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ABSTRACT

We present the first combination of a thermal Sunyaev-Zel’dovich (tSZ) map with a multi-frequency quality assessment of the sky
pixels based on artificial neural networks with the aim being to detect tSZ sources from submillimeter observations of the sky by
Planck. We present the construction of the resulting filtered and cleaned tSZ map, MILCANN. We show that this combination leads
to a significant reduction of noise fluctuations and foreground residuals compared to standard reconstructions of tSZ maps. From the
MILCANN map, we constructed a tSZ source catalog of about 4000 sources with a purity of 90%. Finally, we compare this catalog
with ancillary catalogs and show that the galaxy-cluster candidates in our catalog are essentially low-mass (down to M500 = 1014 M⊙)
high-redshift (up to z ≤ 1) galaxy cluster candidates.
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1. Introduction

As the largest virialized structures in the Universe, galaxy clus-
ters are excellent tracers of matter distribution. Their abundance
can be used to constrain the cosmological model in a way that is
independent from and complementary to the cosmic microwave
background (CMB; see e.g., Planck Collaboration XX 2014;
Planck Collaboration XIII 2016; Hurier & Lacasa 2017;
Salvati et al. 2018). Galaxy clusters are composed of dark mat-
ter, of the galaxies themselves, as well as hot ionized intra-cluster
medium (ICM). Consequently, they can be identified in the opti-
cal bands as concentrations of galaxies (see e.g., Abell et al. 1989;
Gladders & Yee 2005; Koester et al. 2007; Rykoff et al. 2014),
and can be observed in X-rays thanks to the bremsstrahlung
emission produced by the ionized ICM (see e.g. Bohringer et al.
2000; Ebeling et al. 2000, 2001; Böhringer et al. 2001). The same
hot ICM also creates a distortion in the black-body spectrum of
the CMB through the thermal Sunyaev-Zel’dovich (tSZ) effect
(Sunyaev & Zeldovich 1969, 1972), an inverse-Compton scat-
tering between the CMB photons and the ionized electrons in
the ICM (see e.g. Birkinshaw 1999; Carlstrom et al. 2002, for
reviews). The tSZ Compton parameter in a given direction, n,
on the sky is given by

y(n) =

∫
ne

kBTe

mec2
σT ds, (1)

where ds is the distance along the line of sight, n, and ne and Te

are the electron number density and temperature, respectively. In
units of CMB temperature the contribution of the tSZ effect at a

⋆ The list of candidate clusters is only available at the CDS via anony-
mous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http:
//cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/653/A106

frequency ν is

∆TCMB

TCMB

= g(ν) y. (2)

Neglecting relativistic corrections, we have

g(ν) =

[
x coth

(
x

2

)
− 4

]
, (3)

with x = hν/(kBTCMB). At z = 0, where TCMB(z =

0)= 2.726± 0.001 K, the tSZ effect is negative below 217 GHz
and positive for higher frequencies.

Recent large cluster catalogs based on measurements
of the tSZ effect have been produced from Planck (Planck
Collaboration VIII 2011; Planck Collaboration Int. XXXII
2015), ACT (Marriage et al. 2011; Hilton et al. 2018), and SPT
(Bleem et al. 2015) data. Several detection algorithms targeting
tSZ sources (see e.g., Melin et al. 2006; Carvalho et al. 2009)
have been proposed and compared (Melin et al. 2012). These
latter authors demonstrated that a multi-filter approach based
on the use of optimal filters for tSZ detection is more robust
than a tSZ map-based approach. The latter relies on the con-
struction of a y map with component separation methods such
as MILCA (Hurier et al. 2013) or NILC (Remazeilles et al.
2011). These methods are devised to mitigate contamination
of the tSZ signal from other astrophysical emissions, such as
radio, infra-red point sources, and cosmic infra-red background
(Dunkley et al. 2011; Shirokoff et al. 2011; Reichardt et al.
2012; Sievers et al. 2013; Planck Collaboration XXI 2014). The
combination of high- and low-resolution SZ surveys, as was
performed in PACT (Aghanim et al. 2019), is another way of
efficiently reducing the contamination of the y map but this relies
on the availability of complementary public data. In all cases, the
reconstructed y map cannot be totally immune from contamina-
tion that can produce spurious galaxy cluster detections and/or
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a significant bias in the measured tSZ fluxes. Melin et al. (2012)
showed that tSZ map-based detection methods suffer from a
larger number of spurious tSZ sources than multi-filter meth-
ods, leading to a significantly lower level of purity of the pro-
duced catalogs. As a result, an a posteriori quality assessment of
the tSZ signal from galaxy clusters is required to produce high-
purity galaxy cluster samples of tSZ clusters.

Planck Collaboration Int. XXXII (2015) and Planck
Collaboration XXVII (2016) describe a method for the
quality assessment of the tSZ sources, which they refer to as
a “validation”. The method includes several steps, from cross-
matches with catalogs to the search for counterparts in galaxy
or X-ray surveys, including visual inspection of tSZ sources.
Automatic assessments of the quality of tSZ-detected sources
can also be performed. A method based on artificial neural net-
works (ANN) was proposed by Aghanim et al. (2015). This uses
the Planck multi-frequency data to assess the quality of the tSZ
sources by decomposing the measured signal into the different
astrophysical components contributing to the Planck frequen-
cies. This new quality assessment method was applied to val-
idate the Planck cluster catalog (Planck Collaboration XXVII
2016). Moreover, the use of the ANN method showed that the
tSZ-source catalog (Planck Collaboration Int. XXXII 2015) suf-
fers from contamination by galactic CO sources and infra-red
emission. A recent follow-up of Planck tSZ sources in the opti-
cal (van der Burg et al. 2016) demonstrated the efficiency of this
ANN-based quality assessment by confirming the sources with
poor quality criteria as actual spurious tSZ sources.

In this work, we extend the use of the ANN method initially
developed by Aghanim et al. (2015) to provide a quality assess-
ment of individual tSZ sources and of each pixel in a recon-
structed full-sky y map. The resulting ANN-weighted y map is
then used for cluster detection, providing a new catalog of tSZ
sources. The paper is organized as follows. In Sect. 2, we present
the different datasets. In Sect. 3, we detail the construction of
the ANN-based weights. In Sect. 6, we construct a sample of
galaxy cluster candidates and present a detailed characterization
of this sample. Finally in Sect. 7, we perform a multi-wavelength
assessment of the detected galaxy cluster candidates.

Throughout the paper we use the following cosmological
parameters derived from the results of the Planck Collabora-
tion 2015 (Planck Collaboration XIII 2016): Ωm = 0.316, H0 =

67.26, σ8 = 0.83, ns = 0.9652, and Ωbh2 = 0.02222.

2. Data

For the present analysis we used several publicly available
datasets (catalogs and surveys) either to describe astrophysical
source properties or to characterize the galaxy cluster candidates
detected in the ANN-weighted y maps.

We use the Planck intensity maps from 70 to 857 GHz
(Planck Collaboration I 2016). We also use the spectral
responses given in Planck Collaboration IX (2014). We assume
the Planck beams are Gaussian with values given in Planck
Collaboration VII (2014). We also use the Planck full-sky
CMB-lensing map (Planck Collaboration XV 2016). The Planck
Collaboration has published source catalogs that we use for
our analysis. Namely, the catalog of tSZ sources detected in
Planck data (PSZ2 hereafter, see Planck Collaboration XXVII
2016) and the catalogs of point-sources detected at 30 GHz
and 353 GHz from the Planck Catalogue of Compact Sources
(Planck Collaboration XXVIII 2014). All the Planck data can be
retrieved from the Planck Legacy Archive1.

1 https://pla.esac.esa.int/

We also use the reprocessed IRAS maps, IRIS (Improved
Reprocessing of the IRAS Survey, Miville-Deschênes &
Lagache 2005), and the AllWISE Source Catalog2 (Wright et al.
2010; Mainzer et al. 2011). Finally, we use catalogs of clusters
detected in X-rays (MCXC, Piffaretti et al. 2011, and reference
therein) and in the SDSS survey, namely WHL12 (Wen et al.
2012), WHL15 (Wen & Han 2015), WHY18 (Wen et al. 2018),
and redMaPPer (Rykoff et al. 2014).

3. Artificial neural network

Machine learning, and in our specific case ANNs, enable us to
learn the characteristic signature of “true” tSZ sources and spu-
rious signals directly from the data using a reference sample of
astrophysical sources. As shown by Aghanim et al. (2015), van
der Burg et al. (2016), Planck Collaboration Int. XXXII (2015),
and Planck Collaboration XXVII (2016), this method allows
the identification of spurious tSZ sources from catalogs of clus-
ter candidates. In the following, we adapt the approach used in
Aghanim et al. (2015) in order to extend the machine-learning-
based quality assessment to each pixel of the sky maps rather
than to samples of individually detected tSZ candidates.

For clarity, we first summarize the key elements of the ANN
method (a more detailed description is provided in Aghanim
et al. 2015).

We focus on the astrophysical emissions that most affect the
tSZ signal in multifrequency experiments and we model the flux
at each frequency, taking into account the tSZ effect (neglect-
ing relativistic corrections), CMB, and CO emission. We also
add an effective IR component, which represents the contamina-
tion by galactic dust, cold Galactic sources, and Cosmic Infrared
Background (CIB) fluctuations, and an effective radio compo-
nent, which accounts for diffuse radio and synchrotron emission
and radio sources. The flux in frequency is then written as

Fν = ASZFSZ(ν) + ACMBFCMB(ν) + AIRFIR(ν)

+ ARADFRAD(ν) + ACOFCO(ν) + N(ν), (4)

where FSZ(ν), FCMB(ν), FIR(ν), FRAD(ν), and FCO(ν) are the
spectra of tSZ, CMB, IR, radio, and CO emissions; ASZ, ACMB,
AIR, ARAD, and ACO are the corresponding amplitudes; and N(ν)
is the instrumental noise.

In order to improve the photometry of tSZ sources, we com-
pute the flux for each pixel and each frequency using a matched-
filter in ℓ rather than the aperture photometry used in Aghanim
et al. (2015). To build the matched-filter in ℓ equivalent to a
Wiener filter, we compute the power spectrum, yℓ, of a tSZ sig-
nal from a single cluster with R500 = 5′ (point-like with respect
to the Planck experiment) assuming a universal pressure pro-
file (Arnaud et al. 2010). We also consider the power spectrum
of the CMB, CCMB

ℓ
, computed using Planck best-fit cosmology

(Planck Collaboration XIII 2016), and the power spectrum of the
noise, CNN

ℓ
, in the 100 GHz channel (estimated from the half-

ring map difference). Considering the most relevant frequencies
for the tSZ flux estimation (100 to 217 GHz), relevant angular
scales (ℓ ∈ [1000, 2000]), and focusing on the cleanest sky area
(high galactic latitudes, b > 20), we neglect the thermal dust
contribution from the Milky Way and therefore do not include
it in the computation of the matched-filter. The resulting filter is

2 http://wise2.ipac.caltech.edu/docs/release/allwise/

expsup/
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Fig. 1. Matched filter in ℓ space (Fℓ) used for ANN-based quality
assessment.

therefore defined as:

Fℓ =

√
yℓ

CCMB
ℓ
+CNN

ℓ

, (5)

and is shown in Fig. 1. The filter is applied to the Planck inten-
sity maps from 70 to 857 GHz convolved with a 13′ beam (low-
est resolution associated with the 70 GHz map). The resulting
harmonic space coefficients are thus given by a′

ℓ,m
= Fℓaℓ,m.

The amplitudes of Fν (Eq. (4)), namely ASZ, ACMB, AIR, ARAD,
and ACO, are linearly fitted for each pixel from the map con-
structed with the filtered harmonic coefficients. We verified that
the results do not significantly depend on the chosen amplitude
of CNN

ℓ
for the matched-filter computation. Figure 2 (right panel)

shows the correlation matrix of the fitted SED parameters. The
left panel displays the correlation matrix of measured fluxes (via
the matched-filter) from 70 to 857 GHz. The correlation matrix
of the SED amplitudes shows that the matched-filter photom-
etry allows us to achieve measurements of the fluxes with a
higher signal-to-noise ratio and therefore a better separation of
the various contributions to the SED as compared to the aper-
ture photometry used in Aghanim et al. (2015). The difference is
particularly striking for the tSZ component that is now only sig-
nificantly correlated with the radio component. This correlation
has two origins, a physically motivated spatial correlation with
radio-loud AGNs and the similarities of shape between the tSZ
and radio SED at low frequency, making their distinction hard
to achieve. We observe another significant correlation between
the CO and the thermal dust components due to spatial correla-
tion. We stress that these two components are among the major
sources of spurious detection in the Planck catalog: the CO emis-
sion produces a rise of the intensity at 100 GHz, and the sig-
nal from the dust emission increases with frequency. These two
trends together mimic the tSZ spectral signature. In this case, the
70 GHz channel is of great use to separate CO emission, which
only affects the 100 GHz channel, from a tSZ emission, which
should present consistent 70 and 100 GHz channels. Addition-
ally, by construction, the matched-filter selects specific scales
of the tSZ emission that correspond to the cluster scales, allow-
ing us to reduce the contamination by large-scale emissions (i.e.,
galactic thermal dust, CMB).

Following Aghanim et al. (2015), we consider a standard
three-layer back-propagation ANN to separate pixels of the sky
maps into three populations of reliable quality, unreliable qual-
ity (i.e., false detection), and noisy sources (referred to as good,
bad, and ugly in Aghanim et al. 2015). The inputs of the neural
network consist of the five SED parameters per pixel, computed
here with a more precise photometry based on the matched-filter,
from which we derive three full-sky maps associated with the
three quality classes.

Fig. 2. Left panel: correlation matrix of the measured fluxes from 30 to
857 GHz estimated on 2000 random positions over the sky. Right panel:
correlation matrix of fitted SED parameters from the same positions.

To train the neural network and to assess the tSZ signal qual-
ity for each sky-pixel, we use the same sample for Good, Bad,
and Ugly classes as in Aghanim et al. (2015), namely: galaxy
clusters; infra-red, radio, and cold galactic sources; and random
(noise) estimates.

4. Construction of the tSZ map

4.1. MILCA Planck tSZ map

Independently from the ANN quality assessment, we recon-
structed a tSZ map with the MILCA method (Hurier et al.
2013) using Planck HFI from 100 to 857 GHz, after verifying
that including frequencies from 30 to 70 GHz does not signifi-
cantly change the reconstructed map, especially at galaxy cluster
scales.

We performed the construction of the tSZ map using eight
bins in spherical harmonic space. For the first three bins, we used
two constraints (tSZ and CMB), and for the last five bins we only
used a constraint on the tSZ SED. The map reconstruction was
performed with an effective FWHM of 7 arcmin. For all bins,
two degrees of freedom were used to minimize the variance of
the noise (see Hurier et al. 2013, for a detailed description of the
MILCA method).

In Fig. 3, we show the MILCA full-sky map at 7 arcmin
FWHM. Figures 4 and 5 show a zoom on two regions of
8.5 × 8.5◦ and two regions of 4.25 × 4.25◦ where we can
observe bright galaxy clusters; a typical region with Planck clus-
ters, a region with known optically selected clusters (redMaPPer
catalog with λ > 50); a region showing low-S/N cluster candi-
dates, and a region showing significant CO contamination trig-
gering spurious detection in the PSZ2 catalog. In the full-sky
map (Fig. 3), we observe a significant amount of foreground
residuals near the galactic plane, where synchrotron and free-
free residuals appear as negative biases in the tSZ y-map signal.
We also observe contamination by bright galactic cirrus corre-
lated with the zodiacal light. As shown in previous works (Hurier
et al. 2013; Planck Collaboration XXII 2016), the main sources
of contamination in tSZ maps built from Planck intensity maps
are radio point sources, CO, and CIB emission.

For consistency with the ANN quality assessment, we con-
volve the reconstructed tSZ map, noted ŷ, by the matched-filter
used for the SED fitting. The obtained filtered map, ŷf , has a
transfer function consistent with the maps used to perform the
ANN classification.

4.2. ANN weighting

In Fig. 3, we observed that the reconstructed tSZ map suffers
from bias due to residuals from other astrophysical emission.
Using the ANN-based quality assessment presented in Sect. 3,
we can estimate the quality of the tSZ signal for each line of
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Fig. 3. Left panel: Planck tSZ MILCA map. Right panel: MILCANN map, for the northern sky in orthographic projection. Gray regions are
masked due to galactic foreground or point-source contamination.

Fig. 4. Upper panels: a region of the sky including a nearby multiple-cluster system, lower panels: a region with a large number of clusters
identified in the optical within SDSS data. From left to right: Planck tSZ MILCA map, neural network weight, match-filtered MILCANN map,
for patches of 8.5× 8.5◦ in gnomonic projection centered on galactic coordinates (l, b)= (264◦,−24◦) and (l, b)= (11.5◦, 70◦). Gray regions are
masked due to point-source contamination. We display objects from the HAD catalog (presented in this paper) as black circles, from the PSZ2
catalog as black diamonds, and from redMaPPer (when available) as black squares.

sight in the sky. First, we define an ANN-based weight, QN, as

QN = QGOOD(1 − QBAD), (6)

where QGOOD and QBAD are the ANN classification output values
for the Good and Bad classes. By construction, this ANN-weight
ranges from 0 to 1, with values close to 1 for pixels that present
a high-quality tSZ signal. As verified by the optical follow-up
of tSZ candidates in van der Burg et al. (2016), this ANN-based
weight provides a good proxy for the robustness of a tSZ signal.

4.3. MILCANN map

Finally, we construct a new map (noted MILCANN) from the
input tSZ map, filtered and cleaned from the contamination as:

MMILCANN = ŷf QN. (7)

In Figs. 4 and 5, we display the ANN weight described in Sect. 3
and the MILCANN map. We observe a clear spatial correlation
between the ANN weight and the input tSZ map. In Fig. 3,
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Fig. 5. Region of the sky without foreground contamination (upper panels) compared with an area of the sky dominated by galactic contamination
(lower panels). From left to right: same as Fig. 4 but for patches of 4.25× 4.25◦ centered on galactic coordinates (l, b)= (44.5◦,−27.5◦) and
(l, b)= (122◦, 24.5◦).

the MILCANN map shows that the ANN weight has signifi-
cantly removed the foreground contamination, especially near
the galactic plane where synchrotron and free-free contamina-
tion have been completely suppressed. Similarly, the contamina-
tion produced by high-latitude galactic dust has been reduced by
the ANN weighting procedure. On Figs. 4 and 5, we also observe
that the MILCANN map presents a significantly reduced overall
background noise, with the bright tSZ pixels conserved.

We observe that redMaPPer clusters previously undetected
via their tSZ signal are seen in the MILCANN map (see second
row of Fig. 4). We also note that the ANN weighting process
allows us to avoid the contamination by spurious CO sources
that were present in the PSZ2 catalog (see bottom row of Fig. 5).
In general, Figs. 4 and 5 show that the ANN weighting process
leading to the MILCANN map is a significant improvement for
galaxy cluster detection when approaching the tSZ noise limit; it
allows us to lower the threshold of detection without causing us
to obtain a significant number of spurious sources.

However, it is worth noting that the ANN classification and
subsequent weighting process is not a perfect procedure (see
also Aghanim et al. 2015). As a matter of fact, the ANN-
weight map in Fig. 4 presents values of close to 1 even for
some pixels where no clear tSZ signal can be observed. These
misclassified pixels are produced by chance alignment between
noise structure and tSZ spectral signature. As a consequence, a
tSZ-source detection performed directly on the ANN-weighted
map would lead to false detections. Furthermore, the value of
QN is not exactly 1 for all bona fide galaxy clusters. A high-
flux galaxy cluster will have QN ≃ 1, whereas low-flux galaxy
clusters will have QN < 1. As a results, the ANN weighting
process does not conserve the shape of the tSZ sources. It mod-
ifies the intensity of faint tSZ pixels in the outskirts of galaxy
clusters.

To estimate the transfer function of the ANN weighting
procedure, we randomly selected 10 000 pixels with no signif-

Fig. 6. Average ANN weight value as a function of the match-filtered
intensity.

icant astrophysical emission within the 84% sky area used for
the detection (see Planck Collaboration Int. XXXII 2015, for
a description of the mask). In the filtered frequency maps, we

added a given tSZ signal to the corresponding pixels. We then

computed QN for these 10 000 pixels by applying the ANN to
the modified frequency map pixels, and averaged them as a
function of the injected tSZ signal. This approach allows us to
properly account for real sky background and noise level in the

transfer function. In Fig. 6, we show the average value of the
ANN weight as a function of the injected tSZ signal intensity

after filtering, yf . We observe that the ANN response presents a
steep transition: all signal below yf = 10−8 is completely sup-

pressed by the ANN weighting process, whereas signal above

yf = 2 × 10−7 is almost not affected. We stress here that these

Compton y values are obtained after filtering and are not compa-
rable with the tSZ intensity in the input y map.
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Fig. 7. Left panel: simulated Planck tSZ MILCA noise map. Right panel: simulated MILCANN noise map for the northern sky in orthographic
projection. Gray regions are masked due to galactic foregrounds or point-source contamination.

5. Uncertainty and systematic errors in the

MILCANN map

5.1. Noise and CIB-residual simulations

We have shown qualitatively that the MILCANN tSZ map
presents a significantly reduced background compared to the
input MILCA tSZ map. In this section, we describe our model-
ing of the noise and CIB residuals in the MILCA and MILCANN
tSZ maps to effectively quantify the improvement obtained by
the ANN weighting process.

The tSZ maps derived from component separation methods
are constructed through linear combination of Planck frequency
maps that depends on the angular scale and the pixel, p, as

ŷ =
∑

i,ν

wi,p(ν)Ti,p(ν), (8)

where Ti,p(ν) is the Planck map at frequency ν for the angu-
lar filter i, and wi,p(ν) are the weights of the linear combination
(MILCA weights in this study). The CIB contamination (or leak-
age) in the y-map reads,

yCIB =
∑

i,ν

wi,p(ν)T CIB
i,p (ν), (9)

where T CIB(ν) is the CIB emission at frequency ν. Using the
weights wi,p(ν), and considering the CIB luminosity function,
it is possible to compute the expected CIB leakage as a function
of redshift by propagating the SED through the weights used
to build the tSZ map. As shown by Planck Collaboration XXIII
(2016), the CIB at low-z leaks with a small amplitude in the tSZ
map, whereas high-z CIB produces a higher, dominant level of
leakage.

The CIB power spectra have been constrained in previous
analyses (see e.g., Planck Collaboration XXX 2014); they can
be used to predict the expected CIB leakage. To do so, we per-
formed 200 Monte-Carlo simulations of multi-frequency CIB
maps that follow the CIB auto- and cross-power spectra. We

then added instrumental noise to the simulated CIB maps before
applying the MILCA weights used to build the input tSZ map.
We obtained 200 realizations of instrumental noise and CIB in
the MILCA tSZ map, consistent with noise and CIB observed in
the Planck frequency maps.

It is important to stress that the noise in the input MILCA tSZ
map is by construction correlated with the noise in the frequency
maps. Therefore, the noise on the ANN weights is also correlated
with the noise in the MILCA tSZ map. Consequently, to produce
a fair description of the noise, we trained other ANNs on the
simulated maps to reproduce the correlation feature between the
noise in the MILCA map and the noise in the ANN weights.
For completeness and considering that the training of an ANN
is a nonlinear process, we also added CMB, point sources, and
thermal dust to the noise+CIB simulations during the training
process.

Finally, we built and applied these noise-based ANN weights
to the MILCA noise+CIB-residuals simulation. In Fig. 7,we
present a simulation of noise+CIB residuals before and after

applying the noise-based ANN weights. We observe that the
weighting process allows us to significantly reduce the noise
level in the simulated MILCA map.

In Fig. 8, we compare the intensity distributions in MILCA
and MILCANN maps. For the MILCA map, we observe a sig-
nificant tail of pixels with negative intensity (mainly associated
with radio-source contamination). We do not observe this con-
tamination in the MILCANN map because the ANN weight-
ing process significantly reduces radio source contamination. We
also observe that the noise in the MILCANN map is lower than
in the MILCA map by a factor of five. However, we note that the
intensity of the brightest pixels in the map is not affected by the
ANN weighting process.

Considering the correlation between the ANN weight and
the noise in MILCA map, the noise in the MILCANN map
does not present symmetric distribution. Therefore, we are deal-
ing with a nonGaussian, inhomogeneous correlated noise with
an asymmetric distribution. As observed in Fig. 8, the noise is
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Fig. 8. Intensity distribution of pixels in the tSZ maps for the MILCA
map (light blue), the MILCANN map (dark blue), the simulation
of noise+CIB in the MILCA map (orange), and the simulation of
noise+CIB in the MILCANN map (red).

Fig. 9. Distribution of the noise standard deviation, σy across the
MILCANN full-sky map.

more likely to produce positive rather than negative values in the
MILCANN map, implying a nonzero expectation value. Conse-
quently, in the following we used and propagated the complete
noise distribution.

5.2. Noise inhomogeneities

Due to the Planck scanning strategy, the noise level on the sky
is inhomogeneous. The most noticeable feature is the fact that
ecliptic poles present a higher redundancy of observations and
thus a significantly lower noise level (Planck Collaboration I
2016). The MILCANN map obtained from the product of the fil-
tered MILCA map and the ANN weight therefore exhibits noise
inhomogeneities amplified from the input noise in MILCA map.

From the instrumental noise+CIB MILCANN simulated
map, we derived the standard deviation of the noise in MIL-
CANN map, σy, by computing the local standard deviation of
the MILCANN simulated noise map within a four-degree Gaus-
sian window. The distribution of noise standard deviation, σy,
is shown in Fig. 9. This latter represents the distribution of the
pixel-dependent noise levels.

We constructed a map of the signal-to-noise ratio, ŷσ, as

ŷσ =
ŷf

σy

· (10)

We note that using a unique threshold on ŷσ is equivalent to using
a pixel-dependent threshold on ŷf .

Figure 10 presents the distributions of the MILCANN map
and the MILCANN noise simulation as a function of yσ and
QN. We observe that the MILCANN noise simulation does not

Fig. 10. Distribution of the MILCANN map (top panel) and MILCANN
noise simulation (bottom panel) pixels as a function of QN and normal-
ized intensity, yσ. The colors show the number of pixels in logarithmic
scale. To display the large dynamical range of the y axis, we divided the
axis into two log scales with a “regular” log scale for small QN values
and an “inverted” log scale for large QN values.

show high-QN and high-yσ pixels (QN > 0.9, which are asso-
ciated with real tSZ signal). We also observe that for QN ≃ 0
the MILCANN map presents a significantly larger distribution
of yσ than the noise simulation (for QN ∈ [10−11, 10−15]. This
extended distribution is produced by foreground residuals that
are present in the MILCA tSZ map. We verified that these resid-
uals are strongly correlated with galactic latitude, implying that
they are related to systematic effects. We do not observe a simi-
lar behavior at larger values of QN. This confirms that foreground
residuals are strongly reduced using the ANN weighting proce-
dure, as already observed in Fig. 8.

6. tSZ candidate detection

As shown by Melin et al. (2012), tSZ map-based galaxy clus-
ter detection methods suffer from a high level of contamination
by spurious sources since it is difficult to disentangle real tSZ
emission from biases in the tSZ map induced by residuals from
astrophysical emissions. Given its significantly reduced residual
signals, the MILCANN map may be better suited to detection
of galaxy clusters than standard reconstructed y maps. In this
section, we therefore use the improved tSZ map obtained after
applying the ANN-based weight to perform a basic cluster detec-
tion. We also characterize the purity and completeness of the
derived sample of cluster candidates to assess the improvement
compared to a previous cluster catalog derived from Planck data.
However, we stress that the MILCANN map cannot be used to
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provide accurate estimates of the flux or the shape of tSZ sources
considering that the tSZ signal is affected by the ANN weighting
response.

6.1. Methodology

To detect sources in the MILCANN map, we applied a mask of
the galactic plane and point sources detected by Planck keeping
84% of the sky as defined in Planck Collaboration Int. XXXII
(2015). Subsequently, using the noise standard-deviation map
computed in Sect. 5, we divided the MILCANN map by its local
noise level map to perform the detection in signal-to-noise units.
We applied a threshold of yσ > 3 to the MILCANN map and
considered any adjacent pixels found to be above the threshold
as a candidate tSZ source. We discarded all sources detected on
less than 5 adjacent pixels of 1.7× 1.7 arcmin2 to avoid detec-
tions produced by anomalous pixels. We cleaned multiple detec-
tions of the same source by merging all sources in a radius of
10 arcmin. We obtained a sample of 3969 tSZ sources that we
refer to as the HAD catalog3.

6.2. Characterization of the MILCANN detection method

In this section, we present a detailed description of each step in
the computation of the selection function of the HAD catalog,
that is, a detailed description of the impact of the transfer func-
tion on the galaxy-cluster signal.

6.2.1. Fourier space filtering response

Before applying the ANN weight to build the MILCANN map,
we filtered the MILCA map with the matched-filter presented
in Fig. 1. Here, we present the estimation of the transfer func-
tion of this filtering process. To do so, we first build a mock
map of a sky-projected tSZ signal from a galaxy cluster with
Y500 = 1 arcmin2 assuming a Generalized Navarro-Frenk-White
(GNFW) pressure profile (Arnaud et al. 2010) with 1000 pixels
per R500. We then convolve the tSZ mock map by the instru-
mental beam and by the matched-filter presented in Sect. 3. We
perform this procedure for values of R500 ranging from 0.1 to
100 arcmin. Finally, we extract the tSZ intensity at the center of
the galaxy cluster on the convolved mock map.

Figure 11 presents the tSZ intensity, y
(1)

f
, after applying the

matched-filter for a galaxy cluster with a universal pressure pro-
file and a flux Y500 = 1 arcmin2 as a function of the apparent
size on the sky, θ500. The matched-filter we use selects compact
objects (of typical size 5 arcmin) and thus presents a response
that significantly reduces the flux of extended galaxy clusters.
However, this is not an important limitation since our main goal
is to detect compact tSZ sources associated with new galaxy
clusters that are either low-mass or high-z. Considering the reso-
lution of Planck tSZ maps (roughly 7 arcmin) such galaxy clus-
ters are point-like. Furthermore, for these clusters or for more
extended ones, we can compute their tSZ signal directly from
the MILCA map or from the frequency maps.

6.2.2. Completeness

Given all the steps detailed above, we can express the complete
processing we applied as

3 The catalog is available in the download section of http://
szcluster-db.ias.u-psud.fr

Fig. 11. Central intensity of the SZ signal in a filtered map for a galaxy
cluster with Y500 = 1 arcmin2 as a function of typical galaxy cluster
radius θ500.

yσ = Y500

y
(1)

f
(θ500)QN(yf)

σy

+ Nσ, (11)

where Y500 is the tSZ flux of the galaxy cluster, y
(1)

f
is the match-

filtered central intensity for a cluster with Y500 = 1 arcmin2, as
shown in Fig. 11, the dependency of QN with yf is presented in
Fig. 6, the distribution of the noise across the map, σy, is shown

in Fig. 9, and Nσ is the homogenized noise4 in the MILCANN
map.

The galaxy cluster signal probability distribution is obtained
by the convolution of: (i) the M500−Y500 relation intrinsic scatter,
(ii) the distribution of σy (noise inhomogeneity), and (iii) the
distribution of the noise Nσ (noise probability distribution). We
assumed that the relation M500−θ500 does not present any scatter.

The completeness, C(yσ), is then given by the ratio of the
integral of yσ distribution, P(yσ), above the detection threshold
normalized by the integral of the full distribution,

C(yσ) =
1∫ ∞

0
P(yσ)dyσ

∫ ∞

t

P(yσ)dyσ, (12)

where t is the detection threshold applied on the yσ map (t= 3 in
our case).

Figure 12 shows the completeness as a function of mass,
M500, and redshift, z, of a given cluster. We observe that, with
a very basic detection method applied on a filtered and cleaned
tSZ map, we can detect clusters down to a typical mass of
M500 = 1 × 1014 M⊙ with percent level completeness. We also
observe that for very large mass (>2 × 1015 M⊙) the complete-
ness is slightly smaller than one. This effect is produced by the
matched-filter that significantly reduces the tSZ effect produced
by extended (massive) sources.

6.2.3. Purity

We estimated the purity of the catalog by performing the detec-
tion of tSZ sources on the MILCANN map and the MILCANN
noise simulation from Sect. 5. This estimate does not account
for all foreground residuals in the MILCANN map which there-
fore may slightly overestimate the purity of the HAD catalog.

We found N
(1)

det
detections for the MILCANN map and N

(2)

det
for

4 That can be modeled through noise+CIB residuals simulations nor-
malized by the standard deviation map σy.
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Fig. 12. Completeness of the HAD catalog as a function of M500 and z.
The color scale is logarithmic and ranges from 10−2.5 (dark blue) to 1
(red). Black contours show the 10, 20, 50, and 90% completeness level.

Fig. 13. Purity of the HAD catalog as a function of the detection
threshold.

the simulated noise map. We performed the detection for sev-

eral detection thresholds. The purity is obtained as P =
N

(1)

det
−N

(2)

det

N
(1)

det

.

In Fig. 13, we present the purity as a function of the detection
threshold. For the threshold Dt = 3 used in the construction of
the HAD catalog, we derived an estimated purity of above 90%.

6.3. Comparison with reference galaxy cluster catalogs

In this section, we present a brief comparison of the HAD clus-
ter candidate catalog and other reference catalogs. We used
two approaches for the comparison. First, we compared the
numbers of cluster candidates in the HAD catalog, with the
predicted number of clusters assuming Planck-SZ cosmology
(Planck Collaboration XX 2014) while considering the com-
pleteness and purity of the HAD catalog (see above). This pre-
dicted number is found to be 4082 ± 700 (the uncertainty is
obtained by propagating the uncertainty over Ωm and σ8 to
galaxy cluster number count). Thus, the 3969 detected candi-
dates in the HAD catalog are consistent with this prediction.
However, this number has to be considered carefully as the
assumptions on the scaling relation and completeness may not
encompass the full complexity of the cluster physics.

We then performed a cross-match with reference galaxy clus-
ter catalogs. We compared our catalog of candidates with the
PSZ2 catalog. The distribution of distance to nearest neighbor is
shown in Fig. 14. Among the 3969 HAD sources, we find 1243
in common with the PSZ2 sources among which 997 are con-
firmed galaxy clusters all with an ANN quality factor QNeural >
0.6 as defined in Aghanim et al. (2015). The HAD catalog

Fig. 14. Nearest-neighbor distance distribution between HAD sources
and PSZ2 public catalog sources (blue histogram) and MCXC public
catalog sources (red histogram).

additionally contains 496 known clusters that are missing from
PSZ2 (they are contained in the ACT, SPT, redMaPPer, Wen+12,
or MCXC catalogs). Figure 14 clearly shows the two popula-
tions of sources that are in common and not in common with
PSZ2. For the sources common to HAD and PSZ2 the typical
separation is below 4 arcmin, consistent with the Planck resolu-
tion. For very extended sources, the position mismatch between
HAD and PSZ2 can reach up to 10 arcmin; it strongly depends
on the exact methodology used to define the galaxy cluster posi-
tion. Nevertheless, considering the number density in the Planck
SZ and HAD catalogs, within a radius of 10 arcmin the num-
ber of chance association is 15 (≃1% of the PSZ2 sample) and
within a radius of 4 arcmin this number is 4. This implies that a
10 arcmin matching distance still provides a robust association
between HAD and PSZ2 sources.

Figure 14 presents the distribution of nearest-neighbor dis-
tance between HAD and MCXC objects. The matching pro-
cedure of the HAD catalog outputs the following positional
associations with reference catalogs:

– 1243 HAD sources in common with PSZ2.
– 601 HAD sources matched with known X-ray clusters from

MCXC (including 92 objects not in PSZ2).
– 687 HAD sources matched with over-density of galaxies

(N200 > 25) from WHL12 (including 276 objects not in
PSZ2); we estimated a maximum of 20 chance associations
at 99% confidence level.

– 115 HAD sources matched with over-density of galaxies
(N500 > 8) from new clusters of WHL15 (including 79
objects not in PSZ2); we estimated a maximum number of
18 chance associations at 99% confidence level.

– 1400 HAD sources matched with over-density of galaxies
(RL > 10) from WHY18 (including 649 objects not in
PSZ2); we estimated a maximum number of 50 chance asso-
ciations at 99% confidence level.

– 469 HAD sources matched with over-density of galaxies
(Λ > 50) from redMaPPer (including 179 objects not in
PSZ2).

– 35 HAD sources matched with SPT clusters.
– 43 HAD sources matched with ACT clusters.

The cross-matched numbers are summarized in Table 1. Objects
present in the PSZ2 catalog that are not present in the HAD cat-
alog (418 sources in total) are extended sources (smeared out by
our matched-filter) or sources with a very-low-quality flag from
the ANN. A low-quality-ANN quality assessment implies either
that these sources are spurious detections or that they show con-
tamination by at least another type of astrophysical emission.
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Table 1. Cross-matched number of objects between HAD and reference catalogs.

HAD PSZ2 SPT ACT MCXC WHL12 WHL15 WHY18 redMaPPer TOTAL

Nobj 3969 1653 224 182 1743 9951 8625 47594 5540
HAD / 1243 35 43 601 687 115 1400 469 1803
PSZ2 1235 / 27 30 556 427 48 881 312 1134

Notes. We also performed the same cross-match for the PSZ2. The total column refers to the number objects from HAD or PSZ2. For the Wen+12
catalog we imposed N200 > 25, for Wen+15 we imposed N500 > 8, and for redMaPPer we imposed λ > 50.

Fig. 15. Top panel: redshift distribution for HAD candidates matching
redMaPPer overdensities of galaxies (dark blue) and for HAD candi-
dates not contained in the PSZ2 catalog (red). Bottom panel: richness,
Λ, distribution for HAD candidates matching redMaPPer overdensities
of galaxies (dark blue) and for HAD candidates not contained in PSZ2
catalog (red).

We used the redMaPPer red-sequence-based redshifts to
compute the redshift and richness, Λ, distributions of the match-
ing population between HAD and redMaPPer catalogs in two
cases: (i) considering all cluster candidates in the HAD catalog
that match redMaPPer sources and (ii) candidates in the HAD
catalog not contained in the PSZ2 catalog that match redMaPPer
sources.

Figure 15 present the redshift distribution for sources con-
tained both in HAD and redMaPPer catalogs. We observe that
new tSZ sources in the HAD catalog, that is those not contained
in the PSZ2 catalog are at higher redshift than PSZ2 clusters on
average. This redshift distribution confirms that the MILCANN
tSZ map enables the detection of high-z galaxy clusters that are
not contained in the PSZ2 catalog. From this redshift distribu-
tion, we find that new HAD sources are at redshifts ranging from

0.2 to 0.5. Figure 15 also shows the richness distribution for
all HAD sources and HAD sources not contained in the PSZ2
that match redMaPPer galaxy overdensities. We observe that the
HAD sources not contained in the PSZ2 catalog are preferen-
tially at lower richness.

7. Multi-wavelength statistical characterization of

the HAD sample

In this section, we perform a stacking analysis to unveil the aver-
age properties of the HAD sources. In particular, we focus on the
average submillimeter SED, on the stacked lensing signal, and
on color–color diagnostic using the WISE galaxy catalog.

7.1. Stacked SED of cluster candidates

For cluster candidates in HAD not seen in PSZ2, we stack the
Planck maps per frequency and the IRIS full-sky map at 100 µm
(Miville-Deschênes & Lagache 2005). We then measure the flux
through aperture photometry. Figure 16 presents the obtained
SED exhibiting both tSZ and IR emissions. Consistently with
Planck Collaboration XXIII (2016), we modeled the IR emis-
sion with a modified black-body SED assuming βd = 1.75, a dust
temperature Td = 24 K, and a mean redshift z̄ = 0.4. Comparing
with previous analysis (Planck Collaboration XXIII 2016), the
amount of IR emission toward new HAD tSZ sources is compat-
ible with IR emission observed toward PSZ2 confirmed galaxy
clusters. We observed that the IR contribution is negligible at 100
and 143 GHz. At 353 and 545 GHz, the IR emission contributes
25 and 80% of the total signal, respectively. At higher frequency,
the tSZ contribution is negligible.

7.2. CMB lensing

We stacked the CMB lensing convergence measured by the
Planck Collaboration (Planck Collaboration XV 2016) for all
sources from the HAD catalog that are not included in the PSZ2
catalog. In Fig. 17, we present the derived stacked signal. We
detect an excess in convergence at a 5σ confidence level. Assum-
ing a typical redshift in the range 0.2−0.5 for galaxy clusters,
and correcting for purity we compute an average mass of about
2 × 1014 M⊙ per source (see e.g., Melin & Bartlett 2015, for a
detailed description of the convergence to mass conversion).

7.3. WISE catalog

We also searched for counterparts of the HAD SZ candidates in
the AllWISE full-sky catalog (Cutri et al. 2013). We stacked the
sources in the AllWISE catalog toward HAD sources that have
no PSZ2 counterpart. The stacked density of sources is presented
in Fig. 18. We observe a significant AllWISE source overdensity
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Fig. 16. Stacked SED of galaxy-cluster candidates (black sample). The
tSZ effect contribution is shown as a solid blue line, and the total SED
accounting for tSZ and infra-red emission is shown as a solid red line.

Fig. 17. Stacked CMB–lensing convergence map toward HAD SZ can-
didates not contained in the PSZ2 catalog.

of 23 ± 15 per HAD source inside an aperture of 10 arcmin; the
background level of the AllWISE source-density map was esti-
mated to be between 10 and 15 arcmin.

We also studied the distribution of the AllWISE matching
sources in the AllWISE color–color plane. The surface density of
HAD-source member galaxies in the AllWISE catalog is small
compared to the total density of all objects. Consequently, we
cannot estimate the AllWISE colors for each member galaxy
individually and we estimated the color–color distribution of the
cluster-member galaxies.

We first compute the color–color distribution of AllWISE
sources, Din, within a radius of 10 arcmin around the HAD
sources. We then compute the same distribution, Dout, for
sources located between 10 and 15 arcmin from the HAD
sources. Assuming that the background and foreground objects
are uniformly distributed on a 15 arcmin scale, we estimate the
distribution for member galaxies by computing the sky-area
weighted difference between the two distributions,

Dcl = Din −
Ain

Aout

Dout, (13)

5 The uncertainty provided is on the average over-density of sources
and does not account for intrinsic scatter between sources in the stacked
sample.

Fig. 18. Stacked number of sources in the AllWISE catalog toward SZ
candidates not contained in the PSZ2 catalog.

Fig. 19. WISE color–color plane for HAD SZ sources not contained
(top panels) and contained (bottom panels) in the PSZ2. The color scale
shows the distribution for member galaxies. For comparison, the distri-
bution for background objects is represented by black contours.

where Dcl is the color–color distribution of galaxy cluster mem-
bers, and Ain and Aout correspond to the areas of the regions used
to compute Din and Dout.

In Fig. 19, we present the color–color distributions of mem-
ber galaxies of HAD sources included and not included in the
PSZ2 catalog. We observe that both populations present simi-
lar distributions in the (W2−W3)−(W1−W2) color–color plane.
These distributions are significantly different from the distribu-
tion of background in the WISE catalog. They show a positive
excess for W1−W2 ≃ 0.2 and a lack of objects for W2−W1 ≃
0.8.

We use the SWIRE galaxy template library (Polletta et al.
2007) and compute the expected tracks in the WISE color–color
plane for 25 galaxy SED templates. When comparing with tracks
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for various galaxy types, we observe that the negative decrement
in the WISE color–color plane is essentially populated by AGNs
or high-redshift IR sources. This implies that tSZ-based cata-
logs present a selection bias toward clusters not hosting bright
AGNs or clusters that have a strong IR source in the foreground
and/or background. Indeed, for clusters that host a bright radio-
loud AGN, the tSZ effect cannot be recovered in the microwave
or submillimeter domain. A similar argument applies when the
tSZ effect from a galaxy cluster is contaminated by bright IR
sources. From these color–color distributions, we can conclude
that the cluster candidates in the HAD catalog are populated by
low-redshift (z < 1) elliptical, spiral galaxies, and Luminous Red
Galaxies (LRGs) as expected for tSZ samples derived with the
Planck experiment.

8. Conclusion

Previous studies have shown that a tSZ-map-based approach is
not optimal and is less-efficient than a multi-frequency based
approach (Melin et al. 2012) to detect clusters of galaxies via
their tSZ signal. However, we have demonstrated that an ANN
quality-assessed tSZ map, MILCANN, enables the construction
of a competitive tSZ source catalog even with a simple detection
method.

The matched-filtering and the ANN weighting process
involved in the construction of the MILCANN tSZ map means
that its use is specifically tailored to tSZ-cluster detection. In par-
ticular, the MILCANN tSZ map presents a significantly lower
level of noise and foreground residuals than standard tSZ maps.
However, the ANN weighting procedure produces a distortion
of the tSZ signal both in shape and flux. Consequently, the MIL-
CANN map can only be used for cluster-detection purposes and
is not suited for other analyses such as tSZ scaling relations, pro-
files, or angular power spectra.

From the MILCANN tSZ map, we constructed the HAD
source catalog containing 3969 cluster candidates with an esti-
mated purity of 90%. This catalog is more than twice as large as
the Planck catalog (Planck Collaboration XXVII 2016), achiev-
ing cluster detection down to M500 = 1014 M⊙, and reaches the
same purity level.

We verified that the number of sources in the HAD cat-
alog is consistent with the expected cluster abundance. Addi-
tionally, comparing the HAD catalog with ancillary catalogs,
we demonstrate that the HAD galaxy clusters catalog contains
new tSZ detections at high redshift and low richness. Finally, we
show that the sources detected in the MILCANN map present
an excess of convergence in the Planck CMB lensing map, com-
patible with cluster masses of 2 × 1014 M⊙. These sources host
galaxies with the same spectral behavior as Planck PSZ2 galaxy
cluster member galaxies (ellipticals, spiral galaxies, and LRGs
at z < 1).
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