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ABSTRACT

We investigate the extent in which northern Nigerian households engage in internal migration to insure
against ex ante and ex post agricultural risk due to weather-related variability and shocks. We use data on
the migration patterns of individuals over a 20-year period and temperature degree-days to identify
agricultural risk. Controlling for ex ante and ex post risk, we find that households with higher ex ante risk
are more likely to send migrants. Households facing hot shocks before the migrant’s move tend to keep
their male migrants in closer proximity. These findings suggest that households use migration as a risk
management strategy in response to both ex ante and ex post risk, but that migration responses are
gender-specific. These findings have implications not only for understanding the insurance motives of
households, but also potential policy responses tied to climatic warming,.

Keywords: migration, risk, temperature degree days, Nigeria
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1. INTRODUCTION

One of the primary sources of agricultural income risk is production uncertainty caused by weather-
related events. A lack of formal institutions to reduce household vulnerability to agricultural income risk
in developing countries poses limitations to their short- and long-term growth. Households deplete their
productive assets to subsist during transitory shocks (Rosenzweig and Wolpin 1993; Fafchamps, Udry,
and Czukas 1998; Kazianga and Udry 2006; Quisumbing 2008), and invest in low-risk, low-return
investments to mitigate risk over time (Eswaran and Kotwal 1990; Rosenzweig and Binswanger 1993;
Zimmerman and Carter 2003). Further, the complex process of climate change magnifies the uncertainty
of income, by increasing rainfall variance, the incidence of natural disasters, and temperature fluctuations,
among others (IPCC 2007). Households may use differing strategies to mitigate these risks. When
financing the relocation of a household member within a country is more affordable than other
alternatives, migration offers poor households a potential risk management strategy. Moreover,
households can target destinations where income risk is least correlated with risk at home (Rosenzweig
and Stark 1989). Understanding the effectiveness of migration as a risk management strategy and its
limitations can shed light on the private capacity to adapt to risk and inform the design of policies to
improve its use, especially in response to weather-related shocks.

In this paper, we investigate the extent Nigerian households engage in internal migration to insure
against ex ante and ex post agricultural risk.' We differentiate migration strategies by the gender of the
migrant, since evidence of marriage migration (Watts 1984) and female rural-urban migration in Nigeria
(Mberu 2005) exists despite cultural constraints prohibiting women from living alone in a different
community or seeking opportunities elsewhere without the approval of their husbands. We also measure
income variability through temperature (growing degree-days) rather than rainfall variance as done in
earlier work (Rosenzweig and Stark 1989; Paxson 1992; Jayachandran 2006). Temperature extremes alter
the optimal growing conditions of a plant, resulting in reduced yields and agricultural income (Hatfield et
al. 2008). Measurement of temperature through growing degree-days considers the optimal growing
conditions of the plant, recently applied for this reason to evaluate the climate change impacts on U.S.
farmland values (Schlenker, Hanemann, and Fisher 2006). The consequences of temperature are arguably
more severe, since it is difficult to control without major investments.

We combine the temperature data with a unique household survey performed in 2008 in northern
Nigeria, which collected information on individuals (including their destinations) that permanently
migrated out of villages originally sampled in 1988 (Udry 1990, 1994). Most households have at least one
migrant highlighting the relevance of this issue in the region. We exploit information on permanent
moves out of the initial 1988 households to investigate long-term insurance motives behind migration.
While the duration of the panel is unique, the survey itself does pose limitations in the analysis. Two
hundred households spanning four villages were surveyed initially in 1988. Therefore, the analysis is not
nationally representative and subject to the standard empirical issues associated with small sample sizes.
We apply the wild bootstrap method to calculate the appropriate standard errors in samples with small
cluster sizes (Cameron, Gelbach, and Miller 2008). The dataset provides a rich amount of information to
study weather-related risk and migration among rural agricultural populations.

We find that households in northern Nigeria use migration to deal with ex ante and ex post risk.
To construct proxies of ex ante and ex post risk, we use the distribution of degree-days interacted with
landholdings. To measure ex ante risk, we use the coefficient of variation of this distribution over the 25-
year period 1983-2008, which includes the five years prior to the initial household survey conducted in
1988. This measures the expected risk a household faces over time. Weather variability increases

! The motives behind internal migration within Nigeria are relatively understudied despite its relative importance and scale
(Fadayomi 1998; Adewale 2005; Mberu 2005; de Haas 2006). Few studies examine the role of migration in mitigating the
vulnerability of households to risk in Africa (de Haan, Brock, and Coulibaly 2002; Gubert 2002; and Azam and Gubert 2006 are
exceptions). Focusing on motives to remit, Osili (2007) finds empirical evidence of altruistic and investment motives from
international Nigerian migrants, although she does not explicitly test for the insurance motive.



agricultural income risk and the ability of households to insure using alternative mechanisms can mitigate
risk as measured through the interaction with inherited wealth (Rosenzweig and Stark 1989). Our
measures of ex post risk are constructed as shock variables using the lagged standard deviation of the
distribution five years prior to the year the migrant moved. When we control for both ex ante and ex post
risk, households facing greater ex ante risk have a greater probability of having at least one migrant. We
also find that the impact of ex post risk on the probability of a household’s having a migrant depends on
the period of time assessed.

We further explore how the type of ex post risk affects migration decisions, by estimating the
relationship between the distances traveled by migrants and risk. We find that the distances of male
migrants are the most responsive to ex ante and ex post risk in northern Nigeria. Male migrants travel
longer distances in response to ex ante risk. Distances are shortened in response to ex post risk.
Households facing hot shocks before the migrant’s move tend to keep their male migrants close. While
the results contrast the evidence from marriage migration (Rosenzweig and Stark 1989), they remain
consistent with Halliday (2006), who shows earthquakes in El Salvador keep male migrants at home to
assist in the household’s recovery. Such a migration response elicits the limitations of migration as a
coping strategy, particularly in the wake of global climate change. A 20-percent reduction in the growing
period is predicted to occur by 2050 in the Sahel (Thornton et al. 2006 as cited by Boko et al. 2007),
which motivates understanding private capacities to adapt and their limitations to ameliorate the expected
damages from climate change through policy.

The next section of this paper reviews the literature on migration and risk, which provides the
theoretical framework from which we derive our econometric specifications in the third section. The
fourth section presents the data and its descriptive statistics. The fifth section presents our results, and the
last section concludes.



2. MIGRATION AND RISK

A rich literature focuses on the use of migration to overcome the perils caused by risk, capital market
imperfections, and liquidity constraints (Rosenzweig and Stark 1989; Stark 1991; Azam and Gubert 2006;
Giles 2006; Halliday 2006). Increased agricultural income variance can induce households to spatially
disaggregate risk by increasing the number of migrants per household with the expectation that if income
sources are diversified spatially then idiosyncratic shocks are insurable. If covariate risk is uninsurable
due to credit market imperfections, then a household may use migration to mitigate risk ex ante by
preemptively allocating labor optimally across space, reducing their income vulnerability. The migrant
provides some form of assistance (for example, via sending remittances, or by relaxing resource
constraints via his departure) to facilitate the household’s ability to smooth consumption when facing a
transitory shock. Furthermore, households can also adjust the distance traveled by migrants to reduce the
correlation between origin and destination income shocks (Rosenzweig and Stark 1989).

The benefit of using ex ante migration to mitigate risk depends on the conditions of the labor
market and the composition of the household. In general, households facing labor constraints may not
engage in these spatial contractual arrangements, unless as an ex post migration strategy to cope with the
sudden income loss of shocks and productive opportunities. Halliday (2006) finds that agricultural shocks
motivate migration ex post whereas earthquakes reduce migration in EI Salvador. The empirical evidence
supports the tendency for households to retain labor for recovery (rather than due to the inability to
finance migration) following a major earthquake. The Halliday findings suggest there are also limitations
in using migration as an ex post coping strategy, particularly when the shock is severe.

While previous studies focus on ex ante and ex post risk management strategies distinctly, it is
possible that households use a combination of the two. Rose (2001) shows that households in India adjust
their off-farm labor supply in response to ex ante and ex post risk. In her theoretical model, households
reduce risk ex ante by increasing off-farm, less risky labor (the portfolio effect) and consume less leisure
to avoid income loss (the precautionary effect). Both of these effects generate a positive labor response to
ex ante risk. She further describes why household labor supply response may be affected ex post.
Households increase their labor supply off of the farm ex post to smooth income (income effect). There is
also the substitution effect, where households substitute away risky own farm production and labor
activities for leisure. She shows that under certain conditions, the substitution effect reinforces the income
effect, rendering a positive labor supply response to risk ex post. In this paper, we build upon Rose (2001)
to consider the role of migrant labor in household’s risk management strategies.

A final consideration is the trade-offs households face when utilizing female and male migrant
labor as part of their risk management strategy. Rosenzweig and Stark (1989) demonstrate in earlier work
that the trade-offs favored sending women away for marriage in India. In other settings, societal norms
and limited employment options can discourage female mobility (Davis and Winters 2001). Regarding the
latter, households may be hesitant to send female migrants abroad if the level of uncertainty of the return
to migration is high or if they have access to alternative coping mechanisms. Davis and Winters (2001)
find networks dominated by females affect the probability of female migrants traveling to a specific
location. One possible interpretation of this effect is that improving employment information flows
reduces the level of uncertainty of the migration benefits. Since the trade-offs a household faces in
sending migrant labor will depend on the gender of the migrant, we further evaluate how migrant’s
gender influences risk management practices.



3. ECONOMETRIC SPECIFICATION

The literature on how households respond to both ex ante and ex post shocks motivates our econometric
specifications. Two specifications are employed to examine how migration is used to mitigate agricultural
risk. We use these models to test the hypotheses of whether there are statistically significant effects of
climate-induced risk on migration behavior and the distances migrants travel. We also disaggregate the
decision to migrate and distances traveled by gender to estimate whether there are gender-differentiated
effects of agricultural risk. To identify sources of ex ante and ex post risk, we are careful in the
construction of our shock variables that are constructed from temperature degree-days described below.

The first specification investigates the household decision to send a migrant. We estimate a linear
probability model (LPM) to measure the determinants of the household having at least one migrant M,
since 1988, the first round of our data, such that

M, 2008 = PXn 1988 + 0251088 + Env20085 (D

where the vector X refers to premigration household characteristics, such as household size, education of
household head, landholdings, and household assets. We include premigration household variables to
reflect factors that influence households’ decisions to send migrants that are uncorrelated with climate
fluctuations. The vector Z includes variables that proxy for fluctuations in agricultural profit. We
differentiate between ex ante and ex post agricultural risk. We proxy for ex ante agricultural risk by using
degree-days over the period 1983 to 2008, which we discuss in further detail below. In the specification,
we also assume an additive error term, which is independent of the household variables,

Epv= Ty + Vh,v-
Unobserved characteristics at the village level, such as differences in social norms or labor market
conditions, are accounted for in the village dummy variables. By using the LPM, we are not forced to
impose any arbitrary restrictions on the error term. The LPM produces accurate predictions of the
probability for values of variables close to the sample mean (Wooldridge 2002).

In our second specification, we investigate how households allocate members across space to
diversify risk conditional on their decision to send a member to migrate. We therefore estimate the
following ordinary least squares (OLS) regression:

D h.v2008=0 Wi 2008 B X1, 1988702, 19851 €h.v.2008. 2)

where D is the distance migrated; W is a vector of individual characteristics, such as gender and age; X is
a vector of household characteristics, similar to the previous specification. The vector Z includes climate
variables that characterizes ex ante and ex post agricultural risk. Some of these variables will vary from
specification (1) as they exploit variation in the timing of the migrant’s decision to move. We also control
for village-level unobserved characteristics by including village dummy variables.

Measures of Ex Ante and Ex Post Risk

In both models (1) and (2), we draw on previous work that uses climate variability, specifically
precipitation, to measure agricultural income variability (Rosenzweig and Stark 1989; Rosenzweig and
Binswanger 1993; Rosenzweig and Wolpin 1993; Fafchamps, Udry, and Czukas 1998; Kochar 1999;
Rose 2001; Jayachandran 2006; Kazianga and Udry 2006; Mueller and Osgood 2009). Our measures of
risk vary from the literature in four ways.

First, we use temperature degree-days to proxy agricultural income variability. Schlenker,
Hanemann, and Fisher (2006) first used temperature degree-days to evaluate the impact of climate change
on U.S. farmland values. They argue temperature expressed in degree-days is the most relevant measure
for plant growth. Degree-days account for the nonlinear relationship between plant growth and climate.



Specifically, it documents the number of days in a given agricultural cycle where temperature exceeds the
minimum growing requirements.

Second, we use the coefficient of variation of degree-days in each household’s local government
area (LGA) interacted with household landholdings to measure ex ante risk.”> We use the coefficient of
variation (Rose 2001) rather than the variance of climate (Rosenzweig and Stark 1989) to avoid
sensitivity to scaling. The coefficient of variation is similar in measurement as it divides the standard
deviation by the mean of the historical distribution of climate. We interact household’s landholdings with
the coefficient of variation of temperature degree-days to account for one’s ability to mitigate increases in
agricultural income risk through inherited wealth (Rosenzweig and Stark 1989).

Third, we include measures for both ex ante and ex post risk following Rose (2001). Most studies
focus on the latter. Since we have a relatively long time series of daily temperature data and data on
migration behavior over 20 years, we are able to create distinguishable ex ante and ex post risk variables.
As we will explain next, ex post risk variables in equation (2) will depend on the timing of the migrant’s
move adding more variation than possible in specification (1).

Fourth, we differentiate between the effects of ex post risk by type (hot and cool), and frequency
(sudden versus cumulative shocks) on distances migrants travel. In the determinants of migration analysis
(1), we include variables measuring the standard deviation of temperature degree-days over the five-year
period prior to migration (interacted with landholdings). This captures fluctuations in the frequency of
degree-days over shorter time periods that may differ from household expectations. When evaluating the
impact of risk on distances traveled, we are able to exploit the variation in years when migrants moved to
capture different aspects of risk. Our first measure of ex post risk is the number of standard deviations
from the mean one year prior to the move. Our second measure distinguishes hot (cool) periods by
differentiating the number of standard deviations above (below) the mean one year prior to the move. Our
third and fourth measures attempt to examine the impact of cumulative shocks on distances traveled.
Specifically, the third measure is the number of times the standard deviation was above or below one
standard deviation from the mean five years prior to the move. The fourth measure distinguishes
cumulative hot (cool) shocks by measuring the number of times the standard deviation was above (below)
one standard deviation from the mean five years prior to the move. All four measures of ex post risk used
in the distance regressions are interacted with household landholdings. By constructing alternative
measures of ex post risk, our results provide some evidence as to which types of unexpected events
households may respond to using migration.

Bootstrapping Clustered Standard Errors

A key econometric issue that we address in all regression specifications is the correction of the standard
errors for within group dependence. Heteroskedastic-robust standard errors are commonly calculated
following White (1980). In our regression specifications, we present heteroskedastic robust standard
errors clustered at the village level to correct for within village correlations due to the sample design.
However, a large literature illustrates that cluster robust standard errors might be downward biased if the
number of clusters in the sample is small, as in our sample (Moulton 1986, 1990; Angrist and Lavy 2002;
Bertrand, Duflo, and Mullainathan 2004; Donald and Lang 2007). This is because inference is based on
the asymptotic assumption that the number of clusters tends to infinity. Cameron, Gelbach, and Miller
(2008) illustrate that wild bootstrap methods perform particularly well in estimating standard estimates
with small numbers of clusters.” F ollowing their approach, we first estimate in the original sample the
standard errors, coefficient estimates, and residuals imposing the null hypothesis. We then resample with

replacement from the original sample residual vectors, 7, =1, with probability .5 and 4, = —, with

2 In the regression, we also include landholdings by type of elevation. In particular, we include the possession of high
quality land, Fadama. Fadama land is at low altitudes and is considered of greater quality because it retains water.

3 The wild bootstrap was developed by Wu (1986), Liu (1988), and Mammen (1993).



probability .5, to construct a pseudo-sample of {(3,*, X,),...,(7, *, X, )} where the subscript ¥ is the

number of village clusters and )7; =X V ,3 + ﬁ; . In our analysis, we present the p values for the Wald test,

for the risk parameters of interest in brackets, which result from imposing the null hypothesis that the
coefficient estimates are equal to zero. This provides additional econometric evidence that, despite our
small sample size, coefficient estimates for the agricultural risk variables are statistically meaningful.



4. DATA

We use three sources of data: a tracking survey in 2008, an initial household survey from 1988-1989, and
climate data. The tracking survey collected detailed information on all household members that originally
participated in the 1988-1989 Northern Nigeria Household Survey.4 The tracking questionnaire records
for each individual in the original household survey, whether they were still resident in the household and
if not, where they were currently living, why they moved out of the household, and in what year the move
occurred. For the purpose of our study, a migrant is any member who moved to another village since
1988. Of the original 200 households interviewed, 31 households, or 15.5 percent, were not able to be
reinterviewed for information about their 2008 household characteristics. We matched individual
migrants with the roster data from the 1988-1989 survey by name, age, their relationship to the household
head in 1988, and gender. We merge the data from the tracking survey to the data collected in 1988 to
create a dataset of households that includes variables on initial 1988 household and individual
endowments to explain migration decisions since 1988. We also compute the distance between each
individual migrant’s origin and destination local government area (LGA), the smallest spatial unit of
analysis these data permit, to also observe what determines the spatial allocation of miglrants.5

Daily temperature data (1983-2008) are extrapolated from the Surface Meteorology and Solar
Energy (SSE-release 6.0) product developed by the Atmospheric Sciences Data Center at the NASA
Langley Research Center to construct the number of degree-days per growing season per year by LGA
(Ritchie and NeSmith 1991).6 We merge the household survey data with the daily temperature data to
specifically construct the measures of risk we describe above.

Descriptive Statistics

Table 1 presents summary statistics of households in our sample by migration status. Long-term
migration is prevalent in most of the originally surveyed households, where 78 percent of these
households have at least one migrant. We perform t-tests for the differences in variable means across
samples using village-clustered standard errors. The tests indicate that migrant households tend to be
larger, have a lower (greater) share of boys (girls), and a greater proportion of heads with at least a
primary education. There are no discernible differences by migration status in risk exposure as measured
by the coefficient of variation or standard deviation of degree-days interacted with landholdings.

We next compare household characteristics by the gender of migrants in Table 2. We categorize
households into households without migrants, households with only female migrants, households with
only male migrants, and households with both female and male migrants. We do not find any statistically
significant differences between households with no migrants and those with only male migrants. One
explanation for this is that there are too few households with only male migrants. Interestingly,
households with female migrants, columns 2 and 4 in Table 2, tend to have a lower share of boys, which,
at the time of the 2008 survey, would be men of prime working age. Moreover, these households tend to
have a greater proportion of household heads with a primary education. Households with female migrants
only, column 2 in Table 2, tend to have a lower share of men and greater share of women in the
household than non-migrant households. They also have fewer male household heads. Households with
both female and male are larger, had a greater share of girls in 1988, and have a greater proportion of
household heads with a secondary education. These figures confirm that there are different migration

4 These data were originally collected by Christopher Udry in 1988/89 in association with Amadou Bello University in
Kaduna State, Nigeria.

Since we are only able to calculate distances between origin and destination LGAs, migrants that move to villages within
the same LGA are assigned a value of zero for the distance traveled.

The data were extrapolated from the following site URL: http://power.larc.nasa.gov.



practices in our sample, and the motivations for male and female migration may differ. There are no
differences by gender in the household’s exposure to risk as measured by our degree-day variables.

Table 1. Descriptive statistics of households, by migration status

Non-migrant Migrant Difference in
households households means
Mean Mean T statistic

Household size (1988) 6.90 9.53 -9.12%**
Adults (1988) 3.06 4.16 -10.80%**
Share of men in household (1988) 0.14 0.13 0.27
Share of women in household (1988) 0.05 0.08 -1.08
Share of boys in household (1988) 0.48 0.39 2.84%**
Share of girls in household (1988) 0.33 0.40 -2.90*
Male household head (1988) 0.93 0.90 0.70
Household head has primary education (1988) 0.24 0.44 -2.98%*
Household head has secondary education (1988) 0.15 0.15 0.01
Fadama land (hectares) (1988) 0.40 0.42 -0.19
Livestock value (1988) 1,546 1,813 -0.27
Household capital value (1988) 815 1,248 -1.00
Coefficient of variation of degree-days*land 1.06 0.78 1.32
Standard deviation of degree-days (1983-1987)*land 576 542 0.38
Standard deviation of degree-days (1988-1992)*land 431 406 0.36
Standard deviation of degree-days (1993-1997)*land 319 300 0.37
Standard deviation of degree-days (1998-2002)*land 339 317 0.41
Standard deviation of degree-days (2003-2008)*land 1,896 1,449 1.25
Households 41 144

Source: Authors calculations from 1988 Northern Nigeria survey (Udry 1991) and the 2008 tracking survey conducted by the
authors. Degree-days are calculated from daily temperature data (1983-2008) from the Surface Meteorology and Solar Energy
(SSE-release 6.0) product developed by the Atmospheric Sciences Data Center at the NASA Langley Research Center.

Notes: T-tests use village-clustered standard errors. *** p <0.01, ** p <0.05, * p <0.10.



Table 2. Descriptive statistics of households, by gender of migrants

(M @ G @& OO0 OO (-4

Difference Difference Difference
None Females Males Both in means in means in means

Mean Mean Mean Mean T-statistic T-statistic T-statistic

Household size (1988) 6.90 8.16 6.89 1322 -1.96 0.01 -14.52%%%*
Adults (1988) 3.06 3.54 3.23 5.67 -1.50 -0.35 -15.18%%*
Share of men in household (1988) 0.14 0.08 0.22 0.15 2.56* -1.56 -0.32
Share of women in household (1988) 0.05 0.08  0.05 0.08 -0.79 -0.03 -19.39%%*
Share of boys in household (1988) 0.48 036 048 0.38 4.55%%* 0.04 2.38%
Share of girls in household (1988) 0.33 048 0.25 0.38  -3.42%%* 1.18 -1.35
Male household head (1988) 0.93 0.81  0.96 1.00 3.57%* -1.58 -1.71
Household head has primary education (1988) 0.24 0.41 0.36 0.52 -2.67* -0.74 -3.69%*
Household head has secondary education (1988) 0.15 0.07  0.11 0.28 1.84 0.44 -3.32%*
Fadama land (hectares) (1988) 0.40 035  0.68 0.37 0.35 -1.62 0.17
Livestock value (1988) 1,546 1,842 810 2,380 -0.25 0.95 -0.76
Household capital value (1988) 815 945 986 1,869 -0.48 -1.36 -1.30
Coefficient of variation of degree-days* land 1.06 0.64 0.68 1.04 1.73 0.80 0.05
Standard deviation of degree-days (1983-1987)* land 576 490 502 644  0.69 0.42 -1.39
Standard deviation of degree-days (1988-1992)* land 431 368 377 483 0.67 0.41 -1.48
Standard deviation of degree-days (1993-1997)* land 319 272 278 357 0.68 0.41 -1.43
Standard deviation of degree-days (1998-2002)* land 339 286 294 378 0.72 0.43 -1.28
Standard deviation of degree-days (2003-2008)* land 1,896 1,218 1,284 1,901 1.61 0.76 -0.01
Households 41 70 28 46

Source: Authors calculations from 1988 Northern Nigeria survey (Udry 1991) and the 2008 tracking survey conducted by the
authors. Degree-days are calculated from daily temperature data (1983-2008) from the Surface Meteorology and Solar Energy
(SSE-release 6.0) product developed by the Atmospheric Sciences Data Center at the NASA Langley Research Center.

Notes: T-tests use village-clustered standard errors. *** p <0.01, ** p <0.05, * p <0.10.

We describe the characteristics of the individual migrants in our sample by gender in Table 3. We
observe that male migrants are sent longer distances than female migrants. Differences in vulnerability to
ex ante risk, as measured by the coefficient of variation interacted with landholdings during the entire
time series, do not appear statistically significant. However, there is slight evidence that male migrants
come from households facing greater ex post risk. Although the migration decision does not appear
correlated with risk, it is possible that households spatially allocate male migrants further away so that
their incomes do not correlate with the shock from their origin communities.



Table 3. Descriptive statistics of distances traveled and shocks, by migrant’s gender

Difference
Females Males in means
Standard Standard
Mean  Deviation Mean  Deviation T statistic
Distance migrated (km) 24.01 46.73 157.70  204.64 -4.28%*
Age (1988) 1141 10.02 12.64 10.38 -0.78
Coefficient of variation of degree-days*land 1.07 1.75 1.26 2.13 -0.74
Lagged SD in origin 0.29 0.60 -0.12 1.03 2.68*
Lagged SD in origin*land 1.36 5.34 -1.17 10.60 1.41
Lagged SD above mean in origin 0.41 0.29 0.35 0.34 1.01
Lagged SD above mean in origin*land 2.20 3.24 1.99 3.85 0.41
Lagged SD below mean in origin 0.13 0.42 0.47 0.78 -3.73%%*
Lagged SD below mean in origin*land 0.84 3.78 3.15 9.21 -1.82
Times over 5 years 1 SD above/below mean in origin 0.68 0.94 0.97 1.23 -1.23
Times over 5 years 1 SD above/below mean in origin*land 3.36 7.36 7.00 19.10 -1.80
Times over 5 years 1 SD above mean in origin 0.16 0.36 0.14 0.35 0.38
Times over 5 years 1 SD above mean in origin*land 0.59 1.81 0.88 3.14 -0.54
Times over 5 years 1 SD below mean in origin 0.52 0.79 0.83 1.16 -1.44
Times over 5 years 1 SD*land below mean in origin 2.77 6.88 6.12 18.54 -1.55
Individuals 154 58

Source: Authors calculations from 1988 Northern Nigeria survey (Udry 1991) and the 2008 tracking survey conducted by the
authors. Degree-days are calculated from daily temperature data (1983-2008) from the Surface Meteorology and Solar Energy
(SSE-release 6.0) product developed by the Atmospheric Sciences Data Center at the NASA Langley Research Center.

Notes: T-tests use village-clustered standard errors. *** p <0.01, ** p <0.05, * p <0.10.

Attrition

Before estimating the econometric specifications, we conduct an investigation of the determinants of
household attrition from the 1988 data. As described above, 15.5 percent of households interviewed in
1988 were not able to be tracked. We estimate a linear probability model (LPM) with village indicators in
Table 4, controlling for household head characteristics, household composition, and household assets in
column 1. In columns 2 and 3, we include our measures of agricultural risk, the coefficient of variation of
temperature degree-days, and the standard deviation of temperature degree-days. Column 4 includes both
variables with the other household covariates and village indicators.

In column 1, we find that the number of women, and wealth in the form of value of livestock and
the fadama, or low-elevation, landholdings affect attrition. The result on fadama land is somewhat
surprising, given that these lands are more valuable to farmers because they retain water over longer
periods of time. Fadama landholdings provide greater stability of yields than gona, or higher-elevation,
landholdings. Each additional hectare of fadama land held increased the probability of household attrition
by 5.5 percent. Our results suggest that wealthier households may be more likely to attrite, however, as
we will show that the parameters on the wealth variables are not statistically robust across attrition model
specifications.

Adding the degree-day variables independently, in columns 2 and 3 of Table 4, has no
statistically significant effect on the likelihood of attrition. The effect on the number of women of prime
working age in the sample remains robust across the specifications, suggesting that an additional woman
in the household decreases attrition by 4 percent. When both degree-day variables are included jointly in
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the attrition specification in column 4, both variables affect the likelihood of attrition. This is not
surprising, as our hypothesis posits that increased shocks raise migration rates of individuals, but shocks
could also increase the mobility of households. This finding suggests that our results likely underestimate
the effect of temperature-related shocks on migration, as our tracking study was not able to find those
households who migrated as a unit.

Table 4. Attrition
ey 2 3) “)

No temperature Coefficient of Temperature CV and

variables Variation (CV) shocks shocks

Total assets value(in 1,000 naira) -0.002 -0.001 -0.001 -0.000
(0.002) (0.002) (0.002) (0.001)
Total value of livestock (in 1,000 naira) 0.010%*** 0.009** 0.009** 0.007*
(0.004) (0.004) (0.004) (0.004)

Total number of livestock in TLU 0.000 -0.002 -0.002 -0.002
(0.011) (0.011) (0.011) (0.011)

Age of household head -0.001 -0.000 -0.000 -0.000
(0.002) (0.001) (0.001) (0.001)

Number of men -0.042 -0.048%** -0.048*** -0.046%**
(0.037) (0.017) (0.017) (0.017)
Number of women -0.054%** -0.044%** -0.044*** -0.044***

(0.006) (0.008) (0.008) (0.008)

Number of household dependents 0.004 0.005 0.005 0.005
(0.008) (0.008) (0.008) (0.008)

Gona land size in hectares -0.006 -0.011 -0.011 0.000
(0.005) 0.011) (0.011) (0.016)
Fadama land size in hectares 0.055%** 0.038 0.038 0.049*
(0.019) (0.026) (0.026) (0.028)
Coefficient of variation 0.024 4.600*
(0.029) (2.649)
Temperature shocks 0.000 -0.002*
(0.000) (0.001)

Number of observations 196 190 190 190

Adjusted R2 0.068 0.041 0.041 0.040

Source: Authors calculations from 1988 Northern Nigeria survey (Udry 1991) and the 2008 tracking survey conducted by the
authors. All household variables are from the 1988 data. Degree-days are calculated from daily temperature data (1983-2008)
from the Surface Meteorology and Solar Energy (SSE-release 6.0) product developed by the Atmospheric Sciences Data Center
at the NASA Langley Research Center.

Notes: *** p <0.01, ** p <0.05, * p<0.10.
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5. RESULTS

Migration and Risk

We present the results from the migration regression in Table 5 using the following dependent variables:
the household has at least one migrant (column 1), the household has at least one male migrant (column
2), and the household has at least one female migrant (column 3). In column 1, we observe that
households with a greater share of boys in 1988 tend to have fewer migrants, which is primarily driven by
the fact that most of the migration activity is females moving out of the household. Primary education of
the household head has a positive effect on migration, and the opposite is true for the household’s head
completion of a secondary education. Lastly, ex ante risk has a negative effect in the pooled specification,
but we see in our gender disaggregated analysis that ex ante risk is positively associated with male
migration.7

We further compare the effects of having at least one male migrant versus one female migrant in
columns 2 and 3 of Table 5. We find that most coefficients are statistically insignificant in the male
regression, potentially due to the limited number of households in our sample with at least one male
migrant. Interestingly, the estimate of ex ante risk on migration corroborates previous work on off-farm
labor participation (Rose 2001) that suggest that increased ex ante risk increases the likelihood of male
migration. Household size, share of girls in the household, and whether the household head completed a
primary education are positive and significant determinants of having at least one female migrant. There
is evidence that households facing risk are less inclined to send female migrants elsewhere (p-
value = 0.13 for the coefficient of variation parameter according to the t-test, and p-value = 0.19
according to the Wald test using the wild bootstrapped standard errors), which may be driving the ex ante
risk effect in column 1. Note that this is opposite to the Rosenzweig and Stark (1989) result, which finds
that the number of female migrants is positively correlated with ex ante risk. There are a few possible
explanations for this effect. First, this specification does not control for ex post risk, so it may be that
households evaluate both ex ante and ex post risk before allocating migrants. In our specifications below,
we introduce controls for both ex ante and ex post risk in the specification. Second, because marriage
migration may be the primary motivation for women, low-income or labor-constrained households facing
riskier distributions may retain their women for labor on the farm or within the household. Third, women
in households who face risk may tend to marry within their village if expanding the household is the
preferred mechanism of risk pooling rather than diversifying the spatial allocation of household members
(Townsend 1994). Lastly, it is also possible that households facing greater ex ante risk are less likely to
finance the move of migrants. For female migrants, the household may need to accumulate savings for a
dowry. For male migrants, the household may need to mobilize resources to finance the transit and set-up
costs at the destination.

To evaluate whether income constraints may be driving the effect on the ex ante risk parameter,
we reestimate the migration specification for the pooled sample, differentiating the effect by wealth status
in column 4 of Table 5. We create a low-income dummy variable, in which low-income households
include those that have total household capital values less than or equal to the 25™ percentile of the
sample. We find that the effect of risk on migration is more pronounced among low-income households;
however, the overall effect remains negative and not robust to tests using the wild bootstrapped standard
errors, suggesting that the financial constraints may not be driving the negative effect.” This suggests that
ex ante risk pooling by marriage within the village or retaining household labor may be preferred due to
incomplete labor markets rather than credit constraints.

! We have also estimated a probit version of the model that assumes the errors are distributed normally. We obtain a
negative and significant effect on the ex ante risk parameter. The coefficient is -0.13 and is significant at the one percent critical
level.

8 It is possible that households who are risk-averse may be more or less inclined to send migrants that could also bias our
risk parameter. We control for risk-aversion to the extent that it is correlated with wealth.
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Table 5. Migration and ex ante risk

M @ 3 @
Has migrant  Has male migrant  Has female migrant Has migrant
Household size 0.010 0.017 0.024** 0.010
(0.010) 0.011) (0.007) (0.011)
Share of boys in household -0.215%* -0.266 -0.112 -0.224%%*
(0.064) (0.178) (0.064) (0.062)
Share of girls in household 0.099 -0.290 0.495* 0.103
(0.121) (0.150) (0.183) (0.124)
Male household head 0.007 0.242 -0.040 0.019
(0.163) (0.126) (0.280) (0.173)
Household head has primary education 0.156* -0.067 0.158* 0.150*
(0.052) (0.163) (0.064) (0.048)
Household head has secondary education -0.196* 0.034 -0.098 -0.197*
(0.075) (0.102) (0.085) (0.080)
Fadama land 0.010 -0.001 -0.046 0.014
(0.019) (0.022) (0.023) (0.018)
Livestock value 7.54e-06 1.37e-06 1.61e-05 6.67¢-06
(7.69¢-06) (7.30e-06) (8.35¢-006) (8.07¢-06)
Household capital value 2.05e-06 3.31e-06 -1.24e-06 2.49¢-06
(3.02¢-06) (1.96¢-06) (5.43¢-006) (2.15¢-06)
Coefficient of variation of degree-days*land -0.036%* 0.012 -0.019 -0.029*
(0.007) (0.009) (0.009) (0.012)
[0.055] [0.311] [0.185] [0.301]
Coefficient of variation of degree- -0.053*
days*land*low-income dummy (0.021)
[0.441]
Low-income dummy 0.069
(0.062)
Constant 0.752%%* 0.347* 0.271 0.731%*
(0.119) (0.143) (0.239) (0.138)
F-test: CV and CV*low income = 0 134.76%***
Number of observations 185 185 185 185
R-squared 0.117 0.140 0.224 0.123

Source: Authors calculations from 1988 Northern Nigeria survey (Udry 1991) and the 2008 tracking survey conducted by the
authors. All household variables are from the 1988 data. Degree-days are calculated from daily temperature data (1983-2008)
from the Surface Meteorology and Solar Energy (SSE-release 6.0) product developed by the Atmospheric Sciences Data Center

at the NASA Langley Research Center.

Notes: Village-clustered standard errors are in parentheses. P value of the wild bootstrapped standard errors, testing the null
hypothesis that the coefficient is zero, is in brackets. Village indicators are included in the regression. *** p < 0.01, ** p <0.05,

*p <0.10.

Households in Nigeria may use migration to respond to ex post risk. When households face
severe shocks, they may be less inclined to send members elsewhere, due to their need to retain labor
(Halliday 2006). Alternatively, shocks may induce migration to pool risk and spatially diversify income.
One of the challenges in identifying the presence of an ex post risk management strategy is that our
dataset consists of a cross-section of households’ migration outcomes. Therefore, it is difficult to develop
a counterfactual shock for nonmigrant households. To account for the possibility of migration as an ex
post risk management strategy, we first test the hypothesis that the timing of the migration does not affect
the relationship between ex ante risk and migration.
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Table 6 provides regression results for having at least one migrant move at various time periods.
The results show that timing of migration matters. The parameters on the ex ante risk variable are positive
both in columns 1 and 4, and significantly different (according to the Chow tests) than the parameter in
the pooled version of the model (column 1, Table 6). We further attempt to capture specific shocks and
the household’s ex post response to risk in the model explicitly by including the standard deviation of
temperature degree-days over the five-year period of migration. The results in columns 5 and 8 are
consistent with the previous specification, indicating that ex ante risk is positively associated with
migration behavior. Ex ante and ex post risk measures in columns 5 and 8 significantly affect the time-
specific migration behavior according to F statistics testing their parameters joint significance, and the
Wald statistics testing the parameters individual significance in column 8. Specifically, we find that
previous shocks positively (negatively) affected migration in the first (fifth) period. The fact that there is a
negative effect of the parameter in the fifth period is not surprising, considering that northern Nigeria
experienced a record drought in the 1980s (Blench and Dendo 2004). We would expect that shocks of
more intense magnitude may induce households to retain labor following Halliday (2006), but that less
severe shocks may induce households to spatially disaggregate risk. Our results provide support that
households respond to both ex ante and ex post risk by sending household members elsewhere, and that
controlling for ex post risk generates estimates consistent with previous studies.

Spatial Allocation of Household Members and Risk

Upon deciding to send a household member elsewhere, the household is then faced with the decision of
how far to send migrants in order to diversify risk. We next compare whether households base their
decision of where to locate individuals according to ex ante risk in columns 1 and 3 of Table 7. The
results are consistent with the earlier migration specification, where we see a negative effect on the
coefficient of variation parameter in the pooled and female regressions and a positive effect on the
parameter in the male regressions. However, for the case of distances, not one of these three parameters is
statistically significant from zero.”

As in the migration specification, the negative coefficient on the ex ante risk parameter may be
driven by the omission of a control for ex post risk. We next include the number of standard deviations
above/below the mean one year prior to the migrant’s move to examine the impact of ex post risk in the
distance regression. Columns 4 through 6 in Table 7 present the results from those regressions. As in the
migration specification (1), the coefficient of variation parameter changes from negative to positive in the
pooled and male regressions when we control for a measure of ex post risk. However, according to the F
statistics testing joint significance and the t and Wald statistics testing the individual significance of the ex
ante and ex post parameters, we cannot reject that these parameters are statistically equal to zero at the
10-percent critical level.

? Due to data limitations, we are only able to compute distances between the origin and destination LGAs. Since many
migrants move within an LGA, a large fraction of our sample has values of zero for the dependent variable. The measurement
error is somewhat small in our case because the origin LGAs are small: Giwa and Soba are 2,066 and 2,234 square kilometers,
respectively (National Bureau of Statistics GeoDatabase). Moreover, the estimates from the distance regression using our sample
of female migrants will more likely suffer from such measurement error as a larger fraction of them (59.74 percent) make within
LGA moves than male migrants (18.97 percent). To observe how sensitive our results are to the measurement error, we
reestimate the regressions excluding those migrants that move within their LGA. We find that the estimates on the coefficient of
variation parameters in the female and male regressions are within the order of magnitude of those reported in Table 8. In
particular, the parameters are -0.17 (p-value = 0.95) and 5.48 (p-value = 0.81), in the female and male distance regressions,
respectively.
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Table 6. Timing of migration and risk

1 ) (3) 4) (5) (6) (7 (3)
At least 1 At least 1 At least 1 At least 1 At least 1 At least 1 At least 1 At least 1
moves 88-92 moves 93-97 moves 98-02 moves 03-08 moves 88-92 moves 93-97 moves 98-02 moves 03-08
CV of degree-days*land 0.037%* -0.021 -0.030 0.012 0.026 0.017 -0.074 0.215
(0.009) (0.015) (0.024) (0.011) (0.0474) (0.040) (0.068) (0.095)
[0.053] [0.337] [0.435] [0.277] [0.665] [0.665] [0.435] [0.053]
SD (1988-1992)*1and 4.03e-05
(0.000167)
[0.819]
SD (1993-1997)*1and -1.87e-04
(1.96¢-04)
[0.919]
SD (1998-2002)*1and 2.02e-04
(3.03¢-04)
[0.985]
SD (2003-2008)*1and -1.20e-04
(6.17¢-05)
[0.055]
F-test: CV pooled= CV(1, 2, 3, or 4) 13.44%** 3.57 2.70 7.99%
F-test: CV and SD=0 9.36* 1.07 1.05 33.05%%*
Households with at least one migrant 52 61 81 43 52 61 81 43
Households 185 185 185 185 185 185 185 185
R-squared 0.094 0.116 0.088 0.101 0.095 0.119 0.092 0.102

Source: Data are from the 1988 Northern Nigeria survey (Udry 1991) and the 2008 tracking survey conducted by the authors. All household variables are from the 1988 data.

Degree-days are calculated from daily temperature data (1983-2008) from the Surface Meteorology and Solar Energy (SSE-release 6.0) product developed by the Atmospheric
Sciences Data Center at the NASA Langley Research Center.
Notes: Village-clustered standard errors are in parentheses. P value of the wild bootstrapped standard errors, testing the null hypothesis that the coefficient is zero, is in brackets.
CV refers to coefficient of variation of temperature degree-days, and SD refers to the standard deviation of temperature. *** p <0.01, ** p <0.05, * p <0.1.
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Table 7. Distances traveled and risk

(M @) €) 4) ®) (6)
Pooled Females Males Pooled Females Males
Female -133.3%* -132.2%*
(34.25) (33.81)
Age -0.154 -0.009 -3.326 -0.176 -0.008 -3.724
(0.866) (1.037) (4.174) (0.834) (1.045)  (4.568)
Age squared -0.008 0.007 0.006 -0.008 0.007 0.008
(0.020) (0.016) (0.097) (0.020) 0.016)  (0.110)
Household size -1.234 -0.022 -5.512 -1.206 -0.012 -4.392
(2.925) (0.960) (6.184) (2.962) (0.966)  (6.302)
Share of boys in household 5.698 42.66 -71.96 4.152 42.84 -79.46
(57.66) (19.80) (187.8) (60.57) (20.34) (196.4)
Share of girls in household 12.24 -31.61%* 72.22 11.41 -31.66** 79.24
(37.85) (8.443)  (152.6) (38.15) (8.459)  (146.3)
Male household head -37.47 -44.14%%* -82.13 -38.34 -44.23%*%*  _80.59
(40.47) (5.367) (60.40) (39.77) (5.220)  (84.94)
Household head has primary education 3.051 -10.44 81.96 2.452 -10.33 74.99
(10.80) (14.19) (50.56) (9.327) (14.12) (50.41)
Household head has secondary education 42.61 14.05 64.83 4432 13.70 72.34
(23.23) (10.87) (158.9) (25.77) (10.99) (156.6)
Fadama land -10.35 -0.276 -25.18 -11.29 -0.401 -27.28
(12.17) (6.287) (33.31) (13.16) (6.357) (31.10)
Livestock value 0.003 0.002 0.010 0.003 0.002 0.010
(0.003) (0.002) (0.013) (0.003) (0.002) (0.013)
Household capital value in 1,000 naira units 0.543 0.298 0.816 0.552 0.294 0.799
(0.306) (0.481) (1.50) (0.322) (0.487) (1.36)
Coefficient of variation of degree-days*land -0.239 -0.216 5.758 0.108 -0.381 1.560
(5.796) (1.414) (25.15) (6.371) (1.461) (21.96)
[0.849] [0.927] [0.613] [0.917] [0.829] [0.881]
Lagged SD in origin*land -0.557 0.115 -2.179

(1.136) (0.231)  (1.850)
[0.811] [0.819]  [0.285]

Constant 202.3* 64.15%* 3189 203.2% 64.25%%* 312.7
(69.44) (13.71) (144.2) (70.35) (13.90) (134.6)
F-test: CV and SD=0 0.72 0.14 1.03
Observations 212 154 58 212 154 58
R-squared 0.279 0.135 0.217 0.280 0.135 0.225

Source: Data are from the 1988 Northern Nigeria survey (Udry 1991) and the 2008 tracking survey conducted by the authors. All
household variables are from the 1988 data. Degree-days are calculated from daily temperature data (1983-2008) from the
Surface Meteorology and Solar Energy (SSE-release 6.0) product developed by the Atmospheric Sciences Data Center at the
NASA Langley Research Center.

Notes: Village indicators are included in the regression. Village-clustered standard errors are in parentheses. P value of the wild
bootstrapped standard errors, testing the null hypothesis that the coefficient is zero, is in brackets. CV refers to coefficient of
variation of temperature degree-days, and SD refers to the standard deviation of temperature. *** p < 0.01, ** p <0.05, * p <0.1.

It is possible that the parameters on the ex post variables are not statistically different from zero
because hot and cool shocks have opposing effects on the spatial allocation of household members. This
phenomenon has the potential to attenuate the effect our shock parameter has on distance. We
differentiate ex post risk by hot and cool in the next set of specifications (Table 8). The estimates in
columns 1 through 3 indicate that the magnitude of the effects of hot shocks is greater than the magnitude
of cool shocks. Ex post risk is only significant in the pooled and male distance regressions according to
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the F tests of joint significance at the 10-percent critical level and the Wald test for individual significance
in the pooled distance regression.

Table 8. Distances traveled and ex post risk associated with hot and cool shocks

(M 2 A3) “4) ®) (6)
Pooled  Females Males Pooled Females Males
Coefficient of variation 3.797 -3.987 8.156 4.104 -3.576 21.69
(2.087) (5.693) (17.98) (2.526) (7.592) (16.99)
[0.161] [0.581] [0.781] [0.161] [0.683] [0.407]
Lagged SD above mean in origin*land -2.811 2.179 -7.939 -2.558 0.928 -3.347
(1.563) (2.790) (3.916) (2.362) (3.009) (5.602)
[0.055] [0.429] [0.163] [0.333] [0.685] [0.689]
Lagged SD below mean in origin*land -0.362 0.516 -0.381 -0.539 0.195 -0.832
(2.009) (0.608) (2.878) (2.339) (0.874) (3.957)
[0.849] [0.313] [0.823] [0.849] [0.819] [0.689]
Lagged SD above mean in origin*land*low- -3.140 6.290 -45.84
income dummy (7.779) (8.750) (33.46)
[0.507] [0.565] [0.055]
Lagged SD below mean in origin*land low-income 0.880 1.529* -0.851
Dummy (2.128) (0.615) (6.478)
[0.687] [0.465] [0.641]
Low-income dummy 12.29 -21.36 151.7
(30.59) (13.70) (130.7)
[0.657] [0.055] [0.283]
F test joint significance of hot and cool shocks 8.80%* 0.36 8.70*
F test joint significance of hot shocks 109.91 ##* 0.26 20.29**
F test joint significance of cool shocks 0.17 4.11 0.7
Observations 212 154 58 212 154 58
R-squared 0.281 0.138 0.232 0.283 0.165 0.290

Source: Data are from the 1988 Northern Nigeria survey (Udry 1991) and the 2008 tracking survey conducted by the authors. All
household variables are from the 1988 data. Degree-days are calculated from daily temperature data (1983-2008) from the
Surface Meteorology and Solar Energy (SSE-release 6.0) product developed by the Atmospheric Sciences Data Center at the
NASA Langley Research Center.

Notes: Village-clustered standard errors are in parentheses. P value of the wild bootstrapped standard errors, testing the null
hypothesis that the coefficient is zero, is in brackets. CV refers to coefficient of variation of temperature degree-days, and SD
refers to the standard deviation of temperature. *** p <0.01, ** p <0.05, * p <0.1.

Next, in columns 4 through 6 of Table 8, we differentiate the impact of hot and cool shocks by
wealth to evaluate whether financing costs may prohibit households from sending migrants further away.
We find that hot shocks continue to be the important factor in the decision of how far to send a migrant
(in the pooled and male distances regressions). The effect remains negative, meaning that households that
face greater risk associated with hot shocks tend to retain labor irrespective of the wealth status of
household. The inability to finance the move of migrants is not driving the entirety of the result. This
suggests that additional constraints, such as incomplete labor markets, which inhibit hiring labor
substitutes, or access to networks to reduce costs associated with the uncertainty of migrant employment,
may factor into the decision of where to allocate household members.

Distance Traveled and Frequency of Disasters

Our final consideration is that the cumulative realization of shocks may also bear an effect on where to
place migrants spatially. To capture the cumulative effects of shocks, we include the number of times
during the five years prior to the migrant’s move that the standard deviation of degree-days was one
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standard deviation above or below the mean level of degree-days. We also create variables that
differentiate the number of times households experienced cool and hot shocks five years prior to the
migrant’s move. The results from these regressions are in Table 9. From columns 1-3, we find that
households facing frequent shocks tend to keep migrants closer; however, the effect is only statistically
significant at the 5-percent level in the pooled regression and not robust to Wald test using the wild
bootstrapped standard errors. Next, we find in the pooled regression similar negative effects on the impact
of cumulative hot and cool shocks on distances traveled. Interestingly, the coefficient of variation is
negative but not significant according to the t-test or F test of joint significance at the 10-percent critical
level, but significant at the 10-percent critical level according to the Wald test. Upon distinguishing the
distances traveled by gender, we do not observe any effects on the distances females travel, but we do
witness more pronounced and significant effects of frequent shocks on the distances male migrants travel.
In particular, cumulative hot shocks have a pronounced negative and significant (at the 10-percent critical
level according to t and Wald tests) effect on distances traveled by males. Moreover, the sign on the ex
ante risk parameter has become negative and jointly significant according to the F test. We further check
whether multicollinearity between the coefficient of variation in degree-days and the hot shock variable
may be affecting the precision of the estimate on the coefficient of variation, which our sample may be
particularly sensitive to since it is small. We find that the correlation between these two variables is rather
low and negative (-0.13). Furthermore, we cannot reject that the partial correlation coefficient is
statistically equivalent to zero (p-value = 0.35). Thus, while households facing hot shocks prior to the
migrant’s move tend to keep male migrants close by, the number of hot shocks households face also
matters. In particular, households facing frequent hot shocks tend to increase the proximity of the migrant
to the original community.

Table 9. Distances traveled and frequency of shocks

1) 2) 3) “) &) (6)
Pooled Females Males Pooled Females Males
Coefficient of variation in degree-days 0.245 -0.191 6.508 -0.293 -0.180 -3.416
(5.649) (1.440) (24.38) (5.771)  (1.450) (20.52)
[0.917] [0.927] [0.952] [0.955]  [0.927] [0.839]
Times over 5 years SD above/below mean -0.756%* -0.265 -0.518
in origin*land (0.204) (0.394) (0.814)
[0.163] [0.951] [0.865]
Times over 5 years 1 SD above mean in -2.142 1.188 -7.700%*
origin*land (1.212)  (0.699) (1.933)
[0.055]  [0.457] [0.055]
Times over 5 years 1 SD below mean in -0.839*%  -0.382 -0.968
origin*land (0.280)  (0.386) (0.569)
[0.055]  [0.543] [0.865]
F test joint significance of hot/cool shock 6.67* 2.39 121.69%***
F test joint significance of CV and hot shock 4.31 2.66 30.83%**
Observations 212 154 58 212 154 58
R-squared 0.282 0.136 0.218 0.283 0.138 0.223

Source: Data are from the 1988 Northern Nigeria survey (Udry 1991) and the 2008 tracking survey conducted by the authors. All
household variables are from the 1988 data. Degree-days are calculated from daily temperature data (1983-2008) from the
Surface Meteorology and Solar Energy (SSE-release 6.0) product developed by the Atmospheric Sciences Data Center at the
NASA Langley Research Center.

Notes: Village-clustered standard errors are in parentheses. P value of the wild bootstrapped standard errors, testing the null
hypothesis that the coefficient is zero, is in brackets. CV refers to coefficient of variation of temperature degree-days, and SD
refers to the standard deviation of temperature. *** p <0.01, ** p <0.05, * p<0.1.

18



6. CONCLUSION

Our findings are broadly consistent with important precursors in the literature (Rosenzweig and Stark
1989; Halliday 2006) and suggest important policy implications. First, households with higher ex ante
risk are more likely to send migrants. This is broadly consistent with Rosenzweig and Stark (1989) when
we control in our specifications for both ex ante and ex post risk. These results use an alternative set of
climate variables, temperature degree-days, rather than rainfall. Second, our results show that households
use migration to mitigate risk in northern Nigeria. Households facing greater ex post risk keep members,
particularly, males close by, in response to hot shocks. Further investigation into why households tend to
keep male members close by is warranted. Robustness checks suggest that income constraints cannot
entirely explain this tendency. Since male migrants are, on average, of prime working age, labor shortages
or constraints on agricultural inputs may restrict the mobility of migrants. Future work evaluating whether
such risk management strategies are welfare-enhancing and the role of social norms and agricultural input
constraints on mobility may offer insight into what mechanisms can facilitate private adaptation to risk.

These results have implications for current debates surrounding global climate change and the
adaptability of households to climatic variation. Global climate change will affect the efficacy of existing
risk management strategies. The viability of migration as an ex ante risk management strategy will
depend on how warming affects the correlation of incomes across space. If warming increases the
correlation of income variability between origin and destination locations, migration will be a less reliable
strategy to deal with ex ante. If warming is widespread, it is possible that households may choose to retain
labor to maintain their own level of productivity. Even by retaining labor close by, severe cases of
warming may result in famine or overall displacement without additional resources to buffer households
(for example, if retention of labor is not entirely driven by productivity but also by strong social norms).
Understanding how climate affects migration decisions and household risk management strategies can
inform the targeting of resources and public services necessary to respond to the policy challenges from
climate change.
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