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Many reviews on PDT have been published. This field is now so large, and embraces so many
subspecialities, from laser technology and optical penetration through diffusing media to a number of
medical fields including dermatology, gastroenterology, ophthalmology, blood sterilization and
treatment of microbial-viral diseases, that it is impossible to cover all aspects in a single review. Here, we
will concentrate on a few basic aspects, all important for the route of development leading PDT to its
present state: early work on hematoporphyrin and hematoporphyrin derivative, second and third
generation photosensitizers, 5-aminolevulinic acid and its derivatives, oxygen and singlet oxygen, PDT
effects on cell organelles, mutagenic potential, the basis for tumour selectivity, cell cooperativity,
photochemical internalization, light penetration into tissue and the significance of oxygen depletion,
photobleaching of photosensitizers, optimal light sources, effects on the immune system, and, finally,
future trends.

Introduction

The history of photodynamic therapy (PDT) began in 1900
with O. Raab’s observation that a combination of light and
acridine was toxic to paramecium.1 H. von Tappeiner, C. Ledoux-
Lebards, A. Jodlbauer, A. Jesionek, W. Hausmann, F. Meyer-Betz,
A. Policard, H. Fischer, H. Auler, G. Banzer, F. H. J. Figge,
S. K. Schwartz, R. L. Lipson, E. J. Baldes, K. R. Weishaupt,
T. J. Dougherty, amongst others, were the early pioneers in the
development of PDT.2–4 From the 1970s an increasing number of
scientists and medical doctors worldwide joined the PDT field.
Experimental PDT has become an established treatment for some
diseases (Table 1). More than 8000 original articles and 600 reviews
on PDT have been published. This field is now so large, that it is
impossible to cover all aspects in a short review. Here we will
concentrate on a few aspects, which we regard as basic in the
development of PDT.

Hp, HpD and Photofrin

Already in 1912 Meyer-Betz demonstrated that hematoporphyrin
(Hp) was an extremely powerful photosensitizer.5 The interest for
PDT was reignited in the early 1950s, after the experiments of
Figge et al. which demonstrated that Hp had tumour localizing
properties.6 The need for purification of Hp was realized, since
chromatography showed that it contained many components.7
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Treatment with sulfuric and acetic acids was introduced, and led
to hematoporphyrin derivative (HpD).7 It turned out that HpD
contained even more components than commercial Hp. However,
HpD had better tumour localizing properties than crude Hp.8

Chromatographic analysis of tumour extracts showed that it was
mainly the “impurities” that were retained in the tumours. Many
groups embarked on attempts to identify these impurities,9–11

and it was concluded that they were composed of dimers,
oligomers and aggregates of porphyrins. Kessel et al. showed
that diethers and diesters were central.12 Aggregates showed
tumour localizing abilities, but had low fluorescence yields and
photosensitizing efficiencies.13,14 Kessel proposed that aggregates
were monomerized in tumour cells and became trapped, rendering
the cells photosensitive (Moan’s personal communications). HpD
was further chromatographically purified by Dougherty’s group
to Photofrin, which is still the most widely used clinical PDT
photosensitizer.11,15

Second and third generation photosensitizers

The first generation photosensitizers (HpD, Photofrin) have sev-
eral drawbacks, such as contamination with impurities, relatively
low absorbance at 630 nm, where tissue penetration of light is not
optimal, and prolonged skin photosensitivity lasting up to 6–8
weeks.15–17 The second generation photosensitizers (phthalocya-
nines, naphthalocyanins, benzoporphyrins, chlorins, purpurins,
texaphyrins, porphycenes, pheophorbides, bacteriochlorins, etc.)
were introduced to overcome these problems.16,18–22 They may
be obtained as chemically pure substances, effective generators
of singlet oxygen, have high absorbance in the region of 650–
850 nm, and give photosensitivity lasting for only a short time.
The second generation photosensitizers meta-tetra hydroxyphenyl
chlorin (m-THPC; Foscan, Biolitec AG) and benzoporphyrin
derivative monoacid A (BPD-MA; Visudyne, QLT Inc. and
Novartis Opthalmics) are approved for clinical use (Table 1).
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Several second generation photosensitizers are currently under
clinical evaluation. These include BOPP (boronated porphyrin;
Pacific Pharmaceuticals Inc.), Npe6 (mono-N-aspartyl chlorin e6,
talaporfin; Meiji Seika Kaisha, Ltd), hypericin (Pharmaceuticals
Inc.), AlPcSn (sulfonated aluminium phthalocyanine, Photosense;
State Research Center), chlorin e6 derivative (Photodithazine;
State Research Center), ATMPn (porphycene; Glaxo-Wellcome
Inc.), HPPH (2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a,
Photochlor; Roswell Park Cancer Institute), motexafin lutetium
(MLu, lutetium(III) texaphyrin, Lu-Tex, Antrin; Pharmacyclics
Inc.), SnET2 (tin ethyl etiopurpurin, Sn etiopurpurin, rostaporfin,
Photrex; Miravant Medical Technologies), etc.3,23,24

Second generation photosensitizers bound to carriers for se-
lective accumulation in the tumour, are often called “third gen-
eration photosensitizers”.16,17 Photosensitizers conjugated with

biomolecules, such as monoclonal antibodies, liposomes, etc., have
been developed.16,17,25

5-Aminolevulinic acid and its derivatives

Earlier research on the biochemistry of porphyria diseases showed
that porphyrins can be endogenously produced.26–30 Each of the
porphyrias has a specific enzyme defect in the pathway of heme
biosynthesis. There are 8 enzymes involved in the synthesis of
heme, and, with the exception of the first one, defects of these
enzymes lead to tissue accumulation and excessive excretion of
porphyrins and/or their precursors, such as 5-aminolevulinic
acid (ALA) and porphobilinogen. Heme biosynthesis is normally
so tightly regulated that the concentrations of intermediate
products are below the threshold of photosensitization. In 1951
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Table 1 Approved drugs for use in PDT and fluorescence diagnosis

Chemical name Tradename Indication (countries, year) Company, website

Hematoporphyrin derivative (HpD),
porfimer sodium

Photofrin Superficial bladder, gastric,
cervical, esophageal, lung and
endobronchial cancers (more
than 120 countries, from 1993)

Axcan Pharma
http://www.axcan.com/http://www.photofrin.com/

Benzoporphyrin-derivative monoacid
ring A (BPD-MA), verteporfirin

Visudyne Age-related macular degeneration
(more than 70 countries, from
2001)

QLT Inc. And Novartis Opthalmics
http://www.qltinc.com/Qltinc/main/mainhome.cfmhttp://
www.visudyne.com/

Meta-tetra hydroxyphenyl chlorin
(m-THPC), temoporfin

Foscan Head and neck cancer (EU,
Norway, Iceland, 2001)

Biolitec AG http://www.biolitec.com/

5-Aminolevulinic acid (ALA) Levulan Actinic keratoses of face or scalp
(USA, 1999)

DUSA Pharmaceuticals, Inc.
http://www.dusapharma.com/http://www.levulanpdt.com/

Methyl aminolevulinate (MAL) Metvix Actinic keratosis, basal cell
carcinoma (EU and Australia,
from 2001)

PhotoCure ASA http://www.photocure.com

Hexyl aminolevulinate (HAL) Hexvix Fluorescence diagnosis of bladder
cancer (Sweden, 2004, EU, 2005)

PhotoCure ASA http://www.photocure.com

Berlin et al. demonstrated that excess administration of exoge-
nous ALA bypasses the cellular feedback control mechanism
in normal organisms and leads to abnormally large quantities
of protoporphyrin IX (PpIX) in humans.31,32 In 1975, Batlle
et al. found that addition of ALA to the culture medium of
soybean callus, a vegetable tumour, led to accumulation of
porphyrins associated with fluorescence during UV exposure,
inhibition of growth, and, finally destruction of tissue.33 Clinical
research on erythropoeitic protoporphyria revealed that PpIX
was an efficient photosensitizer, causing skin photodamage via
mitochondrial destruction.31,33 In 1987, two groups proposed to
use ALA as a porphyrin precursor in PDT.34,35 Malik and Lugaci34

demonstrated that exogenous ALA-induced PpIX together with
light led to inactivation of Friend erythroleukemic cells. Peng
et al.35 reported that after administration of ALA to tumour-
bearing mice, porphyrin fluorescence was induced in tumour,
skin, kidney, liver, but not in muscle and heart tissues. In 1990
Kennedy et al.36 reported the first clinical trials using ALA-
PDT for the treatment of malignant and precancerous skin
abnormalities. Introduction of ALA as a PpIX precursor was
nothing less than a milestone in the development of PDT. This has
several reasons: ALA is the only PDT agent that is a biochemical
precursor of the photosensitizer, the one that is naturally produced
in the body, and shows low cytotoxicity alone. Endogenously
produced PpIX is rapidly cleared from the body (24–48 h) because
natural clearance mechanisms exist. ALA can be administered
systemically (intravenously, orally) or topically. Topical delivery
of ALA avoids systemic photosensitivity, because the drug can
be selectively applied on the areas to be treated. A short time
interval (1–8 h, depending on the mode of administration) is
needed between the administration of ALA and the maximal
accumulation of PpIX in target tissues.37–39

Besides its usefulness in therapy, ALA can also be applied for
diagnostic purposes:40–43 after topical or systemic ALA application
PpIX is induced in epithelial tumours, with a high tumour-to-
surrounding tissue ratio, and the tumours can be visualized under
exposure to blue light. Fluorescence images can be utilized either
for a directed biopsy sampling or as an aid during surgery.44

In 1999 ALA (Levulan, DUSA Pharmaceuticals) was approved
for the treatment of actinic keratoses (Table 1). However, the

hydrophilic nature of the ALA molecule was thought to limit
its penetration through biological membranes. Several methods,
such as use of different formulations (creams, lotions, gels, etc.
alone, with penetration enhancers and/or iron chelators), physical
methods (curettage, ultrasound, iontophoresis, electroporation
and electrophoresis) and chemical derivatization of ALA, were
proposed to improve ALA delivery and porphyrin production. A
large number of derivatives have been synthesised in the search for
compounds that penetrate the plasma membrane of targeted cells
and diffuse through epidermal layers more easily than ALA itself
does. So far, most of the results indicate that many of the esters
are more efficient in inducing porphyrin accumulation in cells
in vitro than ALA itself. ALA methyl ester (Metvix, PhotoCure
ASA) is widely used for the treatment of skin premalignancies
and malignancies and ALA hexyl ester (Hexvix, PhotoCure ASA)
is being developed for the diagnosis of bladder cancer (Table 1).
PDT with topically applied ALA and one of its derivatives is an
effective treatment for lesions less than 2 mm in depth.37 New ALA
derivatives are continuously being designed.45,46 ALA-PDT is now
the most widely practised form of PDT. Therapy and diagnosis
with ALA are being used in dermatology,4,37,47,48 gynaecology,49–54

urology,55–58 gastroenterology,59–62 neurosurgery,44 etc.63 In the
future low doses of ALA-PDT will probably turn out to be
useful for photorejuvenation64–66 and photochemoprevention of
skin tumours.67–70

Oxygen and singlet oxygen

In 1902 Ledoux-Lebards observed that eosin killed paramecia with
high efficiencies in flasks enriched with oxygen, and postulated
that the presence of oxygen is essential for photoinactivation.71

Later von Tappeiner and Jesionek,72 and Straub73 demonstrated
the requirement of oxygen in photosensitization reactions. In
1931 Kautsky and de Bruijn proposed that singlet oxygen might
be a reactive intermediate in dye-sensitized photooxygenation.74

Singlet oxygen was recognized through the works of Schenck and
Foote.75–77 They concluded that photosensitization can proceed
in two ways, defined as Type I and II mechanisms.75–77 In a
Type I reaction, the excited photosensitizer reacts directly with
a substrate, leading to transfer of a proton or an electron, thereby
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forming radicals which may react with oxygen and produce reac-
tive oxygen species. Alternatively, in a Type II reaction, the triplet-
state photosensitizer transfers its energy directly to molecular
oxygen, forming an excited state known as singlet oxygen. This
highly reactive form of oxygen reacts with and cause damage to
many biological molecules, including lipids, proteins, and nucleic
acids.78–82 Singlet oxygen was first proposed by Weishaupt et al. as
the cytotoxic agent responsible for photoinactivation of tumour
cells.83 It was shown that PDT is dependent on oxygen both in
vitro84–86 and in vivo.87 When the oxygen concentration is reduced
from 5% (the concentration in normal tissue) to 1%, the PDT
effect is halved.86 The PDT effect is mainly mediated through
generation of singlet oxygen.88,89 The short lifetime of singlet
oxygen90,91 explains why PDT damage occurs close to cell and
tissue regions of high photosensitizer concentrations and why PDT
has a low genotoxic potential.92–99

The basis for tumour selectivity

Several theories have been proposed for the mechanisms explain-
ing why photosensitizing drugs are selectively taken up and/or
retained in tumour tissues. These theories are based on special
properties of tumours cells, or on physiological differences between
tumours and normal tissues. The topic has been reviewed earlier,
and little new information has accumulated after the reviews
appeared.100–105 In summary, the following factors are involved: a
low tumour pH (related to poor vascularity of tumours leading to
enhanced glycolytic activity followed by an increase in lactate lev-
els) causes preferential accumulation of drugs that protonate and
become more lipophilic as they enter acid tumours via the blood
supply.106 Tumours contain many macrophages that can ingest and
monomerize aggregated photosensitizers as well as lipoprotein
bound drugs.107 More low-density lipoprotein (LDL) receptors
are found on the surface of tumour cells than on the surface of
normal cells.108 Lipophilic photosensitizers preferentially bind to
lipoproteins.108 Tumours have a poor lymphatic drainage and a
leaky vasculature.107,109 Differences in water content and in other
physiological parameters between tumours and normal tissue play
roles for tumour localization of drugs.110 A large interstitial space
is often found in tumours.110 A higher content of collagen seems
to be present in several tumours than in normal tissues.110

Tumours are already, prior to PDT, starved of oxygen,111 and
additional PDT-induced vascular damage may inactivate them
selectively.87,112–116

Alterations of metabolic steps in heme synthesis may be the main
reasons for increased ALA-induced accumulation of PpIX in neo-
plastic cells and tissues. Thus, in some malignant cells and tissues
the porphobilinogen deaminase activity is increased,27,117–120 while
the ferrochelatase activity is reduced.27,117,119,121 Since ferrochelatase
catalyzes the insertion of ferrous iron into the PpIX ring, the
size of the labile iron pool influences PpIX accumulation.122

The importance of available iron on PpIX production was
demonstrated by using iron chelators.123–126

As mentioned above, tumours and normal tissues differ with
respect to physiological structure. This may affect PpIX pro-
duction and accumulation, and lead to tumour selectivity. Due
to inflammation many tumours may have a slightly elevated
temperature.127,128 The rate of biosynthesis of PpIX increases
steeply with increasing temperature.129–131

Stratum corneum is the main barrier for penetration of topically
applied drugs from the skin surface into tumours and other
tissues.132 When ALA, or its derivatives, are applied topically
on cutaneous tumours, some tumour selectivity is caused by a
compromised stratum corneum.38,103

Differences between tumour and normal cells with respect
to proliferation, differentiation, mitochondrial content, pH etc.
may lead to selective PpIX accumulation and retention.100,133–139

Thus, the reasons for selective PpIX accumulation in neoplastic
and altered tissues may be of enzymatic, morphological or
environmental character. Intricate interactions may exist between
these factors, dependent on the nature of disease, its localization
and stage, and on the PpIX precursor used, as well as on its
application mode and time.100

Light sources

Since non-invasive PDT depends on aimed light delivery, it can be
applied only to tumours and other lesions that can be reached by
light, either directly or through optical fibres. The light source and
the light delivery systems are two of the fundamental importance
in PDT.140,141 There is a need for designing optimal combinations
of photosensitizers, light sources and treatment parameters for all
PDT applications.

Light entering tissue is absorbed by the dominant chromophores
(hemoglobin, melanin and water). This determines how deeply the
light will penetrate. Each chromophore absorbs light at different
wavelengths differently. As determined by the absorption spectra
of the chromophores, the penetration depth will change with the
wavelength. The so-called “optical window” of living tissue is
between 600 nm (above the absorption of heme) and 1300 nm
(below the absorption of water). Thus, to get optimal depths
of action, one has to use photosensitizers absorbing in this
region, preferably at the largest possible wavelengths. In principle,
photons up to 1240 nm (corresponding to the energy gap between
ground state oxygen and that of singlet oxygen) might be used.
However, one has to allow for the singlet–triplet energy gap of
the photosensitizer, and photons above about 850 nm will hardly
generate triplet states with high enough energy to produce singlet
oxygen.

The choice of light source should be made in consideration of
the depth of the lesion, and, the chosen wavelength has to be
within the absorption band of the photosensitizer. For treatment
of deep lesions it is desirable to apply a photosensitizer with a
high absorbance as far as possible into the red region. Many of the
second generation photosensitizers absorb at longer wavelengths
than the traditionally used 630 nm for HpD.

Aggregated and monomeric photosensitizers have different
absorption spectra and different fluorescence quantum yields.142

The optimal wavelength should give maximal quantum yield of
singlet oxygen at maximal depth. The action spectrum of the
photosensitizer with respect to cell photoinactivation needs to
be determined.143–147 The action spectrum describes the relative
effectiveness of different wavelengths in producing the desired
biological response. These spectra have the same shape as the fluo-
rescence excitation spectrum of the photosensitizer, indicating that
primarily non-aggregated molecules generate singlet oxygen.143–147

The oxygen concentration changes during PDT because
of vessel damage and direct consumption of oxygen in the
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photochemical process itself. This will lead to a change of the
penetration spectrum (haemoglobin and oxy-haemoglobin have
different absorption spectra) and has to be paid attention to when
optical wavelength is sought.148

Light absorption leads to heat generation. Generally, fluence
rates above about 150 mW cm−2 will give hyperthermia.149 Recent
studies have shown that a low fluence rate is preferable since de-
pletion of oxygen occurs at high fluence rates.115,150–154 At the same
time, the exposure time needs to be considered. Thus, the fluence
rate influences the direct photochemical oxygen consumption and,
therefore, plays a critical role in clinical PDT.153,154

A number of different light sources have been used in PDT, lasers
and non-coherent sources.140,141 Lasers produce high intensity,
coherent, monochromatic light. This light can be focused into
and led through optical fibres and, thus, delivered directly to
the target. Argon dye, potassium–titanium–phosphate (KTP) dye,
metal vapour, copper and gold and, most recently, diode lasers
have been used for clinical PDT around the world.140,141,155 Lasers
emit continuous wave or pulsed light, with pulse lengths down to
a few fs. It has been hypothesized that high-intensity pulsed light
could penetrate deeper into tissues than continuous wave light by
causing a transient decrease in the absorption of chromophores in
tissue by the first part of the pulse.156 This process allows the rest of
the pulse to pass through tissue with less attenuation. Whether a
pulsed laser is better than a continuous wave light source in PDT is
still unclear and contradictory data can be found in the literature.
Most clinical studies have shown no significant differences in PDT
efficacy of pulsed and continuous wave light.156–160

An advantage of using lasers is that they can be easily coupled
into fibre optic delivery systems to reach otherwise inaccessible
locations such as urinary bladder, lung and digestive tract.140,141,161

For dermatology, however, non-laser sources are superior to laser
systems because of their large illumination field, low cost, small
size, and simple construction.140,161–163 Non-coherent halogen,
xenon arc and metal halide lamps, fluorescent tubes, light emitting
diodes (LED) and intense pulsed light sources (IPL) are the most
frequently applied light sources for PDT in dermatology. The
broad emission spectra of these lamps give some disadvantages,
such as thermal effect or difficulty in light dosimetry. Even if
a combination of PDT and hyperthermia (due to IR radiation)
seems to be advantageous, it should be avoided in skin since
hyperthermia may be associated with more pain. Light exposure
using a laser at a defined wavelength allows accurate light
dosimetry at the surface of the lesion. For broad-band sources
the depth of light penetration, the extinction coefficient of the
photosensitizer, and the spectral intensity can all vary across the
bandwidth of light used. Therefore, the light doses reported with
the use of a laser, filtered light and white light are not directly
comparable.

Lasers and non-coherent light sources have been used for PDT
and usually show similar efficacies.140,164,165 Since coherence is lost
within a few tenths of a millimetre of penetration into human
tissue, this property is not of any importance for PDT.

No single light source is ideal for every possible indication for
PDT, even with the same photosensitizer. Choice of light sources
should be based on: photosensitizer absorption (fluorescence
excitation and action spectra), disease (location, size of lesions,
accessibility), its reliability, simplicity of maintenance, cost and
size. Even if the optimal light source is chosen, the clinical efficacy

of PDT is dependent on the pattern light delivery: Total light dose,
light exposure time, fluence rate, fractionation mode.

Photodegradation of photosensitizers

Almost all photosensitizers are degraded by light through singlet
oxygen mediated processes: (1) the macrocycles of the photosen-
sitizer molecules are fragmented, resulting in loss of absorbance
and fluorescence, and (2) the photosensitizer molecules are altered,
forming fluorescent photoproducts, which are often photosen-
sitizers themselves and usually more water-soluble than the
parent compounds.166–171 The main photoproducts of porphyrin
photodegradation are probably non-fluorescent. It was proposed
that one pathway of photodegradation of porphyrins, such as
of Hp, HpD, PpIX and mesoporphyrin, might be that the
porphyrin is epoxidised at the double-bond between the ring
and the methine bridge.172 Formation of bilirubin and biliverdin
might be the result.172 These pigments are quite photolabile. Most
photosensitizers are photodegraded and phototransformed in first
order processes, i.e. with the degradation rates independent on
the initial dye concentration. However, in biological samples
photodegradation does not follow exponential kinetics due to
heterogeneous binding in biological samples and oxygen depletion
during light exposure.167,173–176

There are large differences in the photostability of the different
photosensitizers. Generally, water-soluble dyes tend to be more
stable than lipophilic ones, at least when present in cells and
tissues.172,177 The reason for this might be related to the intracellular
localisation of the photosensitizer. Factors other than solubility
are also important for the photostability of a photosensitizer.
Binding of a photosensitizer to a protein generally decreases
its photostability. Aggregates of a photosensitizer are more
photostable than monomers.142

Photobleaching of a photosensitizer may limit its efficacy in
PDT and has to be taken into account when choosing optimal
light fluences and photosensitizer concentrations. On the other
hand, photobleaching can prevent photodamage to normal tissue
adjacent to the tumour area.167,174 Photobleaching requires singlet
oxygen, just as tumour destruction does. Thus, photodegradation
rates may be used for clinical dosimetry.175–179

Damage to organelles

Subcellular targets and cellular responses associated with PDT can
be different for different photosensitizers.180 Damage to cell mem-
branes after PDT has been early shown by a number of methods:
ESR,181 electron microscopy,182,183 microscopic demonstration of
blebbing and cell expansion.34 Membrane effects are also causing
increased attachment of cells to a substratum (supposedly also
to the intracellular matrix) after PDT, and decreased attachment
of suspended cells.184–188 These membrane effects may be of great
importance for reducing the metastatic potential of surviving cells
in a tumour.

Damage to microtubules caused by PDT, notably with water
soluble photosensitizers, leads to accumulation of cells in mitosis
and subsequently to deaths.189,190

Since anionic photosensitizers localize outside the nucleus, little
DNA damage is caused by PDT.191 Only a small fraction of DNA,
localized close to the nuclear membrane is damaged by PDT.95,191
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The optimal way to kill cells in tumours has been debated
for decades. PDT can kill cells by apoptosis and/or necrosis
directly, or indirectly by closing the tumour microvasculature.
Furthermore, stimulation or suppression of the host immune
system may occur.114,192–196 Recently, Kessel et al. proposed that
also autophagy may be triggered by PDT and play a role.197,198

The mode of cell death is dependent on photosensitizer type,
on PDT dose and on cell genotype.199 The subcellular local-
ization of the photosensitizer is a key factor for the outcome
of PDT.200 Mitochondrially localized photosensitizers are able
to induce apoptosis.201 Lysosomally localized photosensitizers
can elicit either a necrotic or an apoptotic response. In the
plasma membrane (where several photosensitizers accumulate)
rescue responses, apoptosis and necrosis can be initiated. Several
protein phosphorylation cascades may be involved in regulation
of the response to PDT. Lysosomal effects are the basis for
photochemical internalization (PCI), a novel cancer therapeutic
method related to PDT.202,203 By PCI lysosomally localized toxins,
immunemodulating molecules and DNA can be released into
the cytoplasm of cells. We showed that a significant fraction
of the lysosomes in a cell can be ruptured by PDT without
inactivating it.204 Release of lysosomally localized fluorophores
leads to an increase of the fluorescence intensity caused by dilution
and deaggregation and was early demonstrated both in vitro and
in vivo.96,97,205

Immune effects

Canti and co-workers showed that less metastasis occurs after
PDT than after surgery of tumours in mice.206 This is certainly
related to PDT effects on the immune system, although increased
substratum binding and decreased ability of suspended cells to
attach may play roles. Immune effects of PDT have been studied
over decades.194,206–210 Crosslinks of proteins on the cell surface,
modulation of antigen presentation and direct effects on cells of the
immune system have been demonstrated. In contrast to surgery,
radiotherapy and chemotherapy, which are immunosuppressive in
nature, PDT causes acute inflammation, expression of heat shock
proteins, invasion and infiltration of the tumour by leukocytes,
and may increase the presentation of tumour-derived antigens to
T cells.207

PDT resistance, heat-shock or stress protein expression, and
gene activation induced by photosensitizer-mediated oxidative
stress are not fully elucidated yet.207,211–215 Understanding of
the molecular mechanisms of cellular responses after PDT will
contribute to improvements of PDT.

Cell cooperativity

It was early shown that cells subjected to PDT communicate.216

Thus, when cell colonies are treated, a non-random (non-
Poisson distributed) inactivation occurs: there is an overweight
of colonies with all cells undamaged and of colonies with all cells
inactivated.216,217 In PDT-treated monolayers, patches of damaged
cells are frequently seen. This is not due to clonal effects, but rather
to “rescue” or “killing” factors transmitted between the cells.
Such cooperativity, which has been demonstrated for a number
of tumour cell lines and for several photosensitizers,218–222 almost

certainly play a role for the efficiency of PDT and may explain the
surprisingly deep necrosis sometimes observed after PDT.

Future trends

Many new second generation photosensitizers have been devel-
oped and a few of them are already in clinical trials. Future
photosensitizers, third generation photosensitizers, are still in the
initial stages of research. Improved photosensitizer delivery may
allow more non-oncological diseases to be treated with PDT. The
design of new photosensitizers which may attach to foreign
DNA, RNA and protein may allow use of PDT against bacteria,
viruses, fungi, etc. Nanobiotechnology may be very useful in PDT,
allowing for effective and targeted photosensitizer delivery.223–225

Quantum dots have a potential as photosensitizers for PDT
applications.226 They may be used in the future to photosensitize
other PDT agents or molecular oxygen through an energy transfer
process, but further studies are needed.227

Another new approach in PDT is based on the strong
two-photon absorption in certain newly developed organic
molecules.228,229 The therapeutic volume of two-photon PDT is
very small and localized only within a small spot of a focused
laser beam, where high light intensities are obtained. Thus, the
photodynamic effect is highly localized, which is of advantage
when treating sensitive tissue. Another benefit of two-photon
PDT could be a higher penetration depth in tissue compared to
conventional PDT, since longer wavelength can be used to generate
singlet oxygen.228,229

Since PDT and other treatment modalities (radiation therapy,
chemotherapy, hyperthermia) damage different targets, PDT
combined with these modalities can be useful since dose reduction
may be possible (drug, light, treatments times) with similar,
or even better results than obtainable by single treatments.
Potential side effects, as skin photosensitivity and systemic toxicity
can thus be lowered. The effective treatment depth can be
increased by combining PDT with other therapies. Combinations
with immunoconjugates,230 chemotherapy,231–235 ultrasound,236,237

radiation therapy,236–241 electric current,242 hyperthermia,243–246

surgery,247–251 application of bioreductive drugs,252,253 microtubule
inhibitors,254 glucose injection,255–258 or anti-angiogenic drugs259

give good results in vitro and in vivo, but further investigations are
needed before combination therapies can be introduced in clinical
practice.

The major limitation of chemotherapy of certain tumours is
the development of multidrug-resistant tumour cells, making
complete response difficult to obtain. A number of researches have
studied the effects of PDT on multidrug-resistant cells.260–263 Their
results, although still inconclusive, have opened the possibility of
treating multidrug-resistant tumours with PDT.264
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