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Milestones of low-D quantum magnetism
Alexander Vasiliev1,2,3, Olga Volkova1,2,3, Elena Zvereva1,2 and Maria Markina1

There is a long time gap between the formulation of the basic theory of low-dimensional (low-D) magnetism as advanced by Ising,
Heisenberg and Bethe and its experimental verification. The latter started not long before the discovery of high-TC
superconductivity in cuprates and has been boosted by this discovery result in an impressive succession of newly observed physical
phenomena. Milestones on this road were the compounds which reached their quantum ground states upon lowering the
temperature either gradually or through different instabilities. The gapless and gapped ground states for spin excitations in these
compounds are inherent for isolated half-integer spin and integer spin chains, respectively. The same is true for the compounds
hosting odd and even leg spin ladders. Some complex oxides of transition metals reach gapped ground state by means of spin-
Peierls transition, charge ordering or orbital ordering mechanisms. However, the overwhelming majority of low-dimensional
systems arrive to a long-range ordered magnetic state, albeit quite exotic realizations. Under a magnetic field some frustrated
magnets stabilize multipolar order, e.g., showing a spin-nematic state in the simplest quadropolar case. Finally, numerous square,
triangular, kagome and honeycomb layered lattices, along with Shastry–Sutherland and Nersesyan–Tsvelik patterns constitute the
playground to check the basic concepts of two-dimensional magnetism, including resonating valence bond state,
Berezinskii–Kosterlitz–Thouless transition and Kitaev model.
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INTRODUCTION

Milestones in the field of low-dimensional magnetism, similar to
posts along the road, lead to a very attractive destination, i.e., the
formulation of a coherent and unified picture of quantum
cooperative phenomena in solids. The story begins in 1925 when
Ising following the advice of his tutor Lenz considered infinite
chain of magnetic moments with nearest neighbor interaction
only.1 The Hamiltonian considered in this case is valid for the
preferred component of the spin S

HI sin g ¼ J
X
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z
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No spontaneous magnetization at any finite temperature was
found within frames of this model. Opposite is the isotropic
Heisenberg case2
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The ground states of uniform S= 1/2 chains are different in
these two models. While the chain becomes ordered at zero-
temperature in the Ising limit, it remains disordered even at
zero-temperature in the Heisenberg limit. In 1931, Bethe
introduced his famous “ansatz” method to find the exact
quantum ground state of the antiferromagnetic Heisenberg
model in one dimension.3 The extension of classical Ising model
to two dimensions was provided by Onsager in 1944.4 Such a
system orders magnetically at finite temperature comparable to
the value of exchange interaction parameter J. Two-
dimensional Heisenberg system remains disordered at finite
temperatures, but its ground state is ordered. The basic role in
low dimensional magnetism belongs to Mermin-Wagner

theorem formulated in 1966.5 It states that no one-
dimensional or two-dimensional isotropic Heisenberg spin
system can order either ferromagnetically or antiferromagne-
tically at any non-zero temperature.
In the case when the moments lie perpendicular to the chosen

axis the model Hamiltonian is

HXY ¼ J
X
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Two dimensional antiferromagnets of XY type form magnetic
vortices and antivortices within the plane. The diameters of these
objects grow upon cooling. The vortices contact each other at
Berezinskii–Kosterlitz–Thouless (BKT) temperature resulting in a
unique form of long-range order without spontaneous magnetiza-
tion.6–8 An important difference between integer and half-integer
spin chains was admitted by Haldane in 1983.9 The uniform spin-
1/2 chain is gapless, it has fractionalized excitations—domain
walls carrying spin S= 1/2. These excitations are confined when
chains are coupled into ladders or when there is an alternation of
exchange interaction. The uniform spin-1 chain is gapped and the
excitations are triplets.
Overall, the properties of magnetic systems depend on their

symmetry and dimensionality D. Discrete symmetry (Ising model)
can be broken at T= 0 in D= 1 and cannot be broken at finite T.
Continuous Abelian symmetry (XY model) cannot be broken in D
= 1, but at T= 0 the correlations decay as power law. In D= 2
correlations decay as power law at finite T and become
exponential above BKT transition. Continuous non-Abelian sym-
metry SU(2) (Heisenberg model) cannot be broken in D= 1 even
at T= 0 and can be broken spontaneously only at T= 0 in D= 2.
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The exotic phenomena mentioned in this review are realized in
quantum magnets being localized low-spin systems, either spin-1/
2 or spin-1, not large classical moments. An attractive feature of
some low-dimensional magnets is a spin-liquid state defying a
long-range order. The liquid may be either gapped or gapless,
dependent on the type of quantum statistics. Adjacent to low-
dimensionality is the field of spin frustration, these two
phenomena being frequently coexisting in real magnets. The
spin-liquid ground state may survive in the presence of strong
interaction between magnetic entities, albeit long-range magnetic
order establishes itself most frequently in solids upon lowering the
temperature due to residual interactions in three dimensions.
Numerous attempts were undertaken to find higher-dimensional
analogs of the one-dimensional spin−1/2 Heisenberg antiferro-
magnet (AFM) in a state that breaks neither translational nor spin
rotational symmetry. Apart from the isolated ions, the dimers, i.e.,
two spins coupled by positive (antiferromagnetic) exchange
interaction J, seem to be the simplest objects of low-
dimensional magnetism. The singlet rotationally invariant ground
state of isolated dimers is separated in energy from the triplet
excited state by the excitation gap Δ= J. The interaction between
moments belonging to different dimers, may it be of spin or spin-
lattice type, leads to remarkable cooperative phenomena.
The outline of the review is as follows. The 0D objects of

quantum low-dimensional magnetism, i.e., spin-1/2 dimers, exhibit
a cooperative behavior when coupled. Multiple plateaus appear in
magnetization of Shastry–Sutherland dimers network due to the
formation of regular patterns of triplet excitations. The plateaus in
magnetization can be considered as intermediate Mott insulator
phases separating the domes of Bose–Einstein condensation of
magnons. Giamarchi, Ruegg and Tchernyshyov underpin the basic
concepts of this phenomenon including a detailed correspon-
dence between a Bose gas and a quantum antiferromagnet.10

Bose–Einstein condensation of magnons is not restricted to spin-
1/2 dimers, the representative examples are spin-1 dimers and
spin-1 ions with strong anisotropy also.
The chains, either gapped or gapless, represent an evident

move from 0D to 1D. The description of uniform and alternating
half-integer spin chains is complimented by short detour to
integer spin chains. Various phase transitions may bring uniform
spin-1/2 chain into ground state with a gap in magnetic excitation
spectrum. Among them, spin-Peierls transition, charge ordering
and orbital ordering effects can be distinguished. The routine
scenario for quasi-one-dimensional system is an eventual 3D
order, albeit quite exotic sometimes. Numerous features of this

order—chirality, incommensurability, nematicity—make this field
of study attractive.
Spin-ladders, to be considered intermediate between 1D and

2D systems, may show either gapped or gapless behavior
dependent on leg number. The ladder system can be extended
to Nersesyan–Tsvelik network, whose properties are described in
some details. As the dimensionality of the system increases, the
richer becomes the spectrum of observed magnetic phenomena.
It is out of question to list all of them in a short review, but some
issues related to 2D square, triangular, kagome and honeycomb
lattices are mentioned. The conclusion is supplemented by list of
selected spin gap compounds of authors’ choice.

DIMERS, SHASTRY–SUTHERLAND NETWORK

A set of orthogonal dimers coupled by frustrated interdimer
interaction constitutes the network described by the
Shastry–Sutherland model11,12

H ¼ J
X

nn

Si � Sj þ J0
X

nnn

Si � Sj (4)

It is assumed that both intradimer J and interdimer J′ exchange
interactions are positive. Dependent on α= J′/J ratio, the ground
state of this model is either spin singlet (α < αC) or Neel order (α >
αC), where αC ~0.7.
A good realization of the Shastry–Sutherland model is the

SrCu2(BO3)2.
13 The temperature dependence of the magnetic

susceptibility χ in SrCu2(BO3)2 is shown in Fig. 1a. At around T=
20 K, a steep drop evidences the presence of a spin gap and the
singlet/non-magnetic ground state. Evidently, neither the isolated
spin dimer model (solid line) nor its mean field modification
(dashed line) describes the experimental data. The numerical
analysis12 has shown that the peculiar shape of the χ(T) curve is
due to the fact that the ratio of J= 100 K and J′= 68 K in
SrCu2(BO3)2 is quite close to the transition point αC. The almost
dispersionless spin gap Δ= 34 K was evaluated in inelastic
neutron scattering.14

Another attractive feature of SrCu2(BO3)2 is the sequence of
plateaus in magnetization, as shown in the inset to Fig. 1a.
Plateaus are due to the strong localization of the triplet excitations
within the set of orthogonal dimers. At the fractions of
magnetization, where the triplets create a superstructure, the
energy is at a local minimum. At present, the magnetization in
SrCu2(BO3)2 investigated in static magnetic fields up to 34 T has
revealed the plateaus at 1/8, 2/15, 1/6 and 1/4 of the saturation,15

Fig. 1 a Temperature dependence of magnetic susceptibility χ=M/H in SrCu2(BO3)2 taken at μ0H= 1 T (adapted with permission from, ref. 13
copyright American Physical Society 1999). The solid and dashed lines are fitting curves. Inset represents the field dependencies of reduced
magnetization M/Msat and its derivative dM/dH taken at T= 2.1 K for H//c axis (adapted with permission from, ref. 16 copyright American
Physical Society 2013). The critical fields Hi associated with the plateaus are marked by vertical arrows; b Phase diagram of SrCu2(BO3)2
(adapted with permission from, ref. 19 copyright Springer Nature 2017). Green circles correspond to the triplet gap ∆ at Q= (2,0,L), two-triplet
bound state (BT) is marked by green diamonds; the dashed line is the extrapolated energy gap and yellow star denotes a new low-energy
excitation (LE) at Q= (1,0,1). Green squares denote magnetic Bragg peaks at Q= (1,0,0). Magenta line marks the structural transition. Insets
represent dimer, plaquette and Neel ground states
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while the measurements in pulsed magnetic fields identified
additionally 1/3 and 1/2 plateaus.16 The plateau regions corre-
spond to the spin-gapped states with the stripe order of triplets. It
has been argued that the sequence of field-induced phases
observed in SrCu2(BO3)2 represents the first example of an
incomplete devil’s staircase concerning magnetization of the
quantum AFM15 where the lower plateaus should be described by
a superlattice of triplets of the four-Cu spins, instead of dimer
triplets.17

The plaquette phase intermediate between the dimerized spin-
singlet state (α= 0) and Neel order (α→∞) has been predicted in
zero magnetic field for the Shastry–Sutherland network at 0.68 <
α < 0.86.18 This phase has been identified recently in inelastic
neutron scattering performed on SrCu2(BO3)2 single crystal under
pressure up to 60 kbar.19 As shown in Fig. 1b (left panel), the dimer
phase exists up to P= 16 kbar, where both the gap and the energy
of bound triplets decrease. In the range P= 21.5 ÷ 40 kbar, the
new plaquette phase with a spin gap Δ~23 K is identified, as
shown in Fig. 1b (middle panel). Eventually, the gap closes under
pressure and Neel ordering takes place at P= 40 kbar. The
transition between dimer and plaquette phases is of the first
order in the range P= 16 ÷ 21.5 kbar, while the transition between
the plaquette singlet and Neel phase is of the second order. As
shown in Fig. 1b (right panel), a further increase in pressure results
in a tetragonal monoclinic structural phase transition, where the
Cu2+ spin dimers are no more orthogonal.

DIMERS, BOSE–EINSTEIN CONDENSATION

The ground state energy of a system consisting of integer spin
particles, bosons, can be minimized via spontaneous
Bose–Einstein condensation (BEC), without any interaction. This
phenomenon predicted initially for the photons is considered
responsible for superfluidity and superconductivity, refer to
condensation of trapped atomic gases and can also be applied
to quasiparticles in a solid.20 Note that the concept of BEC with
regard to the spin systems is only an approximation: exchange

anisotropy and single-ion anisotropy always break rotational
symmetry. Magnons are bosons irrespective of the ions magnetic
moment. At low temperatures, the BEC was observed in
Heisenberg or axially symmetric low-dimensional magnets with
spin-singlet ground state, e.g., spin-1/2 dimers21–25 and composite
integer spin chains26 or in the systems with strong single-ion
anisotropy.27 The BEC occurs under action of magnetic field which
splits the triplet S= 1 and lowers the energy of Sz= 1 level. At the
first critical field HC1, the S= 0 and Sz= 1 levels cross starting the
process of BEC. At low temperatures, the formation of new state is
manifested by sharp anomalies in magnetization and specific heat,
whose magnitude increases with magnetic field. In the range HC1

< H < HC2, the canted AFM state exists with net magnetization
proportional to the magnetic field. At the second critical field HC2,
the magnetization saturates. In the vicinity of HC1, the phase
boundary for a three-dimensional system should follow the power
law HC1(T) – HC1(0) ~T

3/2.
At present, BEC phenomena have been reported at finite

temperatures for a number of quantum magnets.28 Three
representative cases are the systems of spin-1/2 dimers, spin-1
dimers and isolated S= 1 ions. The ancient Han purple pigment,
BaCuSi2O6, is a spin gap compound with a square lattice of dimers
forming the bilayer structure.23 Along the c axis, the Cu2+ ions, S
= 1/2, are coupled by J= Δ= 52 K. In addition, these ions are
coupled in the ab plane by J′= 7 K. The BEC critical fields in
BaCuSi2O6 are μ0HC1= 23.5 T and μ0HC2= 49 T with Tmax= 3.8 K.
The dome shaped phase boundary of the ordered phase in
BaCuSi2O6 is shown in Fig. 2a. This boundary is marked by sharp
anomalies in specific heat and magnetocaloric effect.
The singlet−triplet and triplet−quintuplet BEC was studied in

the spin-1 dimer compound, Ba3Mn2O8.
25 Its magnetic subsystem

is comprised of pairs of Mn5+ ions arranged on triangular lattice
and coupled along the c axis by J= 19 K. The multiple interactions
between dimers amount to J′ ~1 K, while the single-ion uniaxial
anisotropy is D ~0.3 K. The ground state of S= 1 dimers is the
singlet; the first excited state is the triplet S= 1 (Δ1= J); and the
second one is the quintuplet S= 2 (Δ2= 3 J). Under magnetic field

Fig. 2 The phase diagrams of BEC. Symbols represent the data of specific heat and magnetocaloric (MC) measurements. a BaCuSi2O6,
experimental (solid) and calculated (dash) magnetization curves at 1.5 K for H//c axis (lines), ΔT refers to MC effect (adapted with permission
from, ref. 23 copyright American Physical Society 2009); b Ba3Mn2O8, the phases I and III are marked as measured for H//c axis, phase II appears
at H//a axis (reproduced with permission from, ref. 25 copyright American Physical Society 2009); c NiCl2-4SC(NH2)2, the inset depicts the
crystal structure (adapted with permission from, ref. 27 copyright American Physical Society 2006)
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both excited states split and levels Sz= 1 and later Sz= 2 cross the
ground state level. The field dependence of magnetization of
Ba3Mn2O8 demonstrates two linear regions corresponding to BEC,
as shown in Fig. 2b. At T= 0.5 K, the critical fields for triplet BEC
are μ0HC1= 8.73 T and μ0HC2= 26.46 T with Tmax1= 0.86 K, while
for the quintuplet BEC μ0HC3= 32,42 T and μ0HC4= 47.9 T with
Tmax2= 0.63 K. The magnetization plateau in the range μ0HC2–

μ0HC3 corresponds to one S= 1 triplet per dimer. Two dome-
shaped phase diagram in Ba3Mn2O8 for field perpendicular to the
c axis is shown in Fig. 2b. The regions I and II correspond to
different phases of the triplet condensate; the region III
corresponds to the quintuplet condensate.29

A qualitatively different case of BEC is represented by NiCl2-4SC
(NH2)2 (DTN), where the gap between singlet S= 0 and doublet Sz
= ±1 levels is due to a single-ion anisotropy D= Δ= 8 K of
isolated S= 1 Ni2+ ions.27 In this compound, the nickel ions are
surrounded by four polar molecules of thiourea, making the DTN a
molecular magnet. Similar to dimers, an external magnetic field
shifts down the Sz= 1 level. The critical fields in DTN are μ0HC1=

2 T and μ0HC2= 12.5 T with Tmax= 1.2 K (Fig. 2c). In variance with
the dimer systems where the gap is basically isotropic, the
properties of DTN strongly depend upon the direction of the
magnetic field with respect to the easy magnetization axis.

CHAINS, SPIN LIQUIDS

The uniform half-integer spin chain does not present a gap in the
triplet excitation spectrum. The chain is disordered in an isotropic
case but the anisotropy of exchange interaction results in a long-
range order at T= 0 K.30 The system with small exchange
anisotropy can be described by the pure Heisenberg form JSiSj
while the Ising form JSi

zSj
z should be applied to the highly

anisotropic case.31 The χ(T) curve of Heisenberg AFM spin-1/2
chain demonstrates a broad maximum at Tmax ~0.64 J. Below this
temperature, it is reduced by ~15%. At the same time, the Ising
chain demonstrates a broad maximum in χ(T) curve at Tmax= 0.5 J
and its reduction to zero at T= 0 K. There are many good
examples of uniform Heisenberg spin-1/2 chains, among them
AE2Cu(PO4)2 (AE= Sr, Ba).32 The broad maxima in χ(T) curves are
seen at Tmax= 92 K (J= 143 K) for the Sr- and Tmax= 82 K (J=
132 K) for the Ba-compounds (Fig. 3a). Although the Sr2Cu(PO4)2
seems to be the best realization of a Heisenberg spin-1/2 chain,33

the measurements of ac–susceptibility identified the long-range
order in the Sr-compound at TN= 0.085 K.34

An alternation of the exchange interaction along the spin-1/2
chain, J1–J2, leads to the appearance of a spin gap in the excitation
spectrum. The confined excitations carry spin 0 and 1, the gap for
triplet excitations is located at q= π.35 Depending on the
alternation parameter 0 ≤ α= J2/J1 ≤ 1 two limiting cases can be
considered. For α= 0, the chain transforms into a set of isolated

dimers; for α= 1, it is the uniform chain. In the range 0 ≤ α ≤ 0.9,
the spin gap is defined as Δ= J1(1− α)3/4(1+ α)1/4.36 In the case of
ferromagnetic (FM) exchange interaction J2 alternating with AFM
J1, the energy spectrum is gapped also. The gap is located at q=
π/2 similar to the AFM Heisenberg S= 1 chain.37 The χ(T) curves
show the correlation maximum, which shifts from Tmax ~0.64J1 at
α= |J2|/J1= 0 to lower temperatures with α increasing.38 An
alternating spin-1/2 chain compound with a large spin gap is
BaCu2V2O8.

39 The χ(T) curve demonstrates a broad maximum at
Tmax ≈ 280 K (Fig. 3b) which enables estimation of a leading
exchange interaction as J1= 460 K. The spin gap found in 51V NMR
measurements amounts to 380 K.40 While first principles calcula-
tions identified BaCu2V2O8 as an AFM–AFM chain compound with
α equal to either 0.16 (Ref. 41) or 0.05 (Ref. 42), recent high-
resolution inelastic neutron scattering data unveiled an AFM–FM
alternating chain with J1= 475 K and J2=−140 K.

43

Integer spin chains with sufficiently weak anisotropy are
characterized by a nonmagnetic singlet ground state and a
nonzero excitation-energy gap.44 Hamiltonian of spin-1 chain is

H ¼ Jj j
X

n

~Sn �~Snþ1 þ λSznS
z
nþ1 þ μ Szn

� �2
h i

; (5)

where λ is the exchange interaction anisotropy and μ is the
crystal field splitting of the single ion levels. The gapped phase
exists in an extended range of exchange anisotropy 0 ≤ λ ≤ 1.18
for μ= 0.45 Moreover, for λ ≈ 1, the gap decreases, goes through a
minimum, estimated to be zero, and then increases with positive
μ. Monte Carlo calculations performed for spin-1 AFM Heisenberg
chain estimate the gap Δ= 0.41 J.46 PbNi2V2O8 is considered to be
an example of the Haldane chain conjecture. The χ(T) curve
evidences the presence of the gap in the energy spectrum (Fig.
3c). The position of the broad maximum at Tmax= 120 K allows
estimating J= 95 K and Δ= 39 K.47 However, the determination of
the spin gap from magnetization curves gives a lower value Δ=
(2Δ⊥+ Δ||)/3= 22 K. This is ascribed to the presence of both
interchain interactions J⊥ and negative single ion anisotropy D. In
inelastic neutron scattering the main magnetic parameters in
PbNi2V2O8 were estimated as J= 110 K, J⊥= 1 K and D=−2.7 K.
The values of transverse and longitudinal gaps constituted Δ⊥=

48 K and Δ||= 43 K.48 The D/J and J⊥/J ratios put Pb2Ni2V2O8

system in the Haldane phase near the border with the ordered
Ising-like phase in the D-J⊥ phase diagram.46

CHAINS, PHASE TRANSITIONS, SPIN GAP

The uniform spin-1/2 chains are unstable with respect to various
effects leading to a spin gap formation. The interactions of spin,
charge and orbital degrees of freedom with the lattice lead to the
spin-Peierls transition, charge and orbital order driven transitions.

Fig. 3 Temperature dependencies of magnetic susceptibility χ in spin chain systems. a gapless uniform spin-1/2 chains in Sr2Cu(PO4)2 and
Ba2CuP2O8(adapted with permission from, ref. 33 copyright American Physical Society 2006); b gapped alternating spin-1/2 chain in
BaCu2V2O8 (adapted with permission from, ref. 39 copyright American Physical Society 2004), the dotted line is an extrapolation of impurities
term; c gapped uniform spin-1 chain in PbNi2V2O8 (adapted with permission from, ref. 47 copyright American Physical Society 1999). The
fragments of crystal structures are depicted in the insets in each panel
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All of them include structural distortion and in every case a loss in
elastic energy is compensated by a gain in magnetic energy.
The spin-Peierls transition, being the most unusual kind of

magnetoelastic transition, relates to the particular quantum
mechanical nature of quasi-one-dimensional AFM. Similar to the
Peierls transition in quasi-one-dimensional conductors, the spin-
Peierls transition integrates spin gap formation and dimerization
of the underlying crystal lattice. This phenomenon, found initially
in tetrathiafulvalene-CuS4C4(CF3)4 at TSP= 12 K,49 was observed
later in CuGeO3.

50 In contrast to the AFM transition, the reduction
of magnetic susceptibility χ at the spin-Peierls transition is
isotropic. This is illustrated by χ(T) curves measured along three
principal axes in CuGeO3 (Fig. 4a). The broad correlation maximum
is reached at Tmax= 56 K, which defines the intrachain exchange
interaction along the c axis J= 88 K. The spin-Peierls transition is
manifested by a sharp drop in the χ(T) curve at TSP= 14 K. Under
magnetic field, the transition shifts to lower temperatures ~αH2

with α= 0.46.51 At T < TSP, two alternating J’s form, i.e., J1,2(T)= J(1
±δ(T)). The spin gap Δ= 24 K is proportional to the alternation δ
= 0.17. The values of interchain exchange interactions along the b
axis Jb= 0.1 J and c axis Jc=−0.01 J were provided by inelastic
neutron scattering.52 All spin-Peierls compounds obey universal
magnetic phase diagram comprised of uniform, dimerized and
intermediate phases.53 The last one is considered to be a
commensurate, discommensurate (a magnetic soliton), or incom-
mensurate phase. The critical field of the transition between
dimerized and intermediate phases in CuGeO3 is 12-13 T.54 Full
saturation of magnetization in CuGeO3 was achieved at μ0H=
253 T in pulsed magnetic field measurements.55

A charge-ordering-driven phase transition into the spin gap
state was observed in the NaV2O5 at TC= 35 K (Fig. 4b).56 At
elevated temperatures, the average oxidation state of vanadium
ions is V4.5+. Below TC, two distinctly different oxidation states
were evidenced in V51 NMR measurements which also identified a
spin gap value Δ= 108 K.57 At low temperatures, the monoclinic
A112 structure of NaV2O5 is constituted by enlarged unit cell (a-
b) × 2b × 4c, where a, b and c are the crystal lattice parameters of
the high-temperature orthorhombic phase.58 At T ≤ TC, the
temperature-dependent charge disproportionation V4.5±δc/2 was
observed with continuous variation of δc.

59 The fully charged
zigzag-type pattern differs distinctly from the chain-type con-
sidered a prerequisite to the spin-Peierls state. At present, the
alternation of exchange interaction within zigzag chain is
considered to be responsible for a spin gap. The low temperature
crystal structure in NaV2O5 is fixed by both lattice distortion and
Coulomb repulsion. These two factors are responsible also for the

“devil’s staircase” phase transitions between commensurate
phases with 2a×2b×zc type superstructures found in NaV2O5.

60

A spin-Peierls-like phase transition61 driven by spin-orbital
fluctuations62 was observed in NaTiSi2O6. The transition takes
place at TC= 210 K which is higher than the temperature of
correlation maximum in χ(T) curve.31 In this case, the short-range
order within the chains is not fully developed and solely magnetic
fluctuations cannot be considered to be the driving force.
NaTiSi2O6 hosts the skew-edge-sharing chain of slightly distorted
TiO6 octahedra in monoclinic C2/c structure.63 At elevated
temperatures, the fluctuations of the orbital degrees of freedom
allow NaTiSi2O6 to be considered as a dynamic Jahn−Teller
phase.64 At TC= 210 K, NaTiSi2O6 transforms to triclinic
P1modification63 which is accompanied by a gradual decrease in
magnetic susceptibility (Fig. 4c). The exchange interaction J along
the chain is provided by the overlap of nearly degenerated xyj i
and yzj i orbitals ( xzj i orbitals are non-bonding). Taking into
consideration the orbital degree of freedom, the Hamiltonian of
this system can be written as64

H ¼ Jj j
X

i;j

Si � Sj
1

4
þ T z

i T
z
j þ

ð�1Þi

2
ðT zi þ T z

j Þ

" #

; (6)

where the orbital operator T zi = 1/2 corresponds to an occupied
xyj i orbital and T z

i =−1/2 to an occupied yzj i orbital. The ground
state of this Hamitonian is a dimerized orbital-ordered one hosting
the spin singlet on each bond. The states with either xyj i or yzj i
occupied are degenerated. The condensation of the system in
either one of these states explains the appearance of a large
singlet-triplet spin gap. The value of gap Δ= 620 K was estimated
in time-of-flight neutron spectroscopy65 in good correspondence
with the first principles calculations.66

CHAINS, PHASE TRANSITIONS, LONG-RANGE ORDER

The long-range order is the final destination for numerous quasi-
one-dimensional magnets not protected by a spin gap. This is
because the weak interchain exchange interactions J′ inevitably
come into play upon lowering the temperature. The ground state
of these systems also depends on both signs and values of nearest
neighbor Jnn and next nearest neighbor couplings Jnnn within the
chains.67 The chain Hamiltonian in a magnetic field H is

H ¼ Jnn
X

j

Sj � Sjþ1 þ Jnnn
X

j

Sj � Sjþ2 � H
X

j

Szj (7)

In the case of Jnnn being antiferromagnetic (Jnnn > 0), the chain is
frustrated independent of the sign of Jnn. If both Jnn and Jnnn are

Fig. 4 a The spin-Peierls transition in CuGeO3 (adapted with permission from, ref. 50 copyright American Physical Society 1993). Symbols
represent the experimental data taken along three principal axes; b The charge ordering transition in NaV2O5 (adapted with permission from,
ref. 56 copyright Physical Society of Japan 1996). c The orbital ordering transition in NaTiSi2O6 (adapted with permission from, ref. 61 copyright
Physical Society of Japan 2002). The solid lines in b and c represent the Bonner–Fisher curve. The dashed line in panel c represents the
Curie–Weiss law. All measurements were taken at μ0H= 1 T. The fragments of crystal structures are depicted in the insets in each panel
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positive, a spin gap opens at Jnnn/Jnn= α > αC= 0.241.68 At α= 0.5,
the Majumdar–Ghosh ground state is represented by a super-
position of spin singlets. Tentatively, copper chromate, CuCrO4, is
the best realization of this model with Jnn= 54 K and Jnnn= 27 K.69

It should be noted, however, that no spin gap was observed
experimentally in the compounds which satisfy the criterion α >
αC. If Jnn is FM (Jnn < 0), FM order within the chain is established in
the range −0.25 < α ≤ 0. At α=−0.25, the system undergoes
quantum phase transition to an incommensurate spin helix
state.70 Among recently found species of this type there are
several chain cuprates, e.g., LiCu2O2,

71 Li2CuZrO4,
72 LiCuSbO4,

73

etc., which adopt non-collinear magnetic structure. Of special
interest is LiCuVO4 which exhibits ferroelectricity at low tempera-
tures and nematicity at high magnetic fields.
In LiCuVO4, the Cu2+ ions form isolated spin-1/2 chains along

the orthorhombic b axis.74 The signs of the exchange interactions
within the chains differ, i.e., Jnn=−19 K while Jnnn= 44 K. The
long-range helix order at TN= 2.4 K is triggered by the interchain
interaction J′=−4.6 K.75 The ordered moments of Cu2+ ions form
a spiral spin ground state in the ab plane with incommensurate
propagation vector Q= (0;0.532;0). LiCuVO4 is an improper
ferroelectric with the long-range polar order induced at the onset
of a spiral spin order. Measurements of magnetic-field-dependent
dielectric constant ε and electrical polarization P allow the
construction of a magnetoelectric phase diagram (Fig. 5a).76 At
T < TN and H < H1 ~2.5 T, the normal vector e to (a,b) helix in
LiCuVO4 is parallel to the c axis. At a critical field H1 ~2.5 T, the
vector e is turned into the direction of the external field.
According to the symmetry rule of spiral magnets, ferroelectric
order is established with the polarization P∝ e × Q along the a
axis. In the range H1 < H < H2 ~7.5 T, the normal vector e reorients
along the external magnetic field and, thus, the electrical
polarization depends on the direction of the magnetic field.
Finally, for external magnetic fields above H2, the helical spin
structure is destroyed and the system is paraelectric for all field
directions.
Above H2, an incommensurate, collinear spin density wave of

bound magnon pairs is stabilized in medium magnetic fields by a
FM Jnn. In high fields just below the saturation of magnetization,
these pairs experience a Bose–Einstein condensation into
quantum multipolar states. One of these states expected just
below the saturation HS is a quadrupolar state of magnon pairs
called a spin nematic state, analogous to a nematic liquid crystal.
In a spin nematic state, an energy gap develops in the transverse

spin-excitation spectrum making the energy of the two-magnon
bound state lower than the energy of the single-magnon state.77

The microscopic experimental evidence for the formation of a
homogeneous, field-dependent, longitudinal spin state without
transverse dipolar order was obtained in nuclear magnetic
resonance (NMR) measurements on LiCuVO4 single crystals up
to 56 T for both H∥c and H∥b orientations.78 Observed was the
field-dependent NMR line position without change of its width
with respect to the saturated phase, as predicted for a spin
nematic phase. Figure 5b shows the field dependencies of the 51V
spectra for H∥b taken at T= 1.3 K. The internal local field Hint

generated on 51V by the transferred hyperfine coupling from the
neighboring Cu2+ moments directly measures the local magne-
tization M, and is thus extracted using Hint= ν(51V)/51γ− μ0H
where ν is the frequency and γ is the gyromagnetic ratio.
Three different regions can be identified in these NMR spectra.

At H > 50.55 T (43.55 T for H∥c), the spectra are field independent
and consist of narrow and symmetric lines which is characteristic
for a saturated homogeneous magnetic phase. At H < 48.95 T
(42.41 T for H∥c) there appears a strong line broadening; both
linewidth and line position are field dependent, which is
consistent with the previously identified spin density wave state.
This phase is characterized by a modulated spin polarization,
where the moments are collinear with the external field. In the
field ranges 48.95÷50.55 T for H∥b (42.41÷43.55 T for H∥c), the line
positions change with H as in the spin density waves phase, but
their widths remain unchanged relative to those of the saturated
phase. This behavior corresponds to the formation of a homo-
geneous magnetic state as expected for a spin-nematic state.
In variance with LiCuVO4, its newly synthesized counterpart

LiCuSbO4 does not exhibit long-range order down to 0.1 K,
signifying the weakness or frustration of interchain exchange
interactions. Indications on the presence of a field-induced spin-
nematic state were obtained in measurements of temperature
dependencies of 7Li nuclear spin lattice relaxation rate, T1

−1, at
various fields.79 Below threshold field μ0Hc1= 13 T, T1

−1 diverges
at lowering temperature pointing to approach of magnetically
ordered phase. Surprisingly, above this field T1

−1 shows drastic
suppression of relaxation rate at lowering temperature evidencing
a gap in magnetic excitation spectrum. Excluding well established
mechanisms for the spin gap formation, i.e., Zeeman effect at
saturation magnetization and Dzyaloshinskii-Moriya interaction, it
was concluded that an external magnetic field induces a
multicomponent spin liquid in LiCuSbO4. According to phase
diagram, shown in Fig. 5c, a collinear incommensurate spin

Fig. 5 a (H,T) phase diagram of LiCuVO4 (adapted with permission from, ref. 76 copyright American Physical Society 2008). The magnetic and
electric states are noted in the figure; b 51V NMR spectra in LiCuVO4 for H∥b (reproduced with permission from, ref. 78 copyright American
Physical Society 2017). The peak of each line is marked by the black triangle. Spin-density wave, spin nematic and saturated field ranges are
highlighted by different colors. The dash-dotted lines denote field-dependent Hint; c (H,T) phase diagram of LiCuSbO4 (adapted with
permission from, ref. 79 copyright Springer Nature 2017). The dark red area corresponds to an anomalous spin density wave phase; the dark
yellow area depicts a nematic phase. The blue line marks the isosbestic field Hc1. The brown circles depict the maximum of the spin-nematic
correlation function HSN

max
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density wave phase precedes spin-nematic phase, both being
gapped. The range of possible multipolar nematic phase was
narrowed to 12.5–13 T, recently.80 Thus, the study of LiCuSbO4

gives further support to the concept that the fragile multipolar
phases may survive in low-dimensional magnets due to enhance-
ment of quantum fluctuations in the presence of competing and
strongly anisotropic exchange interactions.

LADDERS, NERSESYAN–TSVELIK NETWORK

Isolated magnetic entities consisting of exchange-coupled chains
constitute the multitude of spin ladders.81 The magnetic excitation
spectra are gapped for half-integer even leg ladders and gapless
for odd leg ladders. In the former case the fractionalized spin -1/2
excitations are confined so that the excitations carry spin 0 and 1.
Depending on the ratio of the rung Jr and the leg Jl exchange
interactions, various ground states could be formed in these
objects. In the case of Jr≫Jl, the even leg ladder can be considered
as the collection of weakly interacting dimers. In the opposite case
of Jr≪Jl, independent on the number of legs, the pattern is that of
weakly interacting gapless chains. In the case of the spin-1 ladder
the ground state is gapped for any ratio of Jr and Jl. Of special
interest is the Nersesyan–Tsvelik network, which is an extension of
the spin-ladder pattern to the layer where both rung Jr and
plaquette-diagonal Jd exchange interaction are taken into
account.82

In the coupled chains model the spin liquid state of the two-
dimensional counterpart of one-dimensional spin-1/2 Heisenberg
AFM can be realized when the exchange is frustrated in the
direction perpendicular to the chains and can be fine-tuned. In the
case for which the interchain couplings satisfy the relation Jr= 2Jd,
the interaction between staggered magnetizations is eliminated
completely. Both frustration and spatial anisotropy of exchange
interactions are essential ingredients of the Nersesyan–Tsvelik

model. The Hamiltonian in this case is

H ¼
X

j;n

JlSj;n � Sjþ1;n þ
X

μ¼± 1

JrSj;n þ Jd Sjþ1;n þ Sj�1;n

� �

Sj;nþμ

� �

( )

(8)

where Sj,n are spin-1/2 operators, Jl,Jr,Jd > 0 and Jl ≫Jr,Jd.
The spatially anisotropic square lattice quantum AFM was

analyzed by Starykh and Balents who showed that to realize the
Nersesyan–Tsvelik model just the reduction of the coupling of
staggered magnetization of different chains is needed, not full
elimination.83 An attempt to verify this model involves the (NO)Cu
(NO3)3. The layered crystal structure of this compound is organized
by weakly coupled chains running along the b axis, as shown in
Fig. 6a.84 The intrachain exchange interaction, Jl, passes through
NO3

− group which bounds neighboring Cu2+ (S= 1/2) ions.
Within the bc plane these ions are coupled by rung exchange
interaction, Jr, involving two NO+ groups and diagonal exchange
interaction, Jd, which passes through one NO+ group. It allows
presuming that Jr= 2Jd. The interplane exchange interaction
along the a axis is considered to be small.
The temperature dependencies of both magnetic susceptibility

χ and electron spin resonance intensity χESR in (NO)Cu(NO3)3 have
been described by the formalism appropriate for isolated half-
integer spin chains with Jl= 170 K. However, the value of χ at low
temperatures was found to be significantly smaller than expected
for an isolated spin-1/2 Heisenberg chain. Another probe of the
spin liquid state was Raman spectroscopy which evidenced a
gapless continuum of magnetic origin (Fig. 6b).85 The position of
the maximum in this continuum defines the major exchange
coupling along the chains as Jl= 150 K. That same spinon
continuum was observed in inelastic neutron scattering (Fig. 6c).86

The condition Jr= 2Jd requires a subtle fine tuning of the
couplings. The deviation from this ratio may lead to formation of
the Neel state at low temperatures. In the band structure
calculations, it was admitted that Jr= 2Jd ratio may not be

Fig. 6 a Nersesyan–Tsvelik pattern in (NO)Cu(NO3)3 (adapted with permission from, ref. 84 copyright American Physical Society 2010). Arcs
denote main exchange interactions between Cu2+ ions; b magnetic Raman scattering with a finite energy maximum (adapted with
permission from, ref. 85 copyright American Physical Society 2012); c inelastic neutron scattering data of spinon continuum at 5.5 K (adapted
with permission from, ref. 86 copyright American Physical Society 2014); d simulation of spinon continuum with J= 142 K. The boundary of
two-spinon continuum is marked by dashed line (adapted with permission from, ref. 86 copyright American Physical Society 2014)

Milestones of low-D quantum magnetism

A Vasiliev et al.

7

Published in partnership with Nanjing University npj Quantum Materials (2018)  18 



fulfilled in (NO)Cu(NO3)3 because the interaction between NO3
−

units flared out of the plane of Fig. 6c may contribute to Jr but
may not contribute to Jd.

87 Indeed, the long-range magnetic order
occurs at the highly reduced Neel temperature TN= 0.58(5)K.86

The large ratio Jl/TN~2.5 × 102 marks the strong suppression of
magnetic order. Furthermore, the specific heat Cp and muon
spectroscopy (μSR) imply a small ordered moment m while the
neutron diffraction gives an upper limit of m ~0.01 μB. Evidence
that the interchain interactions are competing comes from μSR,
which shows that the magnetic order is an incommensurate spin
density wave. Since the inelastic neutron scattering reveals
commensurate magnetism along the chains, the order must be
incommensurate perpendicular to the chains. Hence, the (NO)Cu
(NO3)3 can be considered as a highly one-dimensional chain
compound with frustrated interchain interactions. Tentatively, it
corresponds to the Nersesyan−Tsvelik model with finite and
competing values of Jr and Jd, although the ratio of these
interactions and the proximity of the system to the special point Jr
= 2Jd is still unknown.

LAYERS, TRIANGULAR, KAGOME AND HONEYCOMB LATTICES

The interest to layered magnets has been triggered by discovery
of superconductivity in La2 - xBaxCuO4 which possesses a square
layered magnetic lattice.88 The issue of quantum ground state in
such a lattice belongs to the most complicated ones since the
competition of intralayer exchange interactions along with
interlayer interactions and anisotropy may significantly influence
the long-range ordering processes. The introduction of holes into
the copper layers leads to frustration of magnetic interactions and
formation of resonating dimer singlets, i.e., mobile Cooper pairs.
This allowed Anderson advance a concept of high-TC super-
conductivity in cuprates based on idea of resonating valence bond

(RVB) state.89 Such a quantum spin liquid state was suggested
initially to describe valence bond interactions in geometrically
frustrated 2D system of Mott insulator.90 To realize the spin liquid
state in two dimensions the most obvious candidates are
triangular and kagome lattices.
Among triangular 2D spin-1/2 Heisenberg antiferromagnets,

Cs2CuCl4 is considered to be a closest realization of a quantum
spin liquid.91 Within planes of this compound the copper spins
form an anisotropic frustrated network with linear chain coupling J
along the b axis and zigzag inter-chain coupling J′ ~J/3 along the c
axis, as shown in the inset to Fig. 7b. Present are also order of
magnitude smaller inter-plane coupling J′′ and in-plane
Dzyaloshinskii–Moriya term D responsible for incommensurate
spiral order at TN= 0.62(1)K.92 A distinctive feature of Cs2CuCl4
revealed by inelastic neutron scattering is the presence of highly
dispersive excitation continuum indicative of fractionalization of S
= 1 spin waves into pairs of deconfined S= 1/2 spinons, as shown
in Fig. 7a. Below TN, the sharp excitations appear at low energies,
but the dominant continuum at higher energies remains basically
unchanged. It was argued by Kohno, Starykh and Balents,93 that
the sharp excitations represent the spinon bound states, i.e.,
triplons, rather than magnons which are modes of a long-range
ordered magnet. The data obtained suggest that Cs2CuCl4 could
be placed into close proximity to quantum critical point
separating fractional resonating-valence-bond (RVB) spin liquid
and a magnetically ordered state, as shown in Fig. 7b. In a
magnetic field, the phase diagram of Cs2CuCl4 has been found to
be quite sensitive to smallest interactions.94 These interactions
may induce entirely new phases and are responsible for
commensurate-incommensurate transition. A cascade of energy
scales pertinent to Cs2CuCl4 in a magnetic field oriented along the
b axis is represented by Fig. 7c.

Fig. 7 a Dynamical structure factor for dispersion relations at ky′= 0 (left), ky′= 2π (center) and ky′= 3π (right) in Cs2CuCl4. (adapted with
permission from, ref. 93 copyright Springer Nature 2007, and, ref. 91 copyright American Physical Society 2001). b Phase diagram of a quasi-2D
frustrated quantum magnet with deconfined spinons near an instability to spiral long-range order driven by a small parameter P in the
Hamiltonian (such as the interlayer coupling) (adapted with permission from, ref. 92 copyright American Physical Society 2003). c The
schematic cascade of energy scales relevant to Cs2CuCl4, which is to be considered from largest to smallest (reproduced with permission from,
ref. 94 copyright American Physical Society 2010)
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Quite a few 2D compounds were considered hosting a quantum
spin liquid on a geometrically frustrated kagome lattice. Among
them, volborthite95 Cu3V2O7(OH)2 × 2H2O, vesignieite96 BaCu3-
V2O8(OH)2 and herbertsmithite97 ZnCu3(OH)6Cl2, the last one
being a subject of strictest scrutiny. The main copper–copper
antiferromagnetic exchange parameter within network of corner-
sharing triangles in ZnCu3(OH)6Cl2 was estimated as J ~200 K from
the slope of χ(T) curve at T > 200 K, but no evidence on long-range
order was obtained down to 50mK.98 A peculiar feature of
herbertsmithite masking its ground properties is an inevitable
partial substitution of inter-plane Zn2+ by Cu2+. These defects
largely define the low temperature magnetic susceptibility χ of
ZnCu3(OH)6Cl2. To reveal the intrinsic properties of a kagome layer
much better is the local probe, i.e., 17O NMR lineshift.99

Temperature dependence of this property is markedly different
from that of a bulk probe. While the χ(T) dependence resembles
the Curie law, 17O NMR lineshift passes through broad maximum
at elevated temperatures and becomes temperature-independent
at lowest temperatures. The fractional spin excitations in
ZnCu3(OH)6Cl2 form flat continuum evidenced in neutron scatter-
ing measurements. This is a signature of a quantum spin liquid.
The key issue in this respect is the presence (or absence) of a spin
gap. While it was not established unambiguously, the neutron
scattering data set an upper limit for the spin gap value of about
0.1 J, if any.100 Evidence for a gapped spin-liquid ground state was
obtained from the 17O NMR lineshift measurements on herberts-
mithite single crystal. It was demonstrated that the intrinsic local
susceptibility of kagome lattice tends to zero at T < 0.03 J.101 These
experimental data are crucial to distinguish between various
theories on quantum ground state of spin-1/2 Heisenberg AFM on
a kagome lattice, including valence-bond solid, gapped and
gapless spin liquids.

Among quantum theoretical models of two-dimensional
magnets an important role belongs to the Kitaev model where
an exact solution for a spin-1/2 honeycomb lattice with
anisotropic bond-dependent interactions exists.102 The ground
state in the pure Kitaev model is a quantum spin liquid, either
gapped or gapless depending on the exchange interaction
parameters (Fig. 8a). Beyond the pure Kitaev limit, four other
types of the ground state can be realized in honeycomb lattice
dependent on anisotropy and frustration triggered by competition
of exchange interactions: FM, Neel’s AFM, AFM zigzag and AFM
stripe order (Fig. 8b).
The Kitaev model has generated a new trend in the study of

quantum spin liquids due to the topological nature of its solution:
in contrast to conventionally ordered magnets, which possess
bosonic elementary excitations (magnons), in such a state spins S
= 1/2 are predicted to fractionalize into itinerant Majorana
fermions and localized Z2 fluxes.103–105 The quantum liquid state
preserves all the symmetries of the high-temperature paramagnet
even at T= 0 K and evade a description by conventional local
order parameters, because the fractionalization affects both
thermal and dynamic properties of these topological phases.
The signatures of the Kitaev spin liquid are (i) two peaks at Tl and
Th in specific heat curves, Cp(T), caused by the fractionalization of
spins; (ii) a plateau at 1/2Rln2 in Cp(T) curves in between these
peaks; (iii) incoherent spectra of dynamical spin structure factors S
(q,ω), iv) small ratio Tl/Th ≤ 0.03.106

The most popular candidates for the experimental verification
of the Kitaev model have been limited up to now to spin-1/
2 systems with 5d and 6d elements, and most importantly A2IrO3

(A= Li,Na) and α−RuCl3. Strong spin-orbit coupling was found to
play a key role in the formation of anisotropic bond-dependent
interactions on the honeycomb lattice in this case. Despite

Fig. 8 a Kitaev spin liquid with bond anisotropy (reproduced with permission from, ref. 114 copyright American Physical Society 2014); b
magnetic phases captured by the bond-anisotropic Kitaev−Heisenberg model (reproduced with permission from, ref. 114 copyright American
Physical Society 2014); c experimental evidence for proximity to the Kitaev quantum spin liquid (QSL): magnetic heat capacity Cmag and
magnetic entropy Smag in units of Rln2 vs T for Na2IrO3. The dash-dotted line corresponds to 1/2Rln2 (reproduced with permission from, ref.
107 copyright American Physical Society 2017); d color plot of the data at T= 5 K with the magnetic modes (M1 and M2) detected in inelastic
neutron scattering at E= 4 and 6meV. M1 shows a minimum near Q= 0.62 Å-1, close to the M point of the honeycomb reciprocal lattice. The
arrow shows the concavity of the M1 mode (adapted with permission from, ref. 108 copyright Springer Nature 2016); e structure and polarized
Raman response of α-RuCl3 at 5 K. The shaded blue region indicates the continuum contribution (adapted with permission from, ref. 110
copyright American Physical Society 2015)
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expectations, however, all these compounds do not have a true
spin-liquid ground state because they demonstrate long-range
AFM order at low temperatures, preceded by a wide maximum on
the temperature dependence of the magnetic susceptibility. This
cannot be related to Kitaev interactions, originating from the
direct exchange between the transition metal ions. At the same
time, the properties of these compounds at elevated temperatures
reflect the proximity to Kitaev model and remain to be of great
interest.
For instance, two peaks in the Cp(T) caused by the fractionaliza-

tion of spin to two types of Majorana fermions and plateau/
shoulder pinned at 1/2Rln2 in Smag(T) have been observed
recently for Na2IrO3, as shown in Fig. 8c.107 Fractionalized
elementary excitations, reflecting the peculiarity of quantum spin
liquid, have been identified in inelastic neutron scattering where
they constitute a continuum, sharply distinct from the magnon
modes inherent for ordered magnets. Such incoherent spectra

were observed in inelastic neutron scattering108,109 (Fig. 8d) and
Raman experiments (Fig. 8e) in α−RuCl3.

110,111

The BKT paradigm formulated initially for the frustrated square
lattice can be extended to triangular, kagome and honeycomb
systems also. This concept presumes a phase transition from
unbound vortex and antivortex state of two-dimensional magnet
to the coupled vortex–antivortex phase at low temperatures.
Below critical temperature of this transition, the formation of
topological defects (vortex-antivortex pairs) leads to the appear-
ance of additional degree of freedom, i.e., chirality.

CONCLUSION

The versatile phenomena seen in low-D quantum magnets are just
mentioned here in an introductory manner. Each of these
phenomena deserves a separate review papers, interested readers
are respectfully referred to them. The choice of milestones in the
field of low-dimensional magnetism is highly debatable. There
cannot be unambiguous criteria for importance, timeliness or
impact on the scientific community. Several advanced models and
concepts of low-dimensional magnetism, for example the BKT
transition or the Kitaev model, are still waiting for a rigorous
experimental verification. Quite recently, a new member of
honeycomb iridates family, Cu2IrO3, becomes available. Its C2/c
structure with bond angles close to 120° fits almost perfectly the
Kitaev model. Although Cu2IrO3 experiences weak magnetic order
at 2.7 K, its high frustration ratio of about 40 and sensitivity of the
transition to magnetic field evidences its proximity to quantum
spin liquid state.112 Similarly, a new candidate for the realization of
quantum spin liquid state on a kagome lattice has appeared
recently. It is kapellasite-type cuprate YCu3(OH)6Cl3 where no
mixing of Y3+ and Cu2+ suggests even better realization of perfect
kagome than herbertsmithite.113 Despite high Curie–Weiss
temperature of about 100 K this compound exhibit no long-
range order down to 2 K. The list of chosen spin-gap compounds
is given in Table 1. There are not many, and the gapless spin-
liquids are even scarcer. Fortunately, every new compound with
an exotic ground state and non-trivial excitations brings new
colors to the palette of quantum cooperative phenomena in solids
and brings new inspiration to researches concentrated on this
fascinating topic.
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Table 1. Selected spin gap compounds

Structural
units

Compound Spin gap
Δ, K

Comment

Dimers SrCu2(BO3)2 34 Shastry–Sutherland
network13

BaCuSi2O6 52 Bose–Einstein
condensation23

Ba3Cr2O8 28 Bose–Einstein
condensation115

Sr3Cr2O8 64 Bose–Einstein
condensation24

Ba3Mn2O8 19 Bose–Einstein
condensation25

TlCuCl3 66 Bose–Einstein
condensation21

Pb2V3O9 15 Bose–Einstein
condensation22

BaVSi2O7 37 Spin liquid116

CuAl(AsO4)O 350 Spin liquid117

Plaquettes CaV4O9 107 Spin liquid118

NaKV4O9×2H2O 96 Spin liquid119

Half-integer
spin chains

CuGeO3 24 Spin-Peierls transition50

NaV2O5 114 Charge ordering56

NaTiSi2O6 620 Orbital ordering61

TiOCl 435 Orbital ordering120

CsV2O5 146 Spin liquid121

(VO)2P2O7 36, 69 Spin liquid122

BaCu2V2O8 230 Spin liquid39

Integer spin
chains

Y2BaNiO5 87÷111 Anisotropic Haldane
gap123

PbNi2V2O8 14÷25 Anisotropic Haldane
gap48

SrNi2V2O8 27÷71 Anisotropic Haldane
gap124

Odd leg
ladders

MgV2O5 17 Spin liquid125

SrCu2O3 380 Spin liquid126

CaV2O5 600 Spin liquid125

Planes (CuCl)LaNb2O7 26 Spin liquid127

Na3Cu2SbO6 139 Spin liquid128

Na2Cu2TeO6 127 Spin liquid128

(NO)Cu(NO3)3 146 Nersesyan–Tsvelik
network84
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