken into account in the migration process. The Appendix

summarizes a proof that, with the gradient k and reference frequency held fixed, the

normalized migration error indeed depends on reflector depth and average velocity

only through their ratio, or equivalently, migrated reflection time.

Thus, inferences made in the preceding section about the relative importance

of anisotropy for the four different media must be reviewed in the light that error

behavior for any given medium can vary considerably with migrated reflection time.

The complexity of the migration-error behavior for the different media emerges in

Figure 13.

5
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FIG. 13. Normalized position errors as a function of reflector dip for the four media
listed in Table 1, for three values of migrated reflection time 2D/V,_ 9. Ali models

have the same velocity gradient, k = 0.6 s -1.

For all the models treated in Figure 13, the velocity gradient is 0.6 s -1. The three

error curves shown for each of the four media pertain to average velocity and reflector

depth chosen so that the migrated reflection time is 0.67, 1.0, and 2.0 s.

While it is satisfying to find that the migration errors depend only on migrated

reflection time, that dependence, nevertheless, can be significant. For the shale-
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limestone medium, for example, ignoring anisotropy leads to under-migration for

shallow reflectors, but to over-migration of deeper reflectors. Moreover, at migrated

times later than about 1 s, reflections in the Cotton Valley shale become significantly

over-migrated. Even the "relatively isotropic" Berea sandstone exhibits a growing

over-migration of the later reflections. If we were to rank degree of anisotropy on the

basis of migration error for reflections at or later than 2 s, migrated time, we would

say that the Cotton Valley shale is the most anisotropic, followed by the _ i_rre shale,

Berea sandstone, and then the shale-limestone-- a different ordering than what we

inferred above, when all the reflectors werc at the same depth and the vertical average

velocities were given in Table 1.

In practice, the trend toward increasing normali_.ed position error with increasing

migrated reflection time, seen in Figure 13, is ameliorated by the tendency for domi-

nant frequency to decrease with increasing reflection time. Thus, while unnormalized

position (and time) errors certainly increase with increasing reflection migrated time,

given the tendency for dominant frequency to decrease with increasing reflection time,

the normalized errors should exhibit less dependence on migrated reflection time than

that shown in Figure 13.

DISCUSSION AND CONCLUSION

Failure to take anisotropy into account in migration leads to position en'ors whose

magnitude and sign both depend not only on the various elastic moduli of the sub-

surface medium, but also on migrated reflection time. These migration errors cannot

at all be predicted on the basis of the ratio, VA/Vc, of the horizontal to vertical ve-

locity. (Recall that this ratio is nearly identical for the shale-limestone and Cotton

Valley shale, which exhibit greatly differing error behavior in Figure 13.) In fact,

any attempt to determine which of several media is "most" anisotropic and which is

"least" is doomed to frustration. The answer is "it depends on the situation."

If, for example, our problem is one of converting from time to depth based on ve-

locity analysis, then for an elliptically anisotropic medium, the measure of importance

would be the ratio VA/Vc. However, elliptical anistropy is a poor assumption for p-

wave behavior, and, as Thomsen (1986) has pointed out, this ratio has no influence

whatsoever on the relationship between vertical velocity and the velocity estimated

from conventional velocity analysis. Alternatively, if our problem is one of assessing

migration error, then our ranking of degree of anisotropy might be based on size of

error--and even then, the answer would depend on migrated reflection time.

Of course the correct thing to do is migrate with an algorithm that takes aniso-

tropy into account. VerWest (1989) discussed migration in elliptically anisotropic

media, and Uren, Gardner, and McDonald (1990) have shown results on model-tank

• data migrated with a frequency-wavenumber-domain approach that takes rather gen-

eral anisotropy into account. However, it is not algorithmic limitations that prevent

the use, in practice, of migration approaches that understand how to treat aniso-
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tropy. Rather, our information about the anisotropic characteristics of the subsur-

face is woefully inadequate. We have seen that the most readily accessible measure

of anisotropy--the ratio of stacking velocity to vertical velocity--does not provide

sufficient information about the pertinent elastic moduli. In fact, the elastic modulus

F is not at all obtainable from surface seismic data alone. While we do not have a

good means of quantifying anisotropic behavior either routinely or otherwise in prac-

tice, studies suggest that anisotropy is the rule, and the degree of anisotropy is often
considerable.

The limitations go deeper than this, however. Consider, for example, the many

assumptions about the medium made for the analysis in this paper. The models

studied are all (1) transversely isotropic, with (2) vertical axis of symmetry, with (3)

velocity variation in depth only, with (4) constant gradient, and (5) all ratios among

the four pertinent elastic moduli are independent of depth. While this combination

of assumptions enabled efficient ray-trace calculation of the diffraction times required

in the analysis, we can give little justification of the appropriateness of these models

other than: (1) they provide more generality, and perhaps more realism, than do

isotropic models and (2) there is little justification for models of anisotropy that

differ substantially from those used here. (One possibile alternative to the FAI media

considered here would be media in which, more true to observation, the ratio of

vertical s-wave velocity to vertical p-wave velocity changes slowly wit'. depth. Such

media, however, may not lend itself to such straightforward ray tracing.)

Clearly, the studies here show that models of anisotropy are inadequate in describ-

ing migration error when inhomogeneity is not also talcen into account. Also, while

the subsurface is, of course, not a constant-gradient medium, the range of gradients

studied here do provide examples of highly inhomogeneous media.

Ratcliff, et al. (1992) and Hale, et al. (1992) have presented examples from the

Gulf of Mexico of stunning, apparently quite accurate, migrations of overhanging

salt-dome flanks and of thin salt intrusions (100-m wide with more than 1-km vertical

relief) into faults surrounding salt domes. How could such features be imaged so well

given that the migration algorithms did not take anisotropy into account? While

the errors for some of the test cases here become sizeable for dips approaching and

exceeding 90 degrees, results here also suggest that if the subsurface in the Gulf of

Mexico is not "strongly anisotropic" in some appropriate sense, migration errors due

to the combination of anisotropy and inhomogeneity may be no more than two or

three wavelengths even for dips beyond 90 degrees. While two or three wavelengths is

not insignificant to explorationists, the common practice of trial-and-error selection

of migration velocity can readily accommodate errors of that size.

The error analysis in this study was limited to that for post-stack migration.

Larner (1992) similarly treats characteristics of dip-moveout for this same type of

anisotropic, inhomogeneous media. The extension of the methodology here to pre-

stack time migration is the subject of a future paper.
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Final comment: While numerical estimation of migration error of the sort done

here is no substitute for actual application of migration algorithms on synthetic and

field data, such actual migration demonstrations would have been totally impractical

and inadequate for attempts to understand the dependence of migration error on the

range of model parameters considered here.
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APPENDIX:

DEPENDENCE OF MIGRATION ERROR ON MIGRATED

REFLECTION TIME

Consider an FAI, transversely isotropic, linear v(z) medium, defined by the ratios

among the four pertinent elastic moduli and by the value of vertical velocity gradient

k, as given in equation (1). Following Shearer and Chapman (1988), Lamer (1992)

shows that all ravpaths within such a medium are simply scaled versions of one

another, when represented in the xi, x3 coordinate system described in reference to

Figure (4). Now suppose that a scatterer is located at depth Z and that the average

vertical velocity between the surface and the scatterer is Va_a(Z), so that the migrated

time Tm (i.e., vertical time from the surface to scatterer) is given by

2Z

Tm = Va,g(Z)" (A-l)

For linear v(z) media, equation (18) relates the average vertical velocity V_a(Z ) to

the velocity at the surface v0 and to that at depth Z, v(Z). Combining equations (18)

and (A- 1) gives

v(Z)vo=exp(-_). (A-2)

Now, consider two different media with different velocities at the surface and with

scatterers at different depths, but both with the same ratios among the elastic moduli,

the same gradient k, and the same migrated time Tm to the scatterer. Equation (A-2)

shows that the ratio of velocity at the scatterer to velocity at the surface is the same

for the two media. It then follows, from equation (1), that

v(Z) - v0 k Z

V0 V0

is also the same for the two media. That is, v0 is proportional to the scatterer depth

Z. Also, from equation (A-2), the vertical velocity at the scatterer v(Z) is likewise

proportional to Z between the two media. In fact, if the ratio of scatterer depths

Z2/Z1 for the two media is m, it follows from equation (1) that for any pair of depths

z2/zl - m in the two media, the ratio of vertical velocities v(z2)/v(zl) = m, as well.

Finally, this proportionality holds for the velocities in any direction through the FAI

property that the ratios among the elastic moduli are independent of depth.

Thus, the two media described here are simply scaled versions of one another.

Consequently, the shape of the raypath from a dipping reflector at depth Z2 in medium

2 is identical to that from a reflector with the same dip at depth Z1 in medium 1.

Being inversely proportional to velocity, the ray parameters for the two raypaths thus

satisfy

Pl,__22_1 Z1
- (h-3)

pl,1 m Z2'
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Also, tile lateral migration distances Ayl and Ay2 for reflections from the two

reflectors are in the same proportion as the scatterer depths in the two media. That

is,

Ay2 Z2

Ayl Zt

This relationship holds not only for the correct migration distances, but also

for the erroneous migration distances that arise when isotropy is assumed for the

migration (isotropy linear v(z) media is a special case of the FAI media considered

here). Therefore the differences between the true and erroneous migration distances,

the position errors, must be in the same proportion.

Finally, if we are considering the same reference frequency for computation of

the normalized position errors in the two media, it follows from equation (14) and

equation (A-3) that the normalized position errors are the same for the two media.

31






