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Migration velocity analysis from locally coherent events in 2-D
laterally heterogeneous media, Part I: Theoretical aspects

Hervé Chauris∗, Mark S. Noble‡, Gilles Lambaré‡, and Pascal Podvin‡

ABSTRACT
We present a new method based on migration ve-

locity analysis (MVA) to estimate 2-D velocity mod-
els from seismic reflection data with no assumption
on reflector geometry or the background velocity field.
Classical approaches using picking on common image
gathers (CIGs) must consider continuous events over
the whole panel. This interpretive step may be difficult—
particularly for applications on real data sets. We pro-
pose to overcome the limiting factor by considering lo-
cally coherent events. A locally coherent event can be
defined whenever the imaged reflectivity locally shows
lateral coherency at some location in the image cube.

In the prestack depth-migrated volume obtained for
an a priori velocity model, locally coherent events are
picked automatically, without interpretation, and are
characterized by their positions and slopes (tangent to
the event). Even a single locally coherent event has in-
formation on the unknown velocity model, carried by

the value of the slope measured in the CIG. The velocity
is estimated by minimizing these slopes.

We first introduce the cost function and explain its
physical meaning. The theoretical developments lead to
two equivalent expressions of the cost function: one for-
mulated in the depth-migrated domain on locally coher-
ent events in CIGs and the other in the time domain. We
thus establish direct links between different methods de-
voted to velocity estimation: migration velocity analysis
using locally coherent events and slope tomography.

We finally explain how to compute the gradient of the
cost function using paraxial ray tracing to update the
velocity model. Our method provides smooth, inverted
velocity models consistent with Kirchhoff-type migra-
tion schemes and requires neither the introduction of
interfaces nor the interpretation of continuous events.
As for most automatic velocity analysis methods, care-
ful preprocessing must be applied to remove coherent
noise such as multiples.

INTRODUCTION

We address the problem of 2-D estimation of the background
or velocity macromodel from seismic reflection data by migra-
tion velocity analysis (MVA). This approach of velocity estima-
tion basically uses the flatness of events in common image gath-
ers (CIGs) as a criterion for velocity quality (Al-Yahya, 1989)
(Figure 1). Most approaches that do not require picking or
any assumption on the velocity field require a global optimiza-
tion process to minimize or maximize a cost function defined
on CIGs (Stoffa, 1989; Jin and Madariaga, 1993, 1994; Jervis
et al., 1996; Docherty et al., 1997; Varela et al., 1998; Jin and
Beydoun, 2000). No feasible 3-D extensions exist at the mo-
ment for data sets of realistic size. Only two methods seem
to converge with a local approach: migration-based travel-
time inversion (Clément, 1994; Plessix, 1996) and differential
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semblance optimization (Symes and Carazzone, 1991; Symes,
1993, 1998; Chauris and Noble, 1998, 2001). But even in two
dimensions, these approaches remain expensive and are prob-
ably not suitable for 3-D applications.

When picking is introduced in the depth-migrated domain,
approaches become tractable in three dimensions. Many de-
velopments have been proposed. However, the updating for-
mulas to invert the velocity model are generally based on at
least one of the three following simplifying assumptions: later-
ally invariant velocity, small offset, or horizontal reflectors. The
earliest MVA methods are based on all these simplifications
(Al-Yahya, 1989). Many improvements have been proposed,
but all require some simplifying assumptions (Deregowski,
1990; Cox and Wapenaar, 1992; Lee and Zhang, 1992; Lafond
and Levander, 1993; Liu and Bleistein, 1995; Wang et al., 1995;
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Audebert et al., 1997; Woodward et al., 1998). In most cases,
picking is introduced to select the maximum of the stack power
along predefined (offset, depth) curves. Only Liu’s (1997) ap-
proach, valid for any 2-D velocity field, relates the perturba-
tions of the reflector depth to the perturbations of the velocity
model. In his method, the macromodel is described by veloci-
ties and interfaces.

For most approaches proposed in the literature, picking is
performed only on continuous events that must be tracked con-
tinuously over a large offset range, as illustrated in Figure 2,

FIG. 1. Definition and use of a CIG. For 2-D data, the migrated
volume is obtained by prestack depth migration of each time
common-offset section with the same given velocity model. A
CIG is a section in the cube, defined by a fixed position on
the surface. If the exact velocity model is used for migration,
then the CIG should present flat events, independent of the
structure of the reflectors in the background. Events in the
data are indeed replaced after migration in their exact location
in the depth domain, which does not depend on acquisition
parameters such as offset.

FIG. 2. Continuous event over all offsets, indicated by the white
solid line. Such events are selected for inversion in the classical
approaches, as in Liu (1997), where depth is picked at some
sparse locations along each selected event.

and attached to a particular reflector in the model. This in-
terpretive step is certainly the main limiting factor of present
methods. It is impossible to follow continuous events in a CIG
in many cases, e.g., when the tested velocity model is far from
exact or in the presence of noise [see examples of a synthetic
case (Figure 3) and a real case (Figure 4)].

We present a new approach valid for any 2-D velocity field
and based on picking locally coherent events (Figure 5) in the
depth-migrated domain. As a basic definition, a locally coher-
ent event is defined when the reflectivity displays lateral co-
herency over a few neighboring traces.

Introducing locally coherent events is motivated by two rea-
sons. From a practical point of view, it is far easier to pick
many locally coherent events than to follow continuous events
(Figures 3 and 4). From a theoretical point of view, velocity
inversion does not require continuous events because a sin-
gle locally coherent event bears information on the unknown
velocity model. The initial idea is that the slope of a single lo-
cally coherent event in a CIG provides a constraint on the un-
known velocity field. It should be null when the velocity field is
correct.

We propose estimating the velocity field by flattening a set
of locally coherent events treated as uncorrelated events (i.e.,
not attached to a particular reflector). Because our approach
does not tie picked events to interfaces, the macromodel can
be parameterized with smooth, nonblocky basis functions. A
blocky parameterization could naturally be considered but is
not required.

For our purpose, the main difficulty is to design a way to
update the velocity model. We are thus interested in the per-
turbations of the depth of an event but more generally want to
learn how the event is distorted (displacement and rotation)
when velocity changes.

We first define a locally coherent event in a depth-migrated
domain. We then explain why energy focuses in the depth-
migrated domain (i.e., where it comes from) and derive a gen-
eral link between the time and depth domains. These relations
help specify the cost function. We finally show how to update
the velocity model from the information contained in these
locally coherent events using paraxial ray tracing.

Our only assumption is that the data contain only primary re-
flections/diffractions. In particular, we assume that careful pre-
processing has removed multiples, refracted waves, and other
coherent noise. This is the main limitation of the method be-
cause it is entirely automatic, including the picking step. But
this difficulty is not specific to our method and is encountered
by most velocity analysis processes. Apart from this assump-
tion, we want our theory to be valid for any 2-D velocity field
and an arbitrary distribution of reflectors in the subsurface,
provided it is correctly sampled in the data.

DEFINING A LOCALLY COHERENT EVENT IN THE
PRESTACK DEPTH-MIGRATED DOMAIN

Let us define what we call a locally coherent event in the
depth-migrated volume. For a 2-D data set, migration is per-
formed in a given velocity model, producing, in the depth do-
main, CIGs and common-offset gathers (COGs) (Figure 1).
Local coherence is sought simultaneously around a given loca-
tion (x, h) in the two sections (x, z) and (h, z) of the migrated
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volume (x, z, h), where h is the half-offset. A locally coher-
ent picked event is thus characterized by five parameters
(x, z, ξ, ϕ, h) (Figure 5), where (x, z) is the event location in
depth, ξ is its apparent geological migrated dip (as measured
in the COG), and ϕ is its residual slope (as measured in the
CIG). By definition, for each locally coherent event migrated
in a given slowness 2-D model u,

tanϕ = ∂z

∂h

∣∣∣∣
x,u

, (1)

tan ξ = ∂z

∂x

∣∣∣∣
h,u

. (2)

For the exact velocity model, the CIGs should present flat
events (Al-Yahya, 1989). Mathematically, ϕ should be zero af-
ter convergence so that we use a least-squares misfit function
of the form

J[u] = 1
2

∑
picks

(w tanϕ)2, (3)

where w is a weighting coefficient still to be defined. After
convergence, (x, z) represents the actual location of the reflec-
tion/diffraction point in depth and ξ is the real geologic dip
of the corresponding reflector. Angle ϕ is basically needed to
determine the cost function, whereas ξ is needed to compute
its gradient, as explained below.

We want to give evidence that the definition of our cost func-
tion has potentially good properties in terms of process opti-
mization. Through the generic cost function [equation (3)], our
method can be directly related with differential semblance op-
timization (DSO) (Symes and Carazzone, 1991; Symes, 1993,
1998; Chauris and Noble, 1998; Chauris and Noble, 2001). The
associated differential semblance function JDS also quantifies
the flatness of seismic events in CIGs and is based on horizontal
derivatives of these panels, i.e.,

JDS[u] = 1
2

∑
selected x

∫∫
dz dh

[
∂R

∂h
(x, z, h, u)

]2

, (4)

FIG. 3. (a) Even on synthetic data, it is not always easy to follow continuous events over all offsets in a CIG. (b, c) Two interpretations
are proposed, indicated by the white solid curve. This effect appears, for example, when the migration velocity is not correct, even
when the data only contain primary reflections/diffractions (this case) because they were generated by ray+Born approximation
(Lambaré et al., 1996).

where R(x, z, h, u) is the value (amplitude) of the prestack
depth-migrated image at point (x, z, h) migrated with the slow-
ness model u (Figure 1).

Let us consider a zoom on a migrated CIG (as in Figure 6b)
with small dimensions but containing a nonzero reflectivity.
The amplitude of the central trace h0 inside the rectangle may
be written as Aω[k(z− z0)], where ω is a wavelet displayed
around depth z0, A is the amplitude of the reflectivity, and k
is a stretching factor. Because we assume that the box is small
enough, the other traces can be deduced from the central trace
by translation as follows:

R(x, z, h, u) ∼ Aω[k(z− z0 + p · (h− h0))], (5)

FIG. 4. CIG obtained on a real data set. It is clearly easier to
pick many events with local coherency (for example, around
depths 2100 or 2500 m) than to follow continuous events over
all offsets, as needed in many approaches.
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where p= tanϕ is the slope defining how the depth of the
locally coherent event changes with offset. The derivative with
respect to the offset gives

∂R(x, z, h, u)
∂h

∣∣∣∣
x,z,u

∼ p · k Aω′[k(z− z0 + p · (h− h0))].

(6)
From that expression, it becomes clear that minimizing JDS is
equivalent to minimizing the residual slope p= tanϕ in the
CIG as in equation (3).

Symes (1999) demonstrates in the 1-D case that the JDS cost
function has a unique minimum. Thus, a gradient-type algo-
rithm may be applied to converge to the (unique) solution. This
property has not yet been proven in two (or three) dimensions.
However, successful applications of DSO in two dimensions
with synthetic and real data sets (Chauris and Noble, 2001)
give practical evidence that the JDS cost function remains well
behaved.

Because of the formal analogy between JDS and our
generic cost function, we consider a reasonable conjecture that
our problem can converge with a gradient-type optimization
process.

In the following section, we demonstrate that, by establishing
a link between locally coherent events in depth and time, we
can choose the weighting function w in equation (3) such that
the gradient of the cost function can be explicitly computed
with the help of paraxial ray tracing done in the tested velocity
model, whatever its complexity.

COST FUNCTION

This section is devoted to the appropriate development of
the expression of the cost function. We need to understand
why energy focuses in the depth-migrated domain. For this
purpose, we derive the relationship between the two picked
angles in the depth domain and the slopes in the time data
(traveltime derivatives in the seismograms). For simplicity and
clarity, all calculations are developed in the common-shot do-
main and are then extended to the common-offset case, which
generally is preferred for applications. Because mathematical

FIG. 5. The five values characterizing a locally coherent event in the 2-D prestack depth-migrated domain (x, z, ξ, ϕ, h). Migration
at common offset is performed to obtain the COG (left) and CIG (right), where picking is performed simultaneously around the
same location (x, h). The half-aperture angle θ is defined such that the two rays reach the given offset 2h on the surface, starting
symmetrically around the normal of the dip.

computations are rather involved, we only mention the crucial
points and the final results and try to provide a physical un-
derstanding of the different steps. More details are presented
in Appendix A. To derive these calculations, we must under-
stand which parameters must be kept fixed and which can be
variable.

Focusing energy in the depth-migrated domain
(common-shot case)

To better understand the information contained in the resid-
ual slope tanϕ measured in the CIG (Figure 5), we have to
know why energy focuses at a certain position (x, z, h) in the
depth-migrated domain. For that purpose, we need to estab-
lish the relationship between the time and depth domains in a
general 2-D case (Figure 6).

To introduce the formalism we need to derive these rela-
tions, we temporarily switch to another domain. The energy
focused in the image cube results from focusing the seismic
events recorded in the data cube (seismograms) (s, r, t∗), where
sand r denote shot and receiver positions and t∗ is the recording
time.

FIG. 6. Definition of (a) time and (b) depth-migrated domains.
The aim is (1) to understand why a locally coherent event fo-
cuses in the depth domain and then (2) to minimize the residual
slope in the CIG.
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In this cube, it is possible to define, by analogy, locally coher-
ent events in time. Such an event is a wave packet displaying lo-
cal coherency near the location (s, r, t∗) in the cube. Once more,
defining the local coherency amounts to measuring slopes—for
example, the derivatives

p∗s =
∂t∗

∂s

∣∣∣∣
r

, (7)

p∗r =
∂t∗

∂r

∣∣∣∣
s

(8)

of the event traveltime with respect to shot and receiver lo-
cations (Figure 7). This event is described by five parame-
ters (s, r, t∗, p∗s , p∗r ), analogous to (x, h, z, ϕ, ξ). Parameters
describing the event in time are objective, i.e., experimental.
On the contrary, (x, h, z, ϕ, ξ) describing the counterpart in the
image cube depend on the velocity model used for migration.
In the following equations, we emphasize objective parameters
with a star (e.g., p∗s).

Image focusing is best understood in the framework of
Kirchhoff migration (Schneider, 1978; Bleistein et al., 1987;
Audebert et al., 1997). We first cover the case of common-
shot migration. Consider a locally coherent event picked in
the common-shot gather for source location s. In Figure 7, the
event is characterized by the parameters (r, t∗, p∗r ). The param-
eter p∗s is not accessible; it can only be measured using several
shot gathers simultaneously. In common-shot migration, this
event focuses somewhere along the diffraction curve, namely,
the isochron (Figure 8a), implicitly defined by

ts(s, x, z, u)+ tr (x, z, r, u) = t∗(s, r ), (9)

where ts and tr are (model-dependent) one-way traveltimes
from s and r to the image point (x, z). Energy builds up con-
structively at one location, provided it also belongs to the enve-

FIG. 7. Locally coherent event in the time domain. In the data,
the slope is the tangent of a locally coherent reflector, measured
here in a (time) common-shot gather, thus providing a slope at
the receiver position.

lope of the isochron (i.e., its derivative with respect to receiver
position). The two focusing equations for the selected event
(r, t∗, p∗r ) thus read

ts(s, x, z, u)+ tr (x, z, r, u) = t∗(s, r ), (10)

∂tr
∂r

∣∣∣∣
x,z,u

= ∂t∗

∂r

∣∣∣∣
s

= p∗r . (11)

We now must understand what (∂tr /∂r )|x,z,u stands for in terms
of modeling. At location (x, z) on the isochron, consider the ray
shot toward the receiver in the velocity model used for migra-
tion (Figure 8b). This ray reaches the surface at location r and
at time tr by construction. The second focusing equation (11)
states that the event in time will focus in depth at location (x, z)
such that the ray emerges at the surface with a slowness vector
pr =∇t whose horizontal component prx exactly matches the
slopes p∗r of the event in the data (Figure 8b), i.e.,

prx = p∗r . (12)

In this construction, the second slope p∗s of the event in the data
cube has not been considered. Conversely, the migrated event
location and dip (x, z, ξ) are fixed by the focusing equations,
but tanϕ in the CIG remains underdetermined (because we
only migrated one shot gather).

Since angle ϕ is measured in a CIG (i.e., at constant x),
we must understand how the focusing equations change for

FIG. 8. Focusing a locally coherent event in the depth-migrated
domain. (a) The isochron is defined in the depth domain by a
constant two-way traveltime for fixed velocity-model, source,
and receiver positions. (b) For migration at a constant source
position, the ray is entirely defined by the position of the re-
ceiver and the slope on the surface. This horizontal component
of the slowness vector corresponds to the slope in the time data
(see text for explanations) as defined in Figure 7. The locally
coherent event in the time domain focuses in the depth domain
at the intersection of the isochron and the ray.
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different s values at constant x position and constant velocity
model u. All other parameters (z, s, r ) in the focusing equations
must be allowed to vary in the general case. Remember that
prx = prx (x, z, r, u) and p∗r = p∗r (s, r ). By differentiating the fo-
cusing equations (10) and (12), we obtain the following system:(

∂ts
∂z

∣∣∣∣
s,x,u

+ ∂tr
∂z

∣∣∣∣
x,r,u

)
δz+ ∂ts

∂s

∣∣∣∣
x,z,u

δs+ ∂tr
∂r

∣∣∣∣
x,z,u

δr

= p∗sδs+ p∗r δr, (13)

∂prx

∂z

∣∣∣∣
r,x,u

δz+ 0 · δs+ ∂prx

∂r

∣∣∣∣
x,z,u

δr = ∂p∗r
∂s

∣∣∣∣
r

δs+ ∂p∗r
∂r

∣∣∣∣
s

δr.

(14)

Using equation (11), the last term on the left side of equa-
tion (13) is balanced by the second term on the right side, pro-
viding a new system of linear equations:(

∂ts
∂z

∣∣∣∣
s,x,u

+ ∂tr
∂z

∣∣∣∣
r,x,u

)
δz+ psxδs= p∗sδs, (15)

∂prx

∂z

∣∣∣∣
r,x,u

δz+ ∂prx

∂r

∣∣∣∣
x,z,u

δr = ∂p∗r
∂s

∣∣∣∣
r

δs+ ∂p∗r
∂r

∣∣∣∣
s

δr, (16)

where

∂p∗r
∂s

∣∣∣∣
r

= ∂2t∗

∂s2

∣∣∣∣
r

and
∂p∗r
∂r

∣∣∣∣
s

= ∂2t∗

∂r 2

∣∣∣∣
s

are directly linked to the curvature of the locally coherent event
in the time domain. Fortunately, they do not appear in the
expression needed for z(s) that we are interested in. Indeed,
the definition from equation (1) leads to

tanϕ = ∂z

∂s

∣∣∣∣
x,u

= p∗s − psx

∂ts
∂z

∣∣∣∣
s,x,u

+ ∂tr
∂z

∣∣∣∣
r,x,u

. (17)

The denominator is computed in Appendix A, and we finally
obtain

tanϕ = p∗s − psx

2u cos θ cos ξ
, (18)

where u is the value of the slowness at the scattering point
(x, z). We define α= 2u cos θ cos ξ . This term equals zero for
vertical dips and direct (transmitted) arrivals that are generally
not taken into account during migration. It is related to the
stretching factor occurring in migration (Tygel et al., 1994).

To summarize, we obtain two equations valid for any 2-D
velocity field and any reflector geometry:

p∗r − prx = 0, (19)

p∗s − psx = α tanϕ. (20)

Thus, p∗s = psx for the exact velocity field (i.e., tan ϕ= 0). Veloc-
ity estimation is equivalent to adjusting the horizontal slowness
provided by ray tracing to the actual slopes of the seismic event
in the (time) data space. This important point is discussed fur-
ther below. In spite of their very simple form, equations (19)
and (20) have been established for the general case. In partic-
ular, no hypothesis on the curvature of the event is necessary.

Common-offset case

The approach is very similar to the common-shot case.
We define the half-offset h= (s− r )/2 and the midpoint
m= (s+ r )/2. For simplicity, we introduce the slope compo-
nents in the relevant (h,m) domain,

phx = psx − prx

2
, (21)

pmx = psx + prx

2
, (22)

and the equivalent equations for the slopes measured in the
time data,

p∗h =
p∗s − p∗r

2
, (23)

p∗m =
p∗s + p∗r

2
. (24)

During the migration and for each offset the summation is
performed over all midpoints m. By replacing the roles of s
and r by the variables h and m, we obtain equations similar to
the common-shot case:

ts(s, x, z, u)+ tr (x, z, r, u) = t∗(h,m), (25)

∂(ts + tr )
∂m

∣∣∣∣
x,z,h,u

= ∂t∗

∂m

∣∣∣∣
h

. (26)

Equations (25) and (26) indicate where energy focuses in the
depth-migrated domain. To obtain the relation equivalent to
equation (18), we must differentiate equations (25) and (26)
with respect to z, h, and m for constant x and u. Using exactly
the same approach as developed for the common-shot case, we
finally obtain

p∗m − pmx = 0, (27)

p∗h − phx = α

2
tanϕ, (28)

or, equivalently,

(p∗s − psx)+ (p∗r − prx) = 0, (29)

(p∗s − psx)− (p∗r − prx) = α tanϕ. (30)

Focusing relation (29) states that the sum of the two horizontal
slowness components (at source and receiver) is constant and
independent of the velocity model used for migration. Con-
versely, the difference between the slopes is directly related to
the slope measured in the CIG [equation (30)].

Cost functions

To more easily compute the gradient of the cost function, we
introducew=α= 2u cos θ cos ξ as the weighting term to apply
in equation (3). Our cost function thus reads in the common-
shot case

J[u] = 1
2

∑
picks

[α tanϕ]2 (31)

= 1
2

∑
picks

(psx − p∗s)2. (32)
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To calculate the cost function in a given velocity model, let’s
use the picked data in the migrated domain and relation (31).
Equation (32) is only used to compute the gradient of the cost
function because p∗s does not depend on the velocity chosen
for migration.

The common-offset case is very similar to shot profile migra-
tion. Once again, a convenient cost function can be designed
from relation (28):

J[u] = 1
2

∑
picks

[α tanϕ]2 (33)

= 2
∑
picks

(p∗h − phx)2 = 2
∑
picks

(psx − p∗s)2

= 2
∑
picks

(prx − p∗r )2, (34)

where the formulations in equation (34) are obtained using
equations (29) and (30).

Whatever the migration scheme (common shot or common
offset), the criterion compares computed slopes and observed
slopes, although no slope is picked in the time data. We now
illustrate this point in the following section.

Time versus depth domain for velocity estimation

Different but equivalent expressions have been obtained for
the cost function for both the common-shot case with equa-
tions (31) and (32) and the common-offset case with equa-
tions (33) and (34). Minimizing residual slopes in the CIGs
or fitting computed slopes to observed slopes in the time data
is equivalent. These relations establish direct links between
different methods devoted to velocity estimation, namely, our
method, working in the depth-migrated domain on locally co-
herent events (Stork, 1992; Wang et al., 1995; Woodward et al.,
1998), and slope tomography methods, also using locally coher-
ent events but in the time domain (Sword, 1987; Biondi, 1992;
Billette and Lambaré, 1998).

With slope tomography methods, velocity is estimated from
traveltimes and slopes picked in the time domain on locally
coherent events. With stereotomography, a general slope to-
mography method (Billette and Lambaré, 1998), the model is
described by the velocity model itself and scattering points.
These points are characterized by their position, dip, and cor-
responding aperture angles (Figure 9). For each picked event,
data (two-way traveltime, positions, and slopes at the source
and receiver) are calculated by shooting rays from the scat-
tering point to the surface. The associated cost function is the
difference between observed and calculated data. It can be ex-
pressed as a weighted summation:

Jstereo[u] = 1
2

∑
picks

[
wsx (sx − s∗)2 + wsz(sz− 0)2

+wrx (rx − r ∗)2 + wrz(rz− 0)2

+wps(psx− p∗s)2 + wpr (prx − p∗r )2

+wt (ts + tr − t∗)2]. (35)

The inversion consists of simultaneously retrieving the ray
segments (x, z, θ, ξ, ts, tr ) and the slowness model u. In MVA,

the positions are obtained automatically by migration (even
for a wrong velocity model). Thus, the total traveltime and
the positions of the source and receiver associated with a ray
segment match by construction. For common-shot migration,
we established in equation (12) that prx = p∗r . The cost function
thus becomes

Jstereo[u] = 1
2

∑
picks

wps(psx − p∗s)2, (36)

as proposed in equation (32).
These relations let us unify totally different approaches for

velocity estimation: MVA in the depth domain and slope to-
mography in the time domain. However, their implementa-
tions are rather different. For example, the coverage of the
picked events in the depth domain is more uniform for the
MVA method; picking should be easier because it is done in
the migrated domain. Since we have defined in detail the cost
function that we adopt here and have shown the physical mean-
ing of the residual slope in the CIG, we can now explain how
to update the velocity model.

COST FUNCTION GRADIENT

An easy way to obtain the gradient of the cost function could
be to compute it by finite differences, requiring at least as many
migrations as the number of parameters describing the velocity
model. However, this solution is in efficient. We therefore de-
velop an explicit formulation of the expression of the gradient
valid for any 2-D velocity fields. Like the cost function, we first
present the common-shot case.

FIG. 9. In stereotomography (Billette and Lambaré, 1998), a
general slope tomography method, the observed data con-
sist of (s∗, r ∗, t∗, p∗s , p∗r ), picked on seismograms. The model
is given by the velocity model itself and the positions of the
scattering points, defined by (x, z, ts, tr , θ, ξ). The cost func-
tion compares the characterized values at the extremities of
the two ray segments from the scattering points to the data.
In our method, the positions of the ray segment are automat-
ically retrieved by migration, i.e., sx = s∗, sz= 0, rx = r ∗, rz= 0,
ts+ tr = t∗. For migration at a common source, we also have
prx = p∗r . Only the slope at the source position may differ from
the observed slope, providing a simpler cost function given by
equation (36).
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Common-shot case

The computation is performed for a given velocity model,
which can be far from the exact velocity field. We have to under-
stand how to relate the perturbations of the positions (x, z) and
angles (ξ, θ, ϕ) to perturbations of the velocity model. Since p∗s
is independent of the tested velocity field, the gradient of the
cost function can be formulated as

∂ J[u]
∂u
=
∑
picks

(psx − p∗s)
∂psx

∂u

∣∣∣∣
s,r,t,prx

(37)

= −
∑
picks

α tanϕ
∂psx

∂u

∣∣∣∣
s,r,t,prx

. (38)

Equation (38) is obtained using equation (20). In a given ve-
locity model, we have to understand how an elementary part
of the image—namely, a locally coherent event in the depth
domain—is distorted when a perturbation of the slowness field
is added to the model (Figure 10). All variables in the depth
domain—position x, depth z, and scattering angles θs= ξ + θ
and θr = ξ − θ—depend on the tested velocity model. The
perturbations δx, δz, δθs, and δθr are constrained by two con-
ditions at the surface, which are illustrated in Figure 10:

1) The locally coherent event is the same in the time domain,
meaning that the rays shot toward the surface reach ex-
actly the same source and the same receiver with the same
double traveltime: ds= 0, dr = 0, and dt= d(ts+ tr )= 0.

2) The ray toward the receiver reaches the surface with ex-
actly the same horizontal slowness vector: dprx = 0 [fo-
cusing condition (12)]. Indeed, p∗s does not depend on
the velocity model chosen for migration and thus prx is
constant.

In a given velocity model, the perturbations of the final con-
ditions ds, dr , dpsx, dprx , and dt can be expressed using the

FIG. 10. Position of the migrated locally coherent events in two
slightly different velocity models in a common-shot migration.
All variables defined in depth (x, z, ξ , and θ) change. Their
perturbations δx, δz, δξ , and δθ are constrained by (1) constant
position of the source and the receiver, constant double travel-
time (fixed locally coherent event in the time domain), and (2)
constant slope at the receiver position at the surface (common
shot migration scheme). See text for more details.

paraxial ray theory (Farra and Madariaga, 1987) from the per-
turbations of initial conditions δx, δz, δθs, and δθr and the slow-
ness field δu as explained in Appendix B. Solving this linear
system, we finally obtain for the Fréchet derivatives

∂psx

∂u

∣∣∣∣
s,r,t,prx

=
det

∣∣∣∣∂(psx, s, r, t, prx)
∂(u, x, z, θs, θr )

∣∣∣∣
det

∣∣∣∣ ∂(s, r, t, prx)
∂(x, z, θs, θr )

∣∣∣∣
u

∣∣∣∣ . (39)

Conditions where the gradient of the cost function becomes
infinite are discussed later.

Common-offset case

Analogous to the development of the cost function, the
common-offset case is very similar to the common-shot ap-
proach. The gradient of the cost function with respect to veloc-
ity can be expressed as

∂ J[u]
∂u
= −1

2

∑
picks

α tanϕ
∂phx

∂u

∣∣∣∣
h,m,t,pmx

. (40)

The gradient is obtained as before with two conditions, giving
δθs, δθr , δx, and δz (Figure 11):

1) The locally coherent event is the same in the time domain,
meaning that the rays toward the surface reach exactly the
same offset and the same midpoint with the same double
traveltime: dh= 0, dm= 0, and dt= 0 (or, equivalently,
ds= 0, dr = 0, and dt= 0).

2) The summation of the horizontal slowness vectors at
the surface is constant: dpsx+ dprx = 2dpmx= 0 [focusing
condition (27)].

The first two conditions are the same as in the common-
shot case (same locally coherent event in the time data).

FIG. 11. Position of the migrated locally coherent events in
two slightly different velocity models in a common-offset mi-
gration. The perturbations δx, δz, δξ , and δθ must be evaluated
to estimate the gradient of the cost function. They are con-
strained by (1) fixed position of the source and the receiver,
constant double traveltime (same locally coherent event in the
time domain), and (2) constant summation of the slopes at the
source and receiver positions at the surface (common-offset
migration scheme). More details are provided in the text.
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We finally obtain, after computations (see Appendix B for
details),

∂phx

∂u

∣∣∣∣
h,m,t,pmx

=
det

∣∣∣∣∂(phx, h,m, t, pmx)
∂(u, x, z, ξ, θ)

∣∣∣∣
det

∣∣∣∣∂(h,m, t, pmx)
∂(x, z, ξ, θ)

∣∣∣∣
u

∣∣∣∣ . (41)

The expression of the gradient of the cost function is a combina-
tion of first-order paraxial quantities, which can be calculated
using the classical ray theory (Farra and Madariaga, 1987).

Imaging condition

The final expression of the gradient of the cost function is
given by equation (39) for migration at a common source. Here
we examine the validity of this expression; in other words, in
which cases the denominator is not equal to 0:

det
∣∣∣∣ ∂(s, r, t, prx)
∂(x, z, θs, θr )

∣∣∣∣
u

∣∣∣∣ 6= 0. (42)

An equation similar to equation (42) has been interpreted by
Xu et al. (1999) as an imaging condition required to compute
and use CIGs. Indeed, common-shot migration is not always
possible for complex velocity fields with caustics (Nolan and
Symes, 1996; ten Kroode and Smit, 1997; Xu et al., 1999).
Spurious effects may be observed, such as nonflat events in
CIGs when the exact velocity field has been used for migration
(Nolan and Symes, 1996; Xu et al., 2001). The approach devel-
oped by Xu et al. (1999) may be extended easily to a wrong
migration velocity model, leading to the same conclusion:
A CIG is artifact free when relation (42) is verified. This
property is known as the imaging condition.

In conclusion, we encounter the same theoretical difficulties
to obtain an artifact-free CIG or to compute the gradient of the
cost function. We may encounter some difficulties in very com-
plicated velocity models with triplicated rayfields. In this case,
other migration schemes must be considered, such as common
angle migration (Xu et al., 1999).

THE OPTIMIZATION SEQUENCE

Now we move from theoretical aspects to a more practical
point of view. The velocity is estimated from the picked events
by looping over the following steps.

First, we prestack depth migrate the 2-D data set to compute
some selected CIGs and COGs (Figure 1). The velocity model
used for migration is the tested velocity field.

Second, we pick locally coherent events [i.e., ξ(x, z, u) and
ϕ(x, z, u)] in the computed CIGs and COGs. If ϕ 6= 0 for all
picked events, the velocity model used for migration should
be updated. For a given migrated trace, picking is performed
by computing local slant stacks (Schultz and Claerbout, 1978).
The slant stack, weighted by a Hamming window centered on
the trace, measures at every depth the local coherence simul-
taneously in the two panels: CIG and COG (Figure 5). Picking
automatically selects depths and associated angles where the
local coherency is maximum. An equivalent tool for the time
domain has been developed by Billette et al. (1998) and auto-
mated. Working in the depth-migrated domain has the advan-

tage that the S/N ratio is generally higher than in the time data,
even after migration with a wrong velocity model (Adler, 1996).

Finally, we ray trace from all picked events up to the surface
to compute the gradient of the cost function and to update
the velocity field. This step involves searching for two specular
rays starting symmetrically with respect to the normal to the dip
defined by ξ and reaching the surface with the offset associated
to the picked event. As directly adapted, paraxial ray theory
(C̆ervený et al., 1977; Farra and Madariaga, 1987) is used to
compute the needed expressions—in particular, the Fréchet
derivatives [equation (41)].

Refer to Chauris et al. (2002) for applications on 2-D syn-
thetic and real data sets, including more details on practical
aspects and implementation.

CONCLUSIONS

Our method is related directly to MVA and is valid for any
2-D velocity fields. We have shown how to use information
from locally coherent events picked in the migrated cube. These
events are treated independently up front, i.e., not attached to
a specific reflector. If extra information such as correlations
between these events is introduced, the inversion should be
better constrained. Our method provides a smooth velocity
model consistent with Kirchhoff-type migration schemes, but
the theory could be developed equivalently for blocky models.
The method could be called tomographic migration velocity
analysis or stereotomography in depth because it links two dif-
ferent velocity estimation methods working in different space,
time, and depth domains.

We know that the occurrence of coherent noise such as mul-
tiples or refracted waves remains a problem because it could
bias the velocity inversion, but this aspect is not specific to our
method. The details of the practical aspects are developed in
Chauris et al. (2002) that also includes applications to 2-D syn-
thetic and real data sets, showing the efficiency of the method.
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Lambaré, G., Lucio, P. S., and Hanyga, A., 1996, Two-dimensional mul-
tivalued traveltime and amplitude maps by uniform sampling of ray
field: Geophys. J. Internat., 125, 584–598.

Lee, W., and Zhang, L., 1992, Residual shot profile migration:
Geophysics, 57, 815–822.

Liu, Z., 1997, An analytical approach to migration velocity analysis:
Geophysics, 62, 1238–1249.

Liu, Z., and Bleistein, N., 1995, Migration velocity analysis: Theory and
an iterative algorithm: Geophysics, 60, 142–153.

Nolan, C., and Symes, W., 1996, Imaging in complex velocities with
general acquisition geometry: The Rice Inversion Project Technical
Report TR96-02.
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APPENDIX A

COST FUNCTION

We explain how to derive equation (18) from equation (17)
to express the residual slope with local quantities. As illustrated
(Figure A-1), we have

FIG. A-1. For a given source position and a velocity model, the
derivative of the traveltime from the source to the scattering
point with respect of the final depth depends on the arrival
angle and the value of the slowness field.

∂ts
∂z

∣∣∣∣
s,x,u

= u(x, z) cos θs, (A-1)

∂tr
∂z

∣∣∣∣
x,r,u

= u(x, z) cos θr , (A-2)

where u(x, z) is the slowness value at the scattering point.
Using

cos θs + cos θr = 2 cos θ cos ξ, (A-3)

we obtain

∂ts
∂z

∣∣∣∣
s,x,u

+ ∂tr
∂z

∣∣∣∣
r,x,u

= 2u(x, z) cos θ cos ξ = α, (A-4)

which is needed for the equivalent equations (18) and (20).
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APPENDIX B

GRADIENT COMPUTATION

We now compute the gradient of the cost function using the
paraxial ray theory, first for the common-shot case and then
for the common-offset case. As expressed in equation (38), the
gradient of the cost function in common-shot migration is given
by

∂ J[u]
∂u
= 2

∑
picks

u cos θ cos ξ tanϕ
∂psx

∂u

∣∣∣∣
s,r,t,prx

, (B-1)

The perturbations δs, δr , δpsx, and δprx of the final conditions on
surface are linked through the paraxial ray theory to the initial
perturbations δz, δθs, and δθr at the scattering point and to the
slowness field δu. They can be expressed along the rays using
the propagator matrix (Aki and Richards, 1980) as follows:

δs

δsz

δpsx

δpsz

 = Ps(τ, τ0)


δx

δz

δpsx0

δpsz0

+ Ps(τ, τ0)

×
∫ τ

τ0

dτ ′P−1
s (τ ′, τ0)

(
0

∇uδu

)
, (B-2)

δr

δrz

δprx

δprz

 = Pr (τ, τ0)


δx

δz

δprx0

δprz0

+ Pr (τ, τ0)

×
∫ τ

τ0

dτ ′P−1
r (τ ′, τ0)

(
0

∇uδu

)
, (B-3)

where δsz and δrz should equal zero as the ray segments end
at the surface. The perturbation δθs is linked to the perturba-
tions of the slowness vectors δpsx0 and δpsz0 at the scattering
point by psx0= u sin θs and psz0= u cos θs. In practice, we used
a second-order Runge–Kutta method to integrate the rays and
the perturbations. The parameter along the ray is τ (Burridge,
1976; Virieux, 1996), given by dτ = vdσ (where σ is the curvi-
linear abscissa). The propagator is a 2× 2 matrix, determined
by (Farra and Madariaga, 1987)

∂P

∂τ
=
(

0 I
1
2∇∇u2 0

)
P, (B-4)

P(τ0, τ0) = I , (B-5)

where I is the 2× 2 identity matrix. The four focusing condi-
tions state that the source s and receiver r positions, the total
traveltime t , and the slope at the receiver prx are constant.
They all depend on x, z, δθs, δθr , and u. Remember that the
differentiation of a variable can be expressed as follows:

d· = ∂·
∂x

∣∣∣∣
u,z,θs,θr

δx + ∂·
∂z

∣∣∣∣
u,x,θs,θr

δz+ ∂·
∂θs

∣∣∣∣
u,x,z,θr

δθs

+ ∂·
∂θr

∣∣∣∣
u,x,z,θs

δθr + ∂·
∂u

∣∣∣∣
x,z,θs,θr

δu. (B-6)

The gradient of the cost function needs to differentiate the
slope at the source position and finally express it as a function
of δu. Conditions [ds= 0; dr = 0; dt= 0; dprx = 0; dpsx= K δu]
can be expressed as

dpsx

ds

dr

dt

dprx

 =


dpsx

0

0

0

0

 =
(
∂(psx, s, r, t, prx )
∂(u, x, z, θs, θr )

)
·


δu

δx

δz

δθs

δθr

 .
(B-7)

Solving the linear system given by equation (B-7), we obtain
the final formula (39).

The common-offset case is very similar to the previous case;
phx and pmx are defined in equations (21) and (22). The equa-
tions dh= 0, dm= 0, dt= 0, and dpmx= 0 define a system of
four linear equations which let us determine δx, δz, δξ , and δθ .
We thus solve

dphx

dh

dm

dt

dpmx

 =


dphx

0

0

0

0

 =
(
∂(phx, h,m, t, pmx)
∂(u, x, z, ξ, θ)

)
·


δu

δx

δz

δξ

δθ


(B-8)

to obtain the final formula (41).


