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Migration of common-shot gathers

Moshe Reshef* and Dan Kosloff*

ABSTRACT

Three depth migration methods which operate on

common-shot data are presented. The first migration

method maps digitized horizons from the X- T domain

to the X -2 domain. Because this method is based on

ray tracing, its computation time is short; it is suggested

for iterative velocity analysis. The other two migration

methods map the entire common-shot gather into a

depth section. The common-shot migration requires cal­

culation of the arrival time of the direct wave from the

source to all the depth points, and is done through a

direct solution of the eikonal equation. All three meth­

ods are suitable for areas with both lateral and vertical

velocity variation.

INTRODUCTION

It has long been recognized that conventional common­

depth-point (COP) processing is inadequate for areas that are

geologically complex. In COP processing migration is pet­

formed at a late stage, after the data have been biased and

affected by normal moveout (NMO) correction and COP

stacking. Therefore, time migration (Claerbout and Doherty,

1972; Schneider, 1978; Stolt, 1978) and true depth migration

(Judson et al., 1980; Lamer et al., 1981; Kosloff and Baysal,

1983) will both operate incorrectly on data collected over

areas with large lateral velocity variations and on data with

steep dip events.

Some of the stacking effects can be corrected by prestack

partial migration, or dip moveout, as suggested by a number

of authors (Yilmaz and Claerbout, 1980; Bolondi et al., 1982;

Hale, 1984). However, these methods still cannot perform ac­

curately in regions that have complex velocity variations.

Depth migration of common-shot gathers is an alternative

to COP processing and can give correct imaging and better

preserve dip and amplitude information. Because a common­

shot gather is collected from a single physical experiment, the

subsequent data processing can be implemented with fewer

restrictions and approximations. In particular, there are no

limitations on the velocity variation and the type of geometry

that can be used. The need for an accurate migration that will

avoid the COP stacking artifacts is recognized and has in­

duced several authors to suggest methods for prestack migra­

tion and common-shot migration (Phinney and Jurdy, 1979;

Jain and Wern, 1980; Schultz and Sherwood, 1980).

This study presents three methods for migrating common­

shot data.

The first method is a ray-tracing technique which maps

digitized events from the time section into a depth section.

This migration is analogous to methods introduced for migra­

tion of stacked sections (May and Covey, 1981), except this

migration satisfies the imaging condition that requires a ray­

tracing calculation from both the source location and the

receiver position.

The second method is a fulI wave-equation migration simi­

lar to the poststack depth migration in Kosloff and Baysal

(1983), except for a differeht imaging condition. Instead of

using the amplitude values at time zero, as in poststack migra­

tion, the depth section now consists of the amplitudes at the

time of arrival of the direct wave from the source. The direct

arrival time is calculated through direct solution of the eikon­

al equation.

The third method uses source and receiver pairs. For each

pair, the eikonal equation is solved twice: once for the source,

then for the receiver. The output depth section consists of the

sum of contributions of all the pairs. Since the source is

common to all the receivers, the method requires solving the

eikonal equation for the source position and each of the

receiver locations. The following sections describe the three

migration methods. Also presented are synthetic examples

which demonstrate important features of the methods.

RAY-TRACING MIGRATION

In this method selected horizons are digitized from the shot

gather, and projected downward by ray tracing. The following

derivation is for an isovelocity layered structure, although the

method can be generalized to a continuously varying velocity

field in each layer. The angle of emergence of each ray at a

given receiver is determined from the ray parameter, calcu­

lated from the traveltime curve. As described in Figure 1, the

selected traveltime curve was digitized and a cubic spline pass­

ing through the digitized points was calculated. The ray pa­

rameter td'I'[dx in Figure 1) was determined from the deriva-
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FIG. 2. Determination of a depth point on the first reflector.

The method presented involves only simple ray-tracing cal­

culations and is therefore relatively fast. Consequently, one

important application is an iterative determination of the in­

terval velocities. Such an implementation is given in the fol­

lowing two examples. The first example, shown in Figure 7,

presents results of migrating a horizon with an error of ±10

percent in interval velocity values (some raypaths are given for

reference). It is assumed in this example that the velocity is

known for shot 1 (Sl); a velocity determination for shot 2 (S2)

is required. As seen in the example, the error in velocity deter­

mination will occur as a sharp discontinuity in the reflector.

Using the correct velocity will result in a continuous reflector.
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where t2 is the two-way traveltime measured at receiver R.

Figure 4 shows some raypaths for a shot and a set of receiv­

ers over a three-layered model with velocities of 2 000, 2 500,

and 3 000 m/s, respectively. A synthetic time section was cal-:

culated for a set of 90 receivers with spacing of 30 m. The time

increment was 0.001 s (Figure 5). Results of the ray-tracing

migration along with the input depth horizons are shown in

Figure 6. As expected, the area of coverage narrows with

depth and the density of the reconstructed depth points is not

uniform (compare with the raypaths in Figure 4). To over­

come the coverage problem, we can construct the first horizon

from a large set of partially overlapping common-shot gathers,

continue to the second horizon for all the shots, and then

continue for all the remaining horizons. The density of the

reconstructed depth points will depend upon the amount of

overlap between the processed shot gathers.

tives of the splines at each receiver position X = R. Each

source-receiver pair contributes one depth point for each pro­

jected horizon. The assembly of these points defines the reflec­

tor. Calculation of a depth point on the first horizon is shown

in Figure 2. Knowing the velocity (Vl)' the angle &, and the

two-way traveltime (td detected at R, the slope ~ can be deter­

mined by simple trigonometry. The slope & was calculated

from the ray parameter. The depth point O(x, z) is the inter­

section between the lines OR and OS. The reflector slope at

this point is perpendicular to the bisector of the angle 2v.

After the first horizon is determined, the migration proceeds

to the next reflector. As shown in Figure 3, ray tracing is

started from the receiver (R) with the angle of emergence &

which was calculated from (dT/dxh (see Figure 1). Knowing

the velocity V2 , we can cross the first reflector at point 0 and

send an infinite ray (linear line) into the lower half-space. To

find the second reflector's point F, a search is performed

among different rays from the source location (two of these

paths are marked 1 and 2 in Figure 3). Point F is the point

which satisfies the imaging condition
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FIG. 1. Determination of the ray parameter, FIG. 3. Determination of a depth point on the second reflector.
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When there is no knowledge of the velocity, two opposite

sides of two partially overlapped spreads (Figure 8a) can be

used. Results of migrating the horizon with different interval

velocity values are shown in Figure 8b. It is evident that a

continuous reflector will result only when mapping both gath­

ers into depth with the correct velocity.

WAVE-EQUATION MIGRATION

Wave-equation migration is based on downward continu­

ation of the acoustic wave equation, where the downward

continuation process is almost identical to that used for depth

migration of stacked sections (Kostoff and Baysal, 1983). The

main difference is in the imaging condition. Assuming that a

reflector exists whenever the direct wave from the source and

the reflected wave are time-coincident (Claerbout, 1976), the

depth section will consist of the wave amplitudes at the given

depth location at the time of the arrival of the direct wave. Let

P(x, Z = 0, t) denote the recorded common-shot gather at the

Earth's surface. The final section will then consist of P(X, Z,

td) , where td is the arrival time of the direct wave from the

source to the depth points (X, Z). When the calculation is in

r------------------x
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FIG. 4. Raypaths geometry for the three-layered model. Veloci­
ties are 2 000, 2 500, and 3 000 m/s for the upper, middle, and
lower regions, respectively.
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FIG. 6. Ray-tracing migration, results for the three-layered
model (solid lines indicate the initial layers).
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FIG. 5. Synthetic time section for the three-layered model.
FIG. 7. Velocity analysis technique, the velocity model for the

first shot is known.
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where X, Z are Cartesian coordinates, 0) is the frequency, C(X,

Z) is the acoustic velocity, and P(X, Z, (0) is the transformed

pressure field. Equation (3) is different from the equation pre­

sented by Baysal et al. (1984) in that it is a nonreflecting

equation only in the Z direction.

The solution of this equation is obtained through standard

integration techniques for solving ordinary differential equa­

tions. We adopted a highly accurate, efficient method devel­

oped in Tal-Ezer (1984). A brief description and imple­

mentation of the method to the solution of equation (3) is

given in the Appendix.

The input for common-shot migration consists of the pres­

sure field on the Earth's surface, P(X, Z = 0, t); the acoustic

velocity, C(X, Z); and the direct arrival time, td(X, Z). In

addition, values of apjaZ(X, Z = 0, t) on the earth's surface

need to be generated as in Kosloff and Baysal (1983). The

output yields the depth section P(X, Z, td ) . Figure 9 shows

results of the migration after using the input time section

shown in Figure 5 with the velocity model shown in Figure 4.

Figure 9 shows that the migration was able to map all events

to their correct positions.

For wave amplitudes, the use of the eikonal equation pre­

cludes completely accurate values. Possibly, the values of the

reflection coefficients of interfaces can be extracted by using

other methods for the direct arrivals (Temme, 1984), but this

point is beyond the scope of this work. Since common-shot

migration is based on single physical experiments, we expect

more amplitude information to be presented than is CDP

stacking.

(3)
a

az
(2)

FIG. 8a. Raypaths of two partially overlapped shot gathers.

where the summation is over the seismic frequency band. For

migration based on primary arrivals only, a version of the

nonreflecting wave equation introduced in Baysal et al. (1984)

is most suitable for downward continuation. The basic equa­

tion for depth stepping is

the space-frequency domain, the final depth section is given by
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FIG. 8b. Velocity analysis technique, unknown velocities.
FIG. 9. Wave-equation migration, results for the three-layered

model.
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where T is the traveltime and C(X, Z) is the acoustic velocity

(e.g., Stavrodis, 1972).

For numerical integration we write the equation explicitly

as

As mentioned, the common-shot migration requires the

function td(X, Z), the arrival time of the direct wave from the

source, as an input" Therefore a special calculation is needed

to determine this function. In principle, td can be calculated by

ray tracing from the source to all depth points in the numeri­

cal mesh. However this ray tracing can be time-consuming;

hence we chose to calculate td by direct solution of the eikonal

equation.

In a two-dimensional acoustic medium, the eikonal equa­

tion is

limB-contours

FIG. lOa. Eikonal equation solution for the increasing velocity
model.

(4)
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CALCULATION OF THE DIRECT WAVE

ARRIVAL TIME

In the solution scheme, oT(X, Z)/OX is calculated by a finite­

difference approximation based on the values T(X, Z) at the

given horizon Z. Stepping in depth is carried out by a fourth­

order Runga-Kutta method. For initialization of the solution

values, the values of T(X, Z = 0) at the surface need to be

specified; they can be calculated directly in the case of a uni­

form surface velocity or otherwise by ray tracing. During the

integration careful attention must be given to the possibility of

discontinuous time fronts, as in the case of postcritical angles

on an interface. Two examples of the eikonal solution are

shown in Figures lOa and lOb. The source is at the upper

right corner and time contours as a function of X-Z are

shown for an increasing velocity model (Figure lOa) and a

low-velocity region model (Figure lOb). The traveltime func­

tion for the discontinuity points along the low-to-high velocity

boundaries was. calculated by ray tracing. These values can

replace the values that were obtained by the Runge-Kutta

method. Notice that the integration scheme eliminates the up­

going waves from the solution, so in the case of a strongly

inhomogeneous medium, generalized ray-tracing methods

should be used.

li.i-mleu!!

FIG. lOb. Eikonal equation solution for the low-velocity
region model.

TWO-EIKONAL METHOD

The ability to solve the eikonal equation raises the possi­

bility of a common-shot migration based exclusively on the

eikonal equation. In this method, the final depth section is

progressively calculated from contributions from shot-receiver

pairs, requiring solution of the eikonal equation with source

positions at the shot location and also at all receiver locations.

For illustration, we consider migration of a synthetic exam­

ple containing one event corresponding to a reflection in a

uniform velocity medium. We first consider the contribution

from one source-receiver pair. For a given depth point (X, Z),

a reflection event from the source S to the receiver R occurs

only at a time t*. This time is equal to the time td for a wave

to propagate from the source to the given point (X, Z), plus

the time t, for the reflected wave to propagate from the point

to the receiver. Consequently, the contribution to the ampli­

tude at the point (X, Z) from the source-receiver pair will be

equal to the amplitude of the receiver trace at time t* = td + t,

(Figure 11). The amplitude of the final section at the point (X,
FIG. 11. Contribution from a source-receiver pair to a depth
point.
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Z) will be the sum of the contributions from all shot-receiver

pairs. The values of td(X , Z) and tr(X, Z) are obtained by

solving the eikonal equation for the shot and the receiver

positions, respectively.

For the example with a single layer, the resulting trace at

the receiver R will contain a single event at time t*. For the

source-receiver pair, the locus of all points for which td(X,

Z) + tr(X, Z) = t* defines one ellipse in depth. The actual

depth position of the layer is given by the envelope of all

ellipses obtained from shot-receiver pairs. For the upper event

shown in Figure 5, consecutive construction of the final sec­

tion, first with one shot-receiver pair and then with two (4 and

90 pairs, respectively) is shown in Figures 12a-12d. So far,

construction of a depth section from a single shot gather has

been considered. However, it can be expected that stacking of

final depth sections from several shot gathers can bring about

signal-to-noise enhancements similar to those obtained in

COP stacking. For demonstration, the model shown in Figure

4 is reconsidered . Synthetic time sections were calculated for

different shot locations with random noise added (one of the

shot gathers is shown in Figure 13). The two-eikonal method

was used for the migration. Results of the migration for depth

stacking, with shots at every eight receiver positions and every

fourth receiver position , are shown in Figure 14a and 14b,

respectively. The reflectors, as the figures show, are well recon­

structed even in the example where every eighth shot gather is

stacked. Noise is almost entirely eliminated by stacking when

the shots are at every fourth receiver location.

CONCLUSIONS

We presented three methods for common-shot migration,

all designed for migration of data from regions with severe

vertical and lateral velocity variation . Extensive testing of the
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FIG. 12. (a) Depth section for a single-layer model, contribution from one source-receiver pair. (b) Depth section for a
single-layer model, contribution from two source-receiver pairs . (c) Depth section for a single-layer model, contribution
from four source-receiver pairs. (d) Depth section for a single-layer model, contribution from 90 source-receiver pairs.
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methods on different types of field data is required to evaluate

their effectiveness. Implement ation of methods with field data

will requ ire an effective technique for velocity analysis. This

study suggests use of ray-tra cing migration for an iterative

velocity analysis. However, such migration requires identifi­

cation of events on the shot gather , a task which is not always

possible. Additional velocity determination techniques are

therefore required .

Signal-to-noise improvement may be achieved by stacking

of depth-migrated common -shot gathers . The optimal amount

of overlap needs to be determined from practical experience.

The attractive feature of this type of stack ing is that it is done

late in the data processing. Thus , this stacking will not bias

results against steeply dipping events, as CDP processing

often does.

III

FIG. 13. Syntheti c time section for the three-layered model
with random noise added.

x

1.

2 .

z
[ i l l

(a)

FIG. 14a. Two-eikonal method, result from depth stacking
with shot located at every eighth receiver position.

Comparing the two migrat ion methods that operate on the

entire time section, it appears that wave-equation migration

will preserve amplitude values better , while the two-eikonal

migration is preferable for data collected with unequally

spaced receivers. This feature may gain added importance

when the migration methods are extended to three dimen­

sions.
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APPENDIX

SOLUTION METHOD FOR WAVE-EQUATION MIGRATION

331

The numerical solution of equation (A-l) is carried out in

depth levels. The formal solution at depth Z + DZ is calcu­

lated from the solution at depth Z by

In this appendix we briefly outline the integration method

used for solving equation (3). A more complete discussion of

this method was given in Tal Ezer (1984) and Kosloff et al.

(1985).

The basic system to be solved ill depth is V
Z

+
DZ

= eBDZV
z, (A-2)

(A-l)

where X, Z are Cartesian coordinates, (0 is the frequency

C(X, Z) is the acoustic velocity, and P(X, Z, (0) is the trans­

formed pressure field. After spatial discretization in the hori­

zontal direction, equation (3) becomes a set of 2Nx coupled

ordinary differential equations with the unknown (P)j(oP2
/

oZ)j,j = 1, ... , N x , where N x denotes the number of seismic

traces.

The system to be solved is therefore of the form

av
az = (B)V,

where V is the vector of length 2Nx of P and (cx.oP/aZ), and

B is the discretized version of

after elimination of evanescent energy (Kosloff and Baysal,

1983). The evaluation of B in this study was carried out by the

Fourier method as in Kosloff and Baysal (1983).

where e
BDZ is the exponential operator (Tal Ezer, 1984). This

relation is evaluated by a Chebychev expansion according to

with Uo = 1 and UK = 2 for K > 1. The Kth order Bessel

function is denoted by JK(R). For the migration, R = uo/
cm1n ' with Cmin denoting the lowest velocity at depth Z.

Chebychev polynomials of the operator tJ.Z/R . Bare denoted

by QK' and are generated recursively according to

(A-4)

(A-5)

and

QKe: B)VZ = [2 ~ BQK_l(tJ.: B) + QK-2(~ B)JVz

(A-6)

(Tal Ezer, 1984). The value m at which the expansion (A-3) is

truncated is determined when the value of JK (R) becomes

sufficientlysmall (Kosioff et aI., 1985).
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