
Mihai Pǎtraşcu: Obituary and Open
Problems

Mikkel Thorup

Figure 1: Mihai lived his short life in the fast lane. Here with his second wife
Mirabela Bodic that he married at age 25.

Mihai Pǎtraşcu, aged 29, passed away on Tuesday June 5, 2012, after a 1.5 year
battle with brain cancer. Mihai’s academic career was short but explosive, full
of rich and beautiful ideas as witnessed, e.g., in his 20 STOC/FOCS papers. His
many interesting papers are available online at: http://people.csail.mit.
edu/mip/papers/index.html.



������ �� 	
� ����� �������

�

Mihai’s talent showed early. In high school he received numerous medals at
national (Romanian) and international olympiads including prizes in informatics,
physics and applied math. He received gold medals at the International Olympiad
in Informatics (IOI) in both 2000 and 2001. He remained involved with olympiads
and was elected member of the International Scientific Committee for the Inter-
national Olympiad of Informatics since 2010.

Mihai’s main research area was data structure lower bounds. In data structures
we try to understand how we can efficiently represent, access, and update infor-
mation. Mihai revolutionized and revitalized the lower bound side, in many cases
matching known upper bounds. The lower bounds were proved in the powerful
cell-probe model that only charges for memory access, hence which captures both
RAM and external memory. Already in 2004 [17], as a second year undergrad-
uate student, with his supervisor Erik Demaine as non-alphabetic second author,
he broke the Ω(log n/ log log n) lower bound barrier that had impeded dynamic
lower bounds since 1989 [6], and showed the first logarithmic lower bound by an
elegant short proof, a true combinatorial gem. The important conclusion was that
binary search trees are optimal algorithms for the textbook problem of maintain-
ing prefix sums in a dynamic array. They also proved an Ω(log n) lower bound
for dynamic trees, matching Sleator and Tarjan’s upper bound from 1983 [20]. In
2005 he received from the Computing Research Association (CRA) the Outstand-
ing Undergraduate Award for best undergraduate research in the US and Canada.

I was myself lucky enough to meet Mihai in 2004, starting one of most intense
collaborations I have experienced in my career. It took us almost two years to find
the first separation between near-linear and polynomial space in data structures
[19]. What kept us going on this hard problem was that we always had lots of
fun on the side: playing squash, going on long hikes, and having beers celebrat-
ing every potentially useful idea we found on the way. A strong friendship was
formed.

Mihai published more than 10 papers while pursuing his undergraduate studies
at MIT from 2002 to 2006. Nevertheless he finished with a perfect 5.0/5.0 GPA.
Over the next 2 years, he did his PhD at MIT. His thesis “Lower Bound Techniques
for Data Structures” [11] is a must-read for researchers who want to get into data
structure lower bounds.

During Mihai’s PhD, I got to be his mentor at AT&T, and in 2009, after a
year as Raviv Postdoctoral Fellow at IBM Almaden, he joined me at AT&T. We
continued our work on lower bounds, but I also managed to get him interested in
hashing which is of immense importance to real computing. We sought schemes
that were both truly practical and theoretically powerful [15].

With his amazing energy and creative spirit, Mihai continued his work with
many different collaborators on diverse topics. Data structure lower bounds, how-
ever, remained his core research area. In one of his favorite papers “Unifying the



��� �������	 
� ��� �
���

�

landscape of cell-probe lower bounds” [14], he identified a whole new level of
structure and connectivity in the field.

On January 1, 2011, Mihai was diagnosed with brain cancer. After a partially
successful operation on March 21, 2011, anti-seizure medicine took away most of
his energy and clarity, but he still had an amazing intuition. He wanted to work
till the very end, even though this meant I had to push him to work in a wheel-
chair the last 4 months. Less than a month before his passing, he was notified
that he was co-winner of the 2012 EATCS Presburger Young Scientist Award,
recognizing his huge contribution to the field.

1 Open Problems
In the last weeks before Mihai passed away, we talked about what were the impor-
tant challenges in data structures. Our experience with data structure lower bounds
has been that the strongest lower bounds have not been for abstract problems, but
rather for concrete well-known problems. The list below contains concrete prob-
lems that we believe capture types of lower bounds that have so far never been
proved. They are ordered with the ones I believe to be the most significant first.

Problem 1: Deterministic dictionaries
One of the most fundamental data structures is a dictionary which allows us to
store and look up information associated with keys. Dictionaries are often identi-
fied with hash tables, which are the most common way they are implemented, but
they could be implemented with binary search trees, supporting each operation in
O(log n). Dictionary operations are a bottleneck for many kinds of data analysis,
including the processing of high volume data streams. They are also in the inner
loops of many algorithms and have been central to computing as long as we have
had computers.

For more than 50 years, we have had good randomized solutions. The space is
linear in the number of stored keys, and we support both updates and look-ups in
constant expected time [4]. Lots of solutions are known pushing the randomness
around, e.g., in a breakthrough, Fredman, Komlos, and Szemerédi [5] proved that
there are dictionaries with constant deterministic look-up time. Dietzfelbinger et
al. [2] showed that this deterministic constant look-up time can be maintained
with randomized updates in constant expected time. The randomization implies a
fundamental unreliability. We have to be prepared for some updates being slow,
which is a problem for time-critical systems. The probability of such events can
be reduced at the expense of longer average update times. The big open question
is



������ �� 	
� ����� �������

��

Does there exist a perfect deterministic dictionary using linear space
while supporting both lookups and updates in worst-case constant
time?

Apart from RP ?
=P, we thought of this as the most important derandomization prob-

lem left in theoretical computer science. The current positive deterministic re-
sults are quite far away. If we want constant query time, the best known update
time is O(nε) where ε is any positive constant [7]. If we are willing to settle
for doubly-logarithmic query time, the update time can be improved to logarith-
mic [9]. If we want a joint bound for both lookups and updates, the best known
bound is O(

√
log n/ log log n) [1]. The dream is to get down to constant time for

both lookups and updates. Even with amortization, this would be a major break-
through.

We believe that the true answer is negative, but how can we prove it? Often it is
much easier to prove deterministic lower bounds than randomized lower bounds,
but this does not give a separation unless the deterministic lower bounds are higher
than the known randomized upper bounds. A separation for dictionaries would be
extremely interesting, and likely have ramifications for many other problems.

Problem 2: Multiphase problem
In data structures, the largest proven lower bounds are polylogarithmic [8], and a
major challenge is to prove polynomial lower bounds like nΩ(1). Mihai proposed a
very interesting line of attack via his so-called multiphase problem in [13].

Problem 3: Set Intersection
In [19], we proved a separation between near-linear and polynomial space, e.g.,
showing that certain queries that can be supported in constant time with n1.001

space, require Ω(log log n) time with n logO(1) n space. However, no such separa-
tion is known between space n1.001 and space n100. In [18], together with Roditty,
we conjectured a concrete hard problem for space nα for any α ∈ (1, 2]. The
hardness is all based on set intersection:

instance for preprocessing: The construction algorithm receives the n sets
S 1, ..., S n ⊆ [u]. In a regular instance, for some set size parameter s ≤ u,
each set has size at most s, and each element appears in ns/u sets.

query: for given (i, j) ∈ [n]2, the boolean query is whether S i intersects S j.

The two obvious solutions are to either store all the (positive) answers in the
preprocessing phase, or to simply store the sets directly and intersect them during
the query. A popular belief, consistent with all current upper bound ideas, is



��� �������	 
� ��� �
���

��

that in general there is no smooth trade-off between these two extreme types of
solutions. In fact, the problem seems hard even for random instances where each
S i is a random subset of [u] each of polylogarithmic size. Then the expected
number of intersections is Õ(n2/u) and they can be represented in a hash table of
this size. The following conjecture states that this is the best possible.

Conjecture 1. Let a and b be sufficiently large constants. Consider regular set
intersection instances with n sets, universe size u, and set size s = loga n. If a data
structure with constant query time uses only O(n2/(u logb n)) space and makes
no false negatives, then for some set intersection instance, the fraction of false
positives is Ω(1) over all

(
n
2

)
possible queries.

In [18] we used this conjectured hardness to prove hardness of distance oracles
for graphs. Proving the conjecture would likely lead to lower bounds for many
other problems.

Problem 4: Dynamic 2D Range Counting
In the 2D range counting problem, we have points in 2D. We want to query the
number of points in a rectangle specified by the 4 corner coordinates. In a decision
version, we may just ask if the parity is odd. In [10] Mihai proved that for the static
problem where n points have to be represented with near-linear space, the query
time is Ω̃(log n). He believed that in the dynamic case, the update time would be
Ω̃(log2 n). This would be the first superlogarithmic lower bound for a decision
problem.

We note that Larsen [8] provided the Ω̃(log2 n) lower bound for the case where
each point has an O(log n)-bit weight, and where the query is about the range sum
(not just the parity). However, such large weights can code more information than
a memory address, and this is exploited heavily by the technique from [8].

Problem 5: Succinct Dictionary
In succinct data structures, we try to represent data using space close to the entropy
H, yet provide efficient access. In his FOCS’08 best student paper [12], Mihai
showed that for many data structure problems, we can pick an arbitrary parameter
t, and represent the data using space H + O(H/ logt H) space, answering queries
in time O(t). For most of the problems, no such result was known for any t > 2.
For some of the problems, he later presented matching lower bounds together with
Viola [16]. One problem for which he could not find a matching lower bound was
the dictionary problem, where we are given n elements from [u]. The entropy is
H = log2

(
u
n

)
. The question is if we can do better than the H + O(H/ logt H) space



������ �� 	
� ����� �������

��

from [12]? Inspired by our paper [3], Mihai was hopeful that much better bounds
would be possible. In [3], for the so-called trits problem, we improved the space
from H + O(H/ logt H) to H + O(1) while maintaining constant query time.

References
[1] A. Andersson and M. Thorup. Dynamic ordered sets with exponential search trees.

Journal of the ACM, 54(3), 2007. See also FOCS’96, STOC’00.

[2] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. M. auf der Heide, H. Rohnert, and
R. E. Tarjan. Dynamic perfect hashing: Upper and lower bounds. SIAM Journal on
Computing, 23(4):738–761, 1994. See also FOCS’88.

[3] Y. Dodis, M. Pǎtraşcu, andM. Thorup. Changing base without losing space. In Proc.
42nd ACM Symposium on Theory of Computing (STOC), pages 593–602, 2010.

[4] A. I. Dumey. Indexing for rapid random access memory systems. Computers and
Automation, 5(12):6–9, 1956.

[5] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with 0(1) worst
case access time. Journal of the ACM, 31(3):538–544, 1984. See also FOCS’82.

[6] M. L. Fredman and M. E. Saks. The cell probe complexity of dynamic data struc-
tures. In Proc. 21st ACM Symposium on Theory of Computing (STOC), pages 345–
354, 1989.

[7] T. Hagerup, P. B. Miltersen, and R. Pagh. Deterministic dictionaries. Journal of
Algorithms, 41(1):69–85, 2001.

[8] K. G. Larsen. The cell probe complexity of dynamic range counting. In Proc. 44th
ACM Symposium on Theory of Computing (STOC), pages 85–94, 2012.

[9] R. Pagh. A trade-off for worst-case efficient dictionaries. Nordic Journal of Com-
puting, 7:151–163, 2000. See also SWAT’00.

[10] M. Pǎtraşcu. Lower bounds for 2-dimensional range counting. In Proc. 39th ACM
Symposium on Theory of Computing (STOC), pages 40–46, 2007.

[11] M. Pǎtraşcu. Lower Bound Techniques for Data Structures. PhD thesis, MIT, 2008.

[12] M. Pǎtraşcu. Succincter. In Proc. 49th IEEE Symposium on Foundations of Com-
puter Science (FOCS), pages 305–313, 2008.

[13] M. Pǎtraşcu. Towards polynomial lower bounds for dynamic problems. In Proc.
42nd ACM Symposium on Theory of Computing (STOC), pages 603–610, 2010.

[14] M. Pǎtraşcu. Unifying the landscape of cell-probe lower bounds. SIAM Journal on
Computing, 40(3):827–847, 2011. Announced at FOCS’08.

[15] M. Pǎtraşcu and M. Thorup. The power of simple tabulation-based hashing. Journal
of the ACM, 59(3):Article 14, 2012. Announced at STOC’11.



��� �������	 
� ��� �
���

��

[16] M. Pǎtraşcu and E. Viola. Cell-probe lower bounds for succinct partial sums. In
Proc. 21st ACM/SIAM Symposium on Discrete Algorithms (SODA), 2010.

[17] M. Pǎtraşcu and E. D. Demaine. Logarithmic lower bounds in the cell-probe model.
SIAM Journal on Computing, 35(4):932–963, 2006. Announced at SODA’04 and
STOC’04.

[18] M. Pǎtraşcu, L. Roditty, and M. Thorup. A new infinity of distance oracles for sparse
graphs. In Proceedings of the 53nd IEEE Symposium on Foundations of Computer
Science (FOCS), pages 738–747, 2012.

[19] M. Pǎtraşcu and M. Thorup. Time-space trade-offs for predecessor search. In Proc.
38th ACM Symposium on Theory of Computing (STOC), pages 232–240, 2006.

[20] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. Journal of
Computer and System Sciences, 26(3):362–391, 1983. See also STOC’81.


