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Migratory functionalization of unactivated alkyl
bromides for construction of all-carbon quaternary
centers via transposed tert-C-radicals
Chuan Zhu 1,3, Ze-Yao Liu1,3, Luning Tang1, Heng Zhang1, Yu-Feng Zhang1, Patrick J. Walsh 2✉ &

Chao Feng 1✉

Despite remarkable recent advances in transition-metal-catalyzed C(sp3)−C cross-coupling

reactions, there remain challenging bond formations. One class of such reactions include

the formation of tertiary-C(sp3)−C bonds, presumably due to unfavorable steric interactions

and competing isomerizations of tertiary alkyl metal intermediates. Reported herein is a Ni-

catalyzed migratory 3,3-difluoroallylation of unactivated alkyl bromides at remote tertiary

centers. This approach enables the facile construction of otherwise difficult to prepare all-

carbon quaternary centers. Key to the success of this transformation is an unusual remote

functionalization via chain walking to the most sterically hindered tertiary C(sp3) center of

the substrate. Preliminary mechanistic and radical trapping studies with primary alkyl bro-

mides suggest a unique mode of tertiary C-radical generation through chain-walking followed

by Ni–C bond homolysis. This strategy is complementary to the existing coupling protocols

with tert-alkyl organometallic or -alkyl halide reagents, and it enables the expedient formation

of quaternary centers from easily available starting materials.
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Transition-metal-catalyzed construction of all-carbon qua-
ternary centers via tert-C(sp3)−C coupling reactions repre-
sents a significant synthetic challenge. Not only are severe

steric effects encountered around the metal center in such coupling
reactions, but competing isomerization pathways of alkylmetal
intermediates often have low barriers1–4. Nevertheless, the devel-
opment of cross-coupling protocols that make use of tertiary alkyl
−M (M=Mg5–9, Zn10, B11, and Na12,13) reagents has aroused
substantial interest from the synthetic community. While some
advances have been achieved, restricted substrate scopes, together
with the need to synthesize the organometallic reagents, has severely
limited application of this strategy (Fig. 1a). In this regard, the direct
functionalization of tert-alkyl electrophiles offers advantages
from the perspective of practicality and step economy14–17. Of
note, recent progress in the area of reductive coupling18–20 with
organic halides and pseudohalides21–25 or alkenes26,27 have
expanded classes of viable coupling partners. These studies pro-
vide complementary and efficient avenues to access structurally
diverse three-dimensional scaffolds under mild reaction condi-
tions (Fig. 1b). For example, the elegant work of Gong’s group
showcases the generality of this strategy, allowing arylation,
alkylation and allylation of tertiary alkyl halides through
Ni-catalyzed reductive cross-electrophile couplings21–24. In
addition to the above mentioned direct coupling manifolds, car-
bofunctionalization of 1,1-disubstituted or trisubstituted alkenes
is gaining momentum (Fig. 1c)28–32. Representative examples
in this vein include Shenvi’s hydroarylation/alkylation of unac-
tivated alkenes through Fe/Ni or Mn/Ni co-catalysis29,30

and Brown’s diarylation and arylborylation of trisubstituted
alkenes31,32. Although these methods enable access to tert-C–C
linkages, development of strategically different approaches
remain in high demand.

By exploiting iterative hydrometallation and β-hydride elim-
ination, chain-walking enables the site-selective cross-coupling at
positions remote to the initial metallation site33,34. Owing to the
efforts of Sigman35–37, Marek38–40, Mazet41–43, Martín44–47,
Zhu48–57, and others58–66, a collection of remote functionaliza-
tions, including arylation, alkylation, carboxylation, amination,
borylation, and thiolation of unactivated alkenes or alkyl halides
have been developed. Very recently, our team leveraged the
fluorine-effect for a remote fluoro-alkenylation of unactivated
alkyl bromides (Fig. 1d)67. Our system is like other remote
functionalization reactions, where the driving force for chain-
walking is moving the system lower on the energy landscape by
positioning the metal center at a stabilizing position (usually
limited to benzylic or alpha to boron). To expand the scope of
remote functionalization reactions, alternative sites must be tar-
geted, such as tertiary centers. With our continuing interest in
remote functionalization, we have uncovered a mechanistically
distinct and highly regioselective migratory 3,3-difluoroallyla-
tion68–71 of unactivated alkyl bromides at tertiary carbon centers.
This undirected tert-C(sp3)−H functionalization nicely comple-
ments existing methods for all-carbon quaternary center con-
struction, especially when tertiary alkyl halide/metal reagents are
not readily available or not stable. Notably, during the prepara-
tion of this manuscript, Zhu and co-workers reported a relevant
Ni–H-catalyzed migratory defluorinative olefin cross-coupling57.

Herein, we demonstrate that unactivated primary and sec-
ondary alkyl bromides are competent precursors for generating
tertiary alkyl coupling partners via Ni–H-mediated chain-walking
(Fig. 1e).

Results
Reaction optimization. A selection of alkyl halides was employed
to react with α-trifluoromethylstyrene 2a. After initial screening,

(bromomethyl)cyclohexane was successfully coupled with 2a at
the tertiary position with good regioselectivity (>20:1) 64% assay
yield in the presence of NiBr2·glyme, 6,6′-dimethyl-2,2′-bipyr-
idine (L1) and Mn as terminal reductant (Table 1, entry 1, AY
determined by integration of the 19F NMR spectrum against an
internal standard). Given the pivotal role of ligands in Ni-
catalyzed remote functionalizations, a series of bidentate N-donor
ligands were examined to improve the reaction outcome. Sub-
stitution next to the nitrogens of the bipy ligands was found
indispensable. Without either one or two methyl groups posi-
tioned ortho to the nitrogens, no product was observed. This
observation is in accordance with previous reports (Supplemen-
tary Table 1)46,53,54. We hypothesized that increasing the steric
bulk around the metal coordination site would enhance the
reaction efficiency. Thus, a series of increasingly bulky sub-
stituents, such as ethyl, propyl, and butyl, were subsequently
examined (entries 2–7). This study led to 6,6′-diethyl-2,2′-
bipyridine (L2) as the top candidate, furnishing product 3a in
improved yield and comparable regioselectivity (72% AY and
>20:1 regioisomeric ratio, Table 1, entry 2). In addition, with
pyrox or terpyridine ligands, essentially no reaction occurred
(Table 1, entries 8 and 9). A solvent screen revealed that THF was
the optimal choice (Table 1, entries 10–12), allowing the forma-
tion of the product in 89% isolated yield with >20:1 regioisomeric
ratio. The influence of reductant was also examined. Mn proved
superior to Zn, B2pin2, diethoxymethylsilane and HCOONa,
which are commonly employed in reductive cross-coupling
reactions (Supplementary Table 4).

3,3-Difluoroallylation of unactivated alkyl bromides. With the
optimized reaction conditions in hand, the reaction scope of alkyl
bromides was examined (Table 2). We found that a broad range
of unactivated alkyl bromides were suitable substrates for the
difluoroallylation. Cyclic alkyl bromides containing heteroatoms,
such as oxygen and N-Boc, were well-tolerated, affording the 3,3-
difluoroallylated products in 85 and 65% yields with excellent
regioselectivities (3b and 3c). Notably, a cyclic acetal was toler-
ated to afford the desired product with good regioisomeric ratio,
albeit in diminished yield (3d). Examination of the 5- and 7-
membered carbocycles resulted in good regioselectivities (>11:1)
with yields of 56 (3e) and 51% (3f) under the standard conditions.
The lowered rr of 11:1 for 3emay be due to increased strain in the
β-H elimination transition state. We were pleased to find that
acyclic alkyl bromides provided products containing quaternary
centers in 63–65% and high regioselectivities (>20:1, 3g–3i).
Ester, ether, silyl ether, and phthalimide moieties were well tol-
erated, affording the corresponding 3,3-difluoroallylaion products
in good yields (3j–3m). Interestingly, substrates containing two
contiguous tertiary carbon centers only led to the migratory
product at the proximal site (3n). Importantly, it was found that
the migration could proceed over more than one C–C bond,
albeit with progressively decreased reaction efficiency and
regioisomeric ratio (3o, 47% yield with 7:1 rr and 3p, 31% yield
with 2:1 rr). Nonetheless, these results highlight the selectivity of
the present catalytic system toward tertiary carbon centers over
secondary and primary positions. This trend is also observed in
the formation of products 3q and 3r, where sec-alkyl bromides
reacted ultimately giving predominantly coupling products at the
tertiary site. The intramolecular competition revealed that the
tertiary carbon was more favorable than 1° or 2° and even pre-
ferred over benzylic positions (3s). These findings stand in con-
trast to previous disclosures54. To further distinguish reactivity
between secondary and primary sites, n-propyl and n-butyl
bromide were examined (1t and 1u). It was found that coupling
occurred more readily at the more congested secondary position
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(3t, 53% and rr >20:1; 3u, 28%, rr >20:1). It is noteworthy that
chain-walking to more congested positions, in the absence of
stabilizing groups, has not been previously realized.

It is interesting that the present reaction system can also be
used to functionalize remote benzylic positions with high
efficiency and selectivity (3v, 90% yield, >20:1 rr and 3w, 50%
yield with 7:1 rr). Pleasingly, drug derived substrates performed
well in the reaction (3x and 3y), demonstrating the synthetic
potential of the difluoroallylation in late-stage modification of
complex molecules. Furthermore, the diastereoselectivity of this
transformation was assessed with enantioenriched substrate 1z,
which delivered the migratory product 3z with 5:1 dr. Not
unexpectedly, the optimized reaction conditions were applicable

to the difluoroallylation of tertiary alkylbromide (3g from tert-
BuBr). Finally, 1 mmol scale reaction was accomplished by using
commercially available ligand (L1) with comparable efficiency,
affording 3a in 65% yield with >20:1 rr.

Reaction scope with trifluoromethylalkenes. We next evaluated
different trifluoromethylalkene substrates in this transformation
(Table 3). Reactions carried out with α-trifluoromethylstyrenes
bearing a wide range of functional groups on the aryl moiety, such
as ester, ketone, cyanide, CF3, OCF3, sulfone, Me and OMe,
all underwent coupling smoothly to afford the desired products
in good yields (47–81%) and excellent selectivities (all > 20:1, 3aa–
3ai). In addition, substrates containing Cl or F on the aryl were
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Fig. 1 Transition metal catalyzed formation of quaternary centers. a Standard cross-coupling approach, b cross-electrophile coupling,
c difunctionalization of alkenes, d our prior work, e difluoroallylation of alkyl bromides with chain walking via transition-metal-catalyzed tert-C–C bond-
formation.
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compatible with the transformation (3aj–3al, 51–78% yield,
all >20:1 rr). Fortunately, heterocyclic trifluoromethyl alkene sub-
strates (3am-3ap) were also well tolerated (45–80% yield, >20:1 rr).

Reaction scope with other activated olefins. To expand the
scope of this transformation beyond trifluoromethylalkenes, other
electron deficient olefins were examined. To our delight, acrylate,
vinyl ketone, acrylonitrile, vinyl sulfone, and vinyl phosphonate
derivatives were amenable under slightly modified reaction con-
ditions. These substrates furnished migratory alkylation products
in synthetically useful yields with excellent regioselectivities.
These outcomes expand the synthetic reach of this tert-carbon-
selective remote functionalization strategy, enabling the con-
struction of quaternary carbon centers decorated with diverse
functionality (Table 4).

To probe the mechanism of this migratory defluorinative
allylation reaction, a set of control experiments were performed.
To determine if chain-walking was indeed operating in the present
system, the isotope-labelled substrate 1j-D was examined (Fig. 2a).
As expected, the deuterium located at the tertiary carbon was
selectively transferred to the primary position. This result strongly
supports the involvement of chain-walking. It is notable that no
deuterium was observed at other positions in the product. We

hypothesized that radical intermediates may be involved and,
therefore, conducted the reaction in the presence of TEMPO. The
radical scavenger TEMPO suppressed the reaction and 97% of 2a
remained, supporting the involvement of radical intermediates
(Fig. 2b, eq 1). In addition, when 2a was replaced by allylic sulfone
6, allylation proceeded, suggesting the existence of 3 °C-radical
intermediate under the catalytic conditions (Fig. 2b, eq 2). To
further elucidate the mode of C–C bond formation, cyclic β-pinene-
derivative (8) was subjected to the reaction (Fig. 2c). The
observation of radical intermediates would be expected to result
in ring-opened products, whereas a two-electron process would
leave the ring intact. In the event, the resulting ring-opening
product (9) was exclusively obtained. To explain the results in
Fig. 2, we propose a tertiary carbon radical is generated and
participates in the crucial C–C bond formation step72–75. The
oxidative addition of alkyl bromides to low-valent Ni catalysts
usually takes place through a cascade of single electron transfer and
alkyl radical generating steps76. Such transformations, therefore, can
be viewed as unusual radical center shifts that are mediated by
transition metal catalysts. We believe the steric hindrance
encountered at tert-C–Ni linkage is conducive to the homolytic
rupture of the C–Ni bond, affording tertiary carbon-centered
radicals that are a sufficiently long lived to escape the solvent cage
and selectively react with trifluoromethylalkene derivatives.

Table 1 Optimization of the reaction conditionsa.

+
CF3

Ar

Mn (1.5 equiv)
NiBr2·glyme (5 mol%)

ligand (6 mol%)

Solvent, 25 °C

H

Ar = p-MeO2CC6H4

1a 2a 3a

Ar

CF2Br

Entry Ligand Solvent Yieldb rrc

1 L1 DMA 64 >20:1
2 L2 DMA 72 >20:1
3 L3 DMA 70 >20:1
4 L4 DMA 54 >20:1
5 L5 DMA 62 >20:1
6 L6 DMA 62 6:1
7 L7 DMA n.r. –
8 L8 DMA n.r. –
9 L9 DMA n.r. –
10 L2 DMSO 44 1:1
11 L2 1,4-Dioxane n.r. —
12 L2 THF 89d >20:1

N

N

R2

R1

L1 R1, R2 = Me, R3 = H
L2 R1, R2 = Et, R3 = H
L3 R1, R2 = nPr, R3 = H
L4 R1, R2 = iPr, R3 = H
L5 R1, R2 = nBu, R3 = H
L6 R1, R2 = Et, R3 = OMe
L7 R1, R2 = Et, R3 = CF3R3

R3

Me

Me

NO

N

L8 L9N

N

N

aUnless otherwise noted, reactions were carried out with 1a (0.6 mmol), 2a (0.2 mmol), Ni salt (0.01 mmol), ligand (0.012 mmol), Mn powder (0.3 mmol) in DMA (2.0mL) under a nitrogen atmosphere
at room temperature for 12 h.
bAssay yields determined by 19F NMR with 1-iodo-4-(trifluoromethyl)benzene as internal standard.
cRr refers to the ratio of desired product to the sum of all the other regioisomers, as determined by the 19F NMR analysis of the crude products.
dIsolated yields.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18658-4

4 NATURE COMMUNICATIONS |         (2020) 11:4860 | https://doi.org/10.1038/s41467-020-18658-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Table 2 Scope with respect to alkyl bromidesa.

Mn (1.5 equiv)
NiBr2·glyme (5 mol%)

L2 (6 mol%)

THF, 25 °C
+

CF3

Ar

1 2 3a

R2

R1 H
n

R2

R1 Br
n CF2

Ar

3e 56% rr = 11:13b 85% rr > 20:1

H

CF2

Ar

O H

CF2

Ar

3f 51% rr > 20:1

H

CF2

Ar

H

3g 65% rr > 20:1

Me
Me

3h 64% rr > 20:1

HEt

nBu

CF2

Ar

CF2

Ar

3j 67% rr > 20:1

H

CF2

Ar

Me

BnO

HnHex

CF2

Ar

nOct

3i 63% rr > 20:1

3q 63% rr = 9:1

iPrMe

H

3o 47% rr = 7:1

Me
HMe Me

CF2

Ar

CF2

Ar

H

3w 50% rr = 7:1

Me
Ph

3u 28% rr > 20:1

H

CF2

CF2

Ar

Ar

3s 55% rr = 12:1

H

CF2

Ar

Me

PMP

Ar = p-MeO2CC6H4

H
Me

CF2

Ar

Me

3t 53% rr > 20:1

H

CF2

Ar

BocN

3c 65% rr > 20:1

H

CF2

Ar

Me

BzO

3k 74% rr > 20:1

3v 90% rr > 20:1

H
Ph

CF2

Ar

H

CF2

Ar

N

O
N

O

Cl

Me

OMe

3y 65% rr >20:1

3n 72% rr > 20:1 3p 31% rr = 2:1

Me
Me

CF2

Ar

H

Me

3r 49% rr = 2:1

CF2

Ar

H

H

CF2

Ar

Me

PhthN

3m 52% rr > 20:1

H

CF2

Ar

Me

TBDPSO

3l 72% rr > 20:1

H

CF2

Ar

N

O
O

O

3x 70% rr > 20:1

3z 55% rr > 20:1 dr = 5:1

Me

CF2Ar

H

CO2Me
H

Ar

CF2

H

H

CF2

Ar

O
OPMP

3d 33% rr > 20:1

From isoxepac

From indomethacin

3g 84%b

MeMe
Me

CF2

Ar

aSee the Supplementary Information, pages 27–37, for experimental details. Rr refers to the ratio of desired product to the sum of all the other regioisomers, which was determined by the 19F NMR or GC
analysis of the crude products.
bFrom tert-butyl bromide.
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Taken together, these findings demonstrate that a radical-
engaged chain-walking manifold is involved, which accounts for
the unusual selectivity that leads to functionalization at the more
congested tertiary position. A proposed mechanism is outlined in
Fig. 3. The reaction is initiated by the oxidative addition of alkyl
bromide 1 to active Ni complex I to afford intermediate II.
Subsequently, chain-walking of the nickel catalyst from the
terminal carbon to the tertiary center via β-hydride elimination
and insertion steps allows for the facile generation of tert-C–Ni
complex IV. The Ni–C to the tertiary carbon bond has the lowest

BDE and undergoes homolysis, generating a tertiary C-radical V.
The radical can undergo addition to the trifluoromethylalkene 2
to form a new radical species VI. The newly-formed radical
intermediate then recombines with the nickel complex to give rise
to intermediate VII, which undergoes β-fluoride elimination to
produce the observed product 3, accompanied by the generation
of F–Ni-complex VIII. Finally, reduction of Ni-complex VIII
with Mn° closes the catalytic cycle by regenerating the active
catalyst I. Whereas the radical manifold is consistent with the
control experiments, the possible engagement of a 2-electron

Table 3 Scope with trifluoromethyl alkenesa.

Mn (1.5 equiv)
NiBr2·glyme (5 mol%)

L2 (6 mol%)

THF, 25 °C
+

CF3

Ar

1a 32

H

CF2

Ar

H

CF2

O

3am 71% rr > 20:1

O

3an 45% rr > 20:1

N

O

3ao 80% rr > 20:1

CF2 CF2 CF2

HH H

COMe

3aa 69% rr > 20:1

H

CF2

CN

3ac 69% rr > 20:1

H

CF2

CF3

3ad 76% rr> 20:1

H

CF2

OCF3

3ae 47% rr > 20:1

H

CF2

SO2Me

3af 73% rr > 20:1

H

CF2

Me

3ag 56% rr > 20:1

H

CF2

3ah 81% rr > 20:1

H

CF2

OMe

3ai 70% rr > 20:1

MeO

MeO OMe

H

CF2

CONMe2

3ab 75% rr > 20:1

H

CF2

Cl

3aj 78% rr > 20:1

H

CF2

3ak 76% rr = 20:1

H

CF2

3al 51% rr > 20:1

Cl

Cl

F

N

CF2

H

3ap 66% rr > 20:1

OMe

Br

aSee Supplementary Information, pages 37–44, for experimental details. Rr refers to the ratio of desired product to the sum of all the other regioisomers, which was determined by the 19F NMR or GC
analysis of the crude products.
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NiBr2·glyme (10 mol%)
L1 (12 mol%)

+
Ar

CF3

Standard 
conditions

TEMPO
(2 equiv)

Ar

CF3
+

D
Me

CF2

Ar

Br
Me D

+

Ring-opening experiment

Ar

CF3

Me

Ar

CF2

H

Standard 
conditions

Radical-trapping experiments

D-labelling experiment

Standard 

a

b

c

conditions

BnO
BnO

1j 2a 3j 0%

82 2a

9 50%

1j-D 2a 3j-D 59% rr = 15:1

Br
BnO

Me
BnO

+

9' 0%

BrMe
Me

Ar

CF2
Me

Me
H

H

Me MeAr

F2C

+

Me

COOEt

H

1k 76 43% rr = 4:1

Br
BzO

Me
BzO

COOEt

SO2Ph

(1)

(2)

(93% D)(93% D)

Mn (1.5 equiv)
DMA, 25 °C

Fig. 2 Control experiments (Ar= 4-MeO2C-C6H4). a A deuterium-labelling experiment; b radical trapping experiments; c ring-opening experiment.

Table 4 Scope of activated alkenesa.

NiBr2·glyme (10 mol%)
L1 (12 mol%)

Zn (1.5 equiv)
MgCl2 (1 equiv)

DMA, 25 °C

+
EWG

1k 54

Me
H

Br

EWG

R = OBn 5a 66% rr > 20:1
R = Et 5b 56% rr > 20:1

H

COR

Me

BzO
H

CN

Me

BzO

5c 47% rr > 20:1

H

SO2Ph

Me

BzO

5d 35% rr > 20:1

H

5e 51% rr > 20:1

Me

PO(OEt)2

BzO

Me

BzO
BzO

aSee Supplementary Information, pages 45–47 for experimental details. Rr refers to the ratio of desired product to the sum of all the other regioisomers, which was determined by the GC analysis of the
crude products.
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pathway relying on the direct addition of alkyl-Ni IV across the
C–C double bond of 2, cannot be ruled out.

Discussion
In summary, a Ni-catalyzed reductive coupling for the synthesis
of 1,1-difluoroalkenes containing quaternary centers is intro-
duced. Difluoroalkenes are known bioisosteres for carbonyl
groups in medicinal chemistry. The key to the success of this
method is development of a Ni−H initiated remote functionali-
zation of alkyl bromides. This approach enables a defluorinative
3,3-difluoroallylation of unactivated alkyl bromide substrates at
sterically congested tertiary positions as an approach to selectively
construct all-carbon quaternary centers. It is noteworthy that this
transformation represents a rare case of C-radical transposition,
which is enabled by a Ni−H chain-walking manifold. The suc-
cessful development of this protocol demonstrates that readily
available primary and secondary alkyl bromides can be used as
progenitors for the construction of quaternary carbon-containing
frameworks. In view of the potential impact of this strategy for
remote functionalization, efforts to develop additional transfor-
mations are underway in these laboratories.

Methods
General procedure for the 3,3-difluoroallylation of unactivated alkylbromides.
To an oven-dried Schlenk tube equipped with a magnetic stir bar was added
NiBr2·glyme (3.1 mg, 0.01 mmol, 5.0 mol%), L2 (2.5 mg, 0.012 mmol, 6.0 mol%),
Mn powder (16.5 mg, 0.3 mmol, 1.5 equiv). After the Schlenk tube was evacuated
and filled with nitrogen for three cycles, THF (1.0 mL), compound 1 (0.6 mmol, 3.0
equiv) and compound 2 (0.2 mmol, 1.0 equiv) were added under nitrogen atmo-
sphere. The Schlenk tube was maintained at 25 °C for 12 to 24 h. The reaction
mixture was then diluted with ethyl acetate (10 mL) and washed with H2O (10 mL).
The aqueous layer was extracted with ethyl acetate (10 mL × 2). The combined

organic layers were washed with water (10 mL), brine (10 mL) and dried over
Na2SO4. After solvent was removed under reduced pressure, the crude residue was
analyzed by 19F NMR with 1-iodo-4-(trifluoromethyl)benzene as internal standard,
and then the mixture was purified by column chromatography or preparative TLC
on silica gel to afford the desired product.

Data availability
The authors declare that all the data supporting the findings of this study are available
within the paper and its Supplementary Information files, or from the corresponding
authors upon request.
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