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Big data technology has undergone rapid development and attained great success in the business �eld. Military simulation (MS)
is another application domain producing massive datasets created by high-resolution models and large-scale simulations. It is
used to study complicated problems such as weapon systems acquisition, combat analysis, and military training. �is paper �rstly
reviewed several large-scale military simulations producing big data (MS big data) for a variety of usages and summarized the
main characteristics of result data. �en we looked at the technical details involving the generation, collection, processing, and
analysis of MS big data. Two frameworks were also surveyed to trace the development of the underlying so�ware platform. Finally,
we identi�ed some key challenges and proposed a framework as a basis for future work. �is framework considered both the
simulation and big data management at the same time based on layered and service oriented architectures. �e objective of this
review is to help interested researchers learn the key points of MS big data and provide references for tackling the big data problem
and performing further research.

1. Introduction

Big data technology is an emerging information technology
which discovers knowledge from large amounts of data to
support decision-making. “Big” implies that the resulting
dataset is too large to be handled with traditional methods.
Moreover, the data production velocity is typically fast with
various sources [1]. Big data methodology is even regarded
as the fourth paradigm of exploring the world, since it is
di	erent from experimentation, theoretical approaches, and
computational science in terms of knowledge acquisition
methods [2].

Recently, big data and simulation have been linked by
researchers to perform scienti�c discovery [3, 4]. Military
domain has also drawn a great deal of attention to this trend.
�e United States (US) Department of Defense (DoD) is
carrying out a series of big data programs (e.g., XDATA) to
enhance defense capabilities [5]. Generally, military applica-
tions are producing massive amounts of data with plenty of
Intelligence, Surveillance, and Reconnaissance (ISR) sensors
[6, 7], and the data can also be generated by Live, Virtual,

and Constructive simulations [8]. Besides, all kinds of data
about combat entities and events in battle�eld are collected
together.

Models and simulations (M&S) are o�en classi�ed by US
DoD into four levels: campaign (theater), mission, engage-
ment, and engineering, usually depicted as a “M&S pyramid”
[9, 10]. M&S applications span all levels of this pyramid,
with campaign models and simulations being applied in
warfare analysis, mission-level simulations in such areas as
Joint Operations for analysis or exercise [11–15], engagement
simulations in confrontation of system of systems for warrior
training, and engineering-level models and simulations in
equipment acquirement and development for test and eval-
uation (T&E).

When these manifold models and simulations are exe-
cuted with high performance computing (HPC) to gain
high e�ciency, simulation data has the great potential to
be generated with high volume and rapid speed. Recently,
the term “big simulation” was coined by Taylor et al. [16] to
describe the challenge that models, data, and systems are so
excessive in scale that it is di�cult to govern the simulation.
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Accordingly, we regard military simulation data as “MS big
data” to describe the high volume of data generated by mil-
itary simulations.

MS big data can be produced by numerous simulation
replications containing high-resolution models or large-
scale battle spaces or both. �e data size increases rapidly
with larger simulation and higher performance computer
resources. �is poses signi�cant challenges in management
and processing of MS big data. First, great e	orts have been
made to address the requirements from high performance
simulation, while only a few is toward data processing. How-
ever, the processing of MS big data makes some di	erences
between business data; for example, the computing resources
are o�en used for data analysis together with simulation exe-
cution and this may lead to more complex resource schedul-
ing. Second, new requirements will emerge with availability
of high �delity models and timeliness of large amounts of
data. Traditional data analytic methods are limited by tra-
ditional database technologies with regard to e�ciency and
scalability. Now big data based new applications allow mil-
itary analysts and decision-makers to develop insights or
understand the landscape for complex military scenarios
instead of being limited to only examining experimental
results. An example is supporting the real-time planning
of real combat by simulating all kinds of possibilities. �is
requires iterative simulation and analysis of result in very
short time.

�is paper serves as an introduction to the leading
edge of MS big data. �ere are already many review papers
discussing the concept of big data and its underlying technical
frameworks [17–19]. However, few of them focus on military
simulation, yet related researchers should be interested in
the generation, management, and application of MS big data.
We will study some practices and development progress
by literature so that a general picture of MS big data can
be drawn. Meanwhile, for unique characteristics of MS big
data, we will identify some technique challenges posed by
the processing of MS big data. We will also demonstrate a
preliminary framework as possible solution.

�e remainder of this paper is organized as follows. �e
next section introduces the background of MS big data.
Several practical cases are reviewed, along with a summary of
the characteristics of MS big data. In Section 3, the detailed
advancements in technology are discussed. In Section 4, we
investigate two platforms closely related to MS big data. Cur-
rent challenges are identi�ed in Section 5, along with a pro-
posed framework to integrate simulation and big data pro-
cessing. Finally, we conclude the paper in Section 6.

2. Background

�is section surveys the background that MS big data
problem emerged, but �rstly we must address what big data
is in general. �en we review several military simulations
from viewpoint of data. Finally the features of MS big data
are discussed and compared with those in business.

2.1. Concept of Big Data. Big data refers to the data set which
is so huge that new processing methods are required to

enable knowledge discovery. �e term implies the trend of
data explosion and its potential value for present society.
Data scientists o�en use N-V (volume, velocity, variety, value,
veracity, etc.) dimensions to account for big data.

Volume. �e size of big data is not exactly de�ned. It varies
from di	erent �elds and expands over time. Many contem-
porary Internet companies can generate terabytes of new data
every day and the active database in usemay exceed petabyte.
For example, Facebook stored 250 billion photos and accessed
more than 30 petabytes of user data each day [21]; Alibaba,
the biggest electronic commerce company in the world, had
stored over 100 petabytes of business data [22]. Large volume
is the basic feature of big data. According to International
Data Corporation (IDC), the volume of digital data in the

world reaches zetabytes (1 zetabyte = 230 terabytes) in 2013;
furthermore, it almost doubles every two years before 2020
[23].

Velocity. Data explosion also means that the data generation
speed is very quick and they must be processed timely. Take
Facebook, for example, again, millions of content items are
shared and hundreds of thousands of photos are uploaded
every minute of the day. To serve one billion global users,
over 100 terabytes of data are scanned every 30 minutes [24].
Velocity is also a relative concept and depends on practical
application. For many Internet commerce applications, the
processed information must be available in a few seconds;
otherwise the value of data will diminish or be lost.

Variety. Big data has diverse types and formats. Tradition
structured data saved in database possess regular format,
that is, date, time, amount, and string, while unstructured
data such as text, audio, video, and image are main styles
of big data. �e unstructured data can be web page, blog,
photo, comment on commodity, questionnaire, application
log, sensor data, and so forth. �ese data express human-
readable contents but are not understandable for machine.
Usually, they are saved in �le system or NoSQL (Not Only
SQL) database which has simple data model such as Key-
Value Pair. Variety also means that big data have various
sources. For example, the data for tra�c analysis may come
from �xed network camera, bus, taxi, or subway sensors.

Value. Big data can produce valuable insight for owner.
�e insight help to predict the future, create new chance,
and reduce risk or cost. As a result, big data can change
or improve people’s life. A famous example of mining big
data is that Google successfully forecasted �u according to
the 50 million search records. Another example is that the
commodity recommendation can be found everywhere when
we surf in Internet nowadays. �ese recommendation items
are generated according to large amounts of records about
user access. Note that the value of big data is sort of low
density and must be extracted from its huge volume.

Veracity. Veracity means only that the trustworthy data
should be used; otherwise the decision maker may get false
knowledge andmakewrong decision. For example, the online
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review from customer is important to ranking system of
commodity, and if some peoplemake fake comments or score
deceptively for pro�t, the result will in�uence negatively the
ranking and customer’s choice. Veracity requires those fake
data to be detected and eliminated prior to analysis.

Big data emerged from not only Internet social media or
commerce but also government, retailing, scienti�c research,
national defense, and other domains. Nowadays they are all
involved in processing of massive data.�e bloom of big data
application is driving the development of new information
technology, such as data processing infrastructure, data man-
agement tool, anddata analysismethod. Recent trend in those
enterprises and organizations owning large dataset in data
center is becoming a core part of information architecture, on
which scalable and high performance data processing frame-
work is running. Many of these frameworks are based on
Apache Hadoop ecosystem, which uses MapReduce parallel
programming paradigm. At the same time, many new data
mining andmachine learning algorithms and applications are
proposed to make better knowledge discovery.

2.2.MSBigDataCases. �ephenomenonproducingmassive
data in military simulation can be traced back to the 1990s
when STOW97 was a distributed interactive simulation for
military exercises. It incorporated hundreds of computers
and produced 1.5 TB of data a�er running 144 hours [25]. As
simulation technology advances, many military applications
are producing multiple terabytes of data or more.

2.2.1. Joint Forces Experiments. When DoD realized the
challenges of contemporary urban operation, the US Joint
Forces Command commissioned a series of large-scale com-
bat simulations to develop tactics for the future battle�eld
and evaluate new systems (e.g., ISR sensors) deployed in an
urban environment. A typical experiment was Urban Resolve
with three phases across several years [11]. It used the Joint
Semiautomated Forces (JSAF) system to study the joint urban
operation, set in the 2015–2020 timeframe. JSAF is a type of
Computer Generated Forces (CGF) so�ware which generates
and controls virtual interactive entities by computers.

In the �rst phase, more than 100,000 entities (most were
civilian) were simulated. Hundreds of nodes running JSAF
were connected across geographical sites, and 3.7 TB of data
was collected from models [12]. �ese data are relevant to
the dynamic environment, operational entities (including
live and constructive), and sensor outputs [26]. �e analysis
involved query and visualization for a large data set, such as
the Killer/Victim Scoreboard, Entity Lifecycle Summary, and
Track Perception Matrix.

However, more data about civilian status which were
saved dozens of times were simply discarded because of
una	ordable resources. �erefore, civilian activity could not
be duplicated for analysis. Meanwhile, the demands for larger
and more sophisticated simulations were increasing. With
more power clusters, graphics processing unit (GPU) accel-
eration, and high-speed wide area networks (WANs) using
interest-managed routers [13], tens of millions of entities and
higher-resolution military models were supported in later

experiments. In this case, new data management tool based
on grid computing technology was proposed to address the
problem from data increase [14].

2.2.2. Data Farming Projects. Data farming is a process using
numerous simulations with high performance computing to
generate landscapes of potential outcomes and gain insight
from trends or anomalies [15]. �e basic idea is to plant data
in the simulation through various inputs and then harvest
signi�cant amounts of data as simulation outputs [27]. Data
farming was �rst applied in the Albert project (1998–2006) of
the US Marine Corps [28]. �e project supported decision-
making and focused on questions such as “what if” and “what
factors are most important.” �ese kinds of questions need
holistic analysis covering all possible situations; however the
traditional methods are unable to address them because one
simulation provides only a singular result [20]. By contrast,
data farming allows for understanding the entire landscape
by simulating numerous possibilities.

�e number of simulation instances running concur-
rently throughHPCusually is large. For example, a Force Pro-
tection simulation of German Bundeswehr created 241,920
replicates [29]. Furthermore, millions of simulation runs can
be supported by the latest data farming platform built on
heterogeneous resources including cluster and cloud [30]. As
a result, massive data could be produced for analysis [20]. For
example, the Albert project generated hundreds ofmillions of
data points in its middle stage [31].

During the Albert project, many countries in the world
have leveraged the idea to study all kinds of military
problems. Several simulation systems for data farming were
established. Some examples are MANA of New Zealand [32],
PAXSEM of Germany [33], and ABSNEC of Canada [34].
�e research �elds involved command and control, human
factors, combat and peace support operations net-centric
combat, and so forth.

2.2.3. Course of Action Analysis. In order to e	ectively com-
plete mission planning, it is crucial to recognize certain key
factors of the battle space via simulations. It is especially
important that the military commander evaluates possible
plans and multiple decision points. �is kind of experiment
is called simulation-based Course of Action (COA) analysis
and needs to test many situations with a large parameter
value space [35]. �e simulation always runs faster than
real-time, and it can be injected with real-time data from
actual command and control systems and ISR sensors. For
high-level COA analysis, a low-resolution, large entity-count
simulation is used. Furthermore, a deeper and more detailed
COA analysis needs models with higher resolution. During
peacetime, the COA can be planned carefully with more
details. But during a crisis, the COA plan must be modi�ed
as necessary in a very short amount of time [36].

�e US army uses COA analysis in operations aiming at
urban environments. OneSAF (One Semiautomated Forces)
is a simulation system which ful�lls this type of requirement.
As the latest CGF system of the US Army, it represents the
state of the art in force modeling and simulation (FMS) [37],
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including capabilities such as behavior modeling, composite
modeling, multiresolution modeling, and agent-based mod-
eling. It is able to simulate 33,000 entities at the brigade level
[38] and has been ported to HPC systems to scale up with
higher resolution models [39]. Real system can be integrated
with OneSAF through adapters so that the simulation is
enhanced. Massive data can be generated to analyze and
compare di	erent COAplans. In this case, data collection and
analysis are identi�ed as its core capabilities [40].

�e Synthetic �eater Operations Research Model
(STORM) is also an analysis tool applicable to COA. It
simulates campaign level and is used by US naval force
and air force. It can create gigabytes of output from single
replication, and one simulation experiment may contain a
set of replications running from several minutes to hours,
depending on the complexity of scenario andmodels [41, 42].

2.2.4. Acquisition of New Military Systems. Australia’s acqui-
sition of naval systems [43, 44] employed modeling and
simulation (M&S) to forecast the warfare capabilities of
antiair, antisurface, and antisubmarine systems since the
real experiment costs high or was unavailable. �e M&S
played a signi�cant role in the acquisition lifecycle of new
platforms, such as missiles, radar, and illuminators. All
phases, including requirements de�nition, system design and
development, and test and evaluation, were supported by
M&S using computer technology. �e simulation so�ware
contained highly detailedmodels, which can be used for both
constructive and virtual simulation at a tactical level. �e
simulation scenarios were de�ned by threat characteristics,
threat levels, and environmental conditions.

�e project spanned across several years, involvingmulti-
ple phases and stages. It also involved multiple organizations
across multiple sites. A large-scale simulation with hundreds
of scenarios (each scenario ran hundreds of times withMonte
Carlo simulation) was executed on IBM blade servers and
terabytes of data were generated. Complex requirements for
analyses of the large dataset, such as verifying assump-
tions, discovering patterns, identifying key parameters, and
explaining anomalies, were put forward by subject matter
experts. �ese works generated Measures of E	ectiveness
(MOE) to de�ne the capabilities of the new systems.

2.2.5. Space Surveillance Network Analysis. �e SSNAM
(Space Surveillance Network and Analysis Model) project
was sponsored by the US Air Force Space Command, and
it used simulations to study the performance and charac-
teristics of the Space Surveillance Network (SSN) [45]. �e
purpose was analyzing and architecting the structure of the
SSN. A number of con�guration options, such as operation
time, track capacity, andweather condition, were available for
all modeled sensors in the SSN.

One research problemwasCatalogMaintenance. SSNAM
provided capabilities to assess the impacts from catalog
growth and SSN changes related to con�guration and sensors
(e.g., addition, deletion, and upgrade). �is kind of simula-
tion was both computationally and data intensive. A typical
run simulated several thousands of satellites within a few

hours in terms of wall-clock time. �e simulation was super-
real-time, and the simulated time itself could be 90 days. �e
original simulation results data reached the terabyte level.
Its analysis was measure of performance (MOP) based on
recognized parameters fromdaily operations.�e systemwas
a networked program based on a load-sharing architecture
which was scalable and could include heterogeneous com-
putational resources. To reduce the execution time, SSNAM
has been ported to an HPC system and gained three times
increase in performance as a result.

2.2.6. Test and Evaluation of the Terminal High Altitude Area
Defense System. �e mission of the Terminal High Altitude
Area Defense (THAAD) system was to protect the US home-
land andmilitary forces from short-range andmedium-range
ballistic missiles. �e test and evaluation of the THAAD
system were challenged with analyzing the exponentially
expanding data collected from missile defense �ight tests
[46]. �e system contained a number of components (e.g.,
radars, launchers, and interceptors) and was highly complex
and so�ware-intensive. Two phases have been evaluated
by experiment: deployment and engagement. �e THAAD
program incorporated the simulation approach to support
system level integrated testing and evaluation in real-time. In
this case, simulation was used to generate threat scenarios,
including targets, missiles, and environmental e	ects. In
addition, M&S was also used for normal exercises.

�e THAAD sta	 developed a Data Handling Plan to
reduce, process, and analyze large amounts of data. ATHENA
so�ware was designed to manage the terabytes of data
generated by �ight tests and concomitant simulations. �e
ATHENA engine imported various �les such as binary,
comma-separated values, XML, images, and video format.
�e data sources could come from LAN, WAN, or across the
Internet.

2.3. Characteristics and Research Issues of MS Big Data.
Table 1 summarizes the main features of MS big data within
the above cases.

We can draw the main characteristics of MS big data
from the above cases in terms of volume, velocity, variety, and
veracity.

Volume and Velocity. Table 1 shows the data sizes. Almost
all cases are at the level of GB to TB per experiment (see
Table 1(b)). �ese simulation cases’ data volume is smaller
compared with commerce and social media on internet and
web, because simulation experiment can be well designed
and the needed data for analysis can be chosen carefully to
save. It suggests that the value density of simulation data
is higher. Another reason is that simulation data are not
accumulated across experiments; di	erent experiments have
di	erent objectivities and are seldom connected to do data
analysis.

However, the simulation data size continues to increase
sharply because military simulation is advancing rapidly
with bigger scale and higher resolution under the impetus
from modern HPC system. Moreover, most business data
are produced in real-time [47], but MS big data needs to
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Table 1: Overview of military big simulations.

(a) Simulation-related properties

Cases
Simulation level �e number of

entities
�e number of

simulation replications

Model
resolution

Time advancing
Simulation

execution timeC M E G

Joint forces
experiments

✓ ✓ ✓ Millions Several High Real-time Weeks

Data farming
projects

✓ ✓ ✓ Dozens∼hundreds �ousands∼millions Low Faster-than-real-time Hours

COA analysis ✓ ✓ ✓ �ousands Hundreds∼thousands Low
medium

Faster-than-real-time
Minutes
hours

Acquisition of
new military
system

✓ ✓ A few Tens of thousands High
Faster-than-real-time

or real-time
Days or weeks

SSN analysis ✓ Tens of thousands Several High Faster-than-real-time Days

Test and
Evaluation of the
THAAD system

✓ ✓ A few Several High Real-time Months

Simulation level: C, campaign; M, mission; E, engagement; G, engineering.

(b) Data-related properties

Cases Data contents
Data generation

period
Data scale per
experiment

Typical analytical application

Joint forces
experiments

Sensor data, entity status (take Urban
Resolve, e.g.)

1ms TB
E	ectiveness of ISR sensor. Statistical
result of mission execution

Data farming
projects

Depend on speci�c problem and can
involve all kinds of physical and
behavioral data of simulated entities
and battle�eld events, such as damage
and survival

<1ms GB∼TB
Correlation, trend, and outlier analysis
related to command and control,
peacekeeping operation, combat, and
so forth

COA analysis
Civil behavior, culture, weapon,
terrain, killing, victims, and so forth

<1 sec GB∼TB Task execution analysis, operational
e	ectiveness analysis

Acquisition of new
military system

Communication, sensor, command
and control, weapon, and so forth

N/A TB

Identify the key performance
parameter, system level trade-o	
analysis, and MOE about raid, protect,
detect, reaction, tracking, engagement,
and so forth

SSN analysis
Sensor data and special events such as
launch, breakup, and in-orbit

<1 sec TB MOP of sensor device

Test and evaluation
of the THAAD
system

Maneuver, sustainment, command and
control, communication, radar track
data, and so forth

N/A TB MOE, MOP of defense system

be generated and analyzed many times faster than real-time
when the objective is to rapidly assess a situation and enhance
decision-making. �is requires simulation time to advance
faster than real-time (see Table 1(a)), and sometimes the
simulation generates data in a period of less than 1ms (see
Table 1(b)).

High volume and velocity pose two aspects of challenges
to MS big data applications. First, collecting massive data
from distributed large-scale simulations may consume extra
resources in terms of processor or network, which is o�en
critical for simulation performance. �us it is essential to
design a high-speed data collection framework that has little
impact on the simulation performance. Second, the datasets
must be analyzed at a rate that matches the speed of data

production. For time-sensitive applications, such as situation
awareness or command and control, big data is injected into
the simulation analysis system in the form of a stream, which
requires the system to process the data stream as quickly as
possible to maximize its value.

Variety. Large-scale simulations can be built based on the
theory of system of systems (SoS) [48], which consists of
manifold systemmodels such as planes, tanks, ships, missiles,
and radars. Figure 1 presents various kinds of data involved in
military experiments.

From Figure 1, we can observe the diversity of MS data.
For example, MS can be linked with live people (e.g., human-
in-the-loop) and live military systems (e.g., command and
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Military 
simulation

Entity runtime data
(soldier, plane, vehicle,

ship, etc.)

Environment
data

Physical data Human 
behavioral data

Maneuver 
data

Sensor 
data

Fire data

Communication 
data

Intelligence 
data

Weapon control 
data

Decision-making data

Terrain
data

Weather 
data

Atmosphere 
data

Marinedata

Scenario data

Natural data Social data

Culture 
data

Political
data

Economics
data

Event data Mission data

Input data

Forces 
deployment data

Equipment 
performance data

Live data

(C4I, human, etc.)

· · ·

· · · · · ·· · ·· · ·

Figure 1: Various kinds of data in simulation-based military experiment.

control devices). As such, valuable analytic MS data includes
outputs of computational models, as well as human activity
and device data. �e data formats include unstructured (e.g.,
simulation log �le), semistructured (e.g., scenario con�gu-
ration and simulation input), and structured (e.g., database
table) types. All of these features require versatile and �exible
tools to be developed to mine value from the data e	ectively.
�is imposes di�culty on the data processing technology.

Veracity. Veracity means that trustworthy data should be
created during the simulation. Because simulation data is
generated by computer but not human, the data could not be
fake but can be incorrect because of �awed model. Veracity
requires that the model and input data should be veri�ed and
validated. However, the di�culty is that MS big data is o�en
involved in human behavior, which is intelligent, yet intangi-
ble and diverse by nature. Comparedwith analytic physical or
chemical models, there is no proven formula that can be used
for behaviormodeling. Currently a behaviormodel can create
data only according to limited rules recognized by humans.
�erefore, the �delity of simulation models is a key challenge
for the veracity of MS big data.

�e next section will give an overview of the MS big data
technology, where we can see how the above problems are
resolved to some extent.

3. State of the Art of MS Big Data Technology

From the viewpoint of data lifecycle, we can divide the sim-
ulation process into three consecutive phases: data gener-
ation, data management, and data analysis. Figure 2 shows
the detailed technology map. Data generation concerns what
kinds of data should be created and how to create valid data
in a reasonable amount of time. Data management involves
how to collect large amounts of data without disturbing the
normal simulation and provide available storage and e�cient
processing capability. Data analysis utilizes various analytic
methods to extract value from the simulation result.

(1.1) Modeling

(1.2) High performance 
simulation

(1.3) Distributed simulation

(2.1) Collection

(2.2) Storage

(2.3) Processing

(3.1) Statistics

(3.2) Data mining

(3.3) Visualisation

(1) Data generation (2) Data management (3) Data analysis

Figure 2: Technology map of MS big data.

3.1. Data Generation

3.1.1. Combat Modeling. Modeling is a key factor to the
veracity of MS big data [28]. In combat modeling, the main
aspects are physical, behavioral, environmental, and so forth,
and the behavior model is the most sophisticated part.

Many research e	orts focus on developing a cognitive
model of humans, a Human Behavior Representation (HBR),
which greatly a	ects the �delity and credibility of a military
simulation. HBR covers situation awareness, reasoning,
learning, and so forth. Figure 3 shows the general process of
human behavior. Recent research projects include the follow-
ing: situation awareness of the battle�eld [49]; decision-
making based on fuzzy rules, which captured the approxi-
mate and qualitative aspects of the human reasoning process
[50]; common inference engine for behavior modeling [51];
intelligent behavior based on cognition and machine learn-
ing [52]; modeling cultural aspects in urban operations [53];
modeling surprise, which a	ects decision-making capabil-
ities [54, 55]. Although it is still di�cult to exhibit realistic
human behaviors, the �delity of these models can be en-
hanced by adoption of big data analytic technologies.

Meantime, some researchers focus on the emergent
behaviors of forces as a whole. A battle�eld is covered by fog
due to its nature of nonlinearity, adaptation, and coevolu-
tion [56]. Agent-based modeling (ABM) is regarded as a
promised technique to study such complexity [57] by sim-
ulating autonomous individuals and their interactions so that
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Sense

Environment

Memory

Action

Human behavior

Stimulate (ground truth) Response

Situation 
evaluation

Decision

Plan

Reactive 
behavior

Perceived
 truth

Human 
factor

Figure 3: �e procedure of human behavior.

the whole system can be evaluated. �e typical interactive
behaviors are command and control (C2), cooperation and
coordination, and o	ensive and resistance. Recent research
e	orts include logical agent architecture [58], arti�cial intel-
ligence based on agent [59], and multiagent framework for
war game [57, 60]. An interesting point is that agent-based
systems are considered to have strong connections with big
data [16], because ABM provides a bottom-up approach
in which modeling large amounts of individuals and their
emergent behavior must be identi�ed from the big data
generated.

3.1.2. High Performance Simulation. To address the enor-
mous computational requirements of large-scale military
simulations, a high-performance computing (HPC) tech-
nique is employed as a fundamental infrastructure [61–65].
For example,DoDhas developed theMauiHighPerformance
Computing Center (MHPCC) system, which includes large-
scale computing and storage resources, to support military
simulations. In another typical example, the three-level paral-
lel executionmodel (Figure 4) was proposed [61]. In Figure 4,
the top level is parallel execution ofmultiple simulation appli-
cations, themiddle level is parallel execution of di	erent enti-
ties within the same simulation application, and the bottom
level is parallel execution of di	erentmodels inside one entity.

In spite of its huge processing power, the cluster-based
HPC systems still remain considerably challenged to han-
dle the data-intensive issues [66] presented by simulation
applications. To address this issue, Hu et al. [67] proposed
developing advanced so�ware speci�c to simulation require-
ments because there is a lack of so�ware and algorithms
to handle large-scale simulations. Also, many in the �eld
think that simulation management so�ware should provide
functions such as job submission, task deployment, run-time
monitoring, job scheduling, and load balancing.

Some approaches have begun to address this problem.
For instance, a new HPC system named YH-SUPE has been
implemented to support simulation [61] by optimizing both
hardware and so�ware. �e hardware contains special com-
ponents used to speed up speci�c simulation algorithms,

and the so�ware provides advanced capabilities, such as time
synchronization based on an extra collaborative network
and e�cient scheduling based on discrete events. Another
approach is to port an existing simulation system onto a
common HPC platform. OneSAF had a good experience
with this approach [62–64]. In addition, enhancing a model’s
performance (e.g., at performing line-of-sight calculations)
using a GPU accelerator is also a research hot spot [65].

3.1.3. Distributed Simulation. Distributed simulation o�en
uses middleware to interconnect various simulation resour-
ces, including constructive, virtual, and live systems. Middle-
ware means that the tier between hardware and so�ware usu-
ally is an implementation of a simulation standard for inter-
operation. For historical reasons, several standards are now
being used: distributed interactive simulation (DIS), high-
level architecture (HLA), and Test and Training Enabling
Architecture (TENA). HLA is an upgraded standard for
distributed simulation comparable to DIS. TENA is used to
test military systems and personnel training, but HLA is not
limited to the military domain.

Middleware enables large-scale simulations to execute
with a large number of entities from di	erent nodes, such
as HPC resources. Middleware is the key to scalability of
the simulation, and many researchers have focused on the
performance improvements it makes possible. For example,
enhancement work on the Runtime Infrastructure (RTI, the
so�ware implementation of HLA) with regard to Quality of
Service and data distribution management is very interesting
because it makes proper use of HPC resources [68].

However, the interconnected applications may introduce
geographically distributed data sources. �is also poses the
complexity of managing and exploiting MS data for large
regions. To tackle this problem, [14] proposed a two-level
data model: the original collected data were organized by
the logging data model (LDM) and then transferred into the
analysis data model (ADM). ADM represented the notion of
an analyst and was de�ned as Measures of Performance (e.g.,
sensor e	ectiveness), which involved multiple dimensions of
interests (e.g., sensor type, target type, and detection status).
Another approach is to establish a standard format which
covers all kinds of data in speci�c applications [69, 70].

3.2. Data Management

3.2.1. Data Collection. When a large-scale simulation is
executed by an HPC system, the compute-intensive models
can generate a deluge of data to update entity state and envi-
ronment conditions [71]. �e transfer and collection of data
generate data-intensive issues. As the data are created by sim-
ulation programs, the collection is executing as simulation
logging. �is logging is undergoing an evolutionary change
from a standalone process to a fully distributed architecture
(Figure 5).

In the standalone loggermethod, one or several nodes are
established to receive and record the published data via the
network [72]. However, this approach aggravates the shortage
of network resources because it requires large amounts of
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data to be transferred. When the logger is moved into the
HPC platform, the network communication bottleneck is
alleviated by using inter-memory communication or a high-
speed network [39]. Furthermore, many useful data for
analysis (e.g., inner status of entities) are not transmitted
by the network so that they cannot be collected using the
standalone loggermethod, but they can be collectedwhen the
logger is integral to the HPC.

By contrast, distributed loggers residing in most simu-
lation nodes are preferred since data are recorded in local
node and thus network resource is saved [12]. Davis and
Lucas [73] pointed out the principle for collecting massive
data: minimize the network overhead by transferring only
required information (e.g., results of processing) and keep
original data in the local node. To e	ectively organize the
dispersed data, a distributed data manager can be employed,
and we will introduce this concept and related works in the
next subsection.

When standalone architecture turns into distributed data
collection, the technical focus also shi�s from the network
to the local node. �e simulation execution should not be
disturbed in terms of function and performance by this archi-
tectural change. Wagenbreth et al. [14] used a transparent
component to intercept simulation data from standard RTI

calls, and this way ensured the independence of data col-
lection. Wu and Gong [74] proposed a recording technique
with double bu	ering and scheduled disk operations based
on fuzzy inference, so that the overhead of data collection can
be signi�cantly reduced.

3.2.2. Data Storage and Processing. Traditional databases
have limitations in performance and scalability whenmanag-
ingmassive data. Now that simulation scale keeps increasing,
the data management must be able to easily address the
requirements for future datasets. Distributed computing
technology could utilize a lot of dispersed resources to
provide tremendous storage capacity and extremely rapid
processing at a relatively low cost point. �is method is very
suitable for the case where the simulation data have been
recorded dispersedly, and the term “in-situ analysis” is used
to describe this kind of data processing [75]. Distributed tech-
nology also provides better scalability, which is an important
performance attribute for large-scale systems.

Currently several typical storage and processing methods
can be used for MS big data.

(i) Distributed Files. One simple method is to utilize the
original �le system by saving log �les in each node
and then creating a distributed application which
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Figure 6: Row oriented database and column oriented database.

Table 2: Comparison of storage technologies for MS big data.

Storage Example Typical processing method Advantages Disadvantages

Distributed �le Speci�c application Original network program Simple
System is not generally used;
Performance is not optimized

Distributed �le system HDFS MapReduce
High-performance;
scalable;
reliable

Deployment is complex;
processing algorithm is complex

Data grid SDG Grid computing
Scalable;
ease of use

Complex processing is limited

NoSQL database HBase MapReduce-wrapped interface

Good performance;
scalable;
data processing is
transparent

Query function is limited;
system is not mature

manipulates them. In this case, both the �le format
and the application are speci�cally designed, and the
scalability of data accessing is relatively low. In order
to improve its universality and e�ciency, a general-
ized list was designed to accommodate all kinds of
data structures in large-scale simulations [76].

(ii) Distributed File System. Another method is to use
a dedicated distributed �le system. For example,
the Hadoop distributed �le system (HDFS) provides
common interfaces to manage �les stored in di	erent
nodes, but the user does not need to know the speci�c
location. HDFS also provides advanced features, such
as reliability and scalability. MapReduce is a data pro-
cessing component compatible with HDFS. It realizes
a �exible programming framework and is proved to
be of high performance. �e feasibility of handling
massive simulation data fromUS Joint Forces Experi-
ments was investigated with Hadoop [77, 78], and the
result was positive, though it is pointed out that the
performance of the WAN must be improved because
it is a key factor of large-scale military simulations.

(iii) Data Grid. Database systems bring many advantages,
such as simple design, powerful language, structural
data format, mature theory, and a wide range of users.
Although a single centralized database is not so prac-
tical for distributed simulation, multiple databases
can be connected together to accommodate massive
data and process them in parallel to improve the
response speed. To build a cooperative mechanism
among databases, data grid technology can be used

to manage tasks such as decomposing queries and
combining the results. Data grids can be organized by
hierarchical topology and expanded on demand. �e
researchers in Joint Forces Experiments constructed
a data grid platform (called SDG, and the details
will be discussed in Section 4) to manage distributed
databases running MySQL [13, 14].

(iv) NoSQL Database. �e NoSQL approach optimizes
data accessing for data-intensive applications. �ere
are several instances of NoSQL database systems, and
we take HBase as a typical example. HBase is built
based on HDFS and has column oriented style, which
means that the data are not organized by row, but by
column instead: values of records within the same
column are stored consecutively (see Figure 6). �at
is because big data analysis o�en concerns the whole
(in certain dimensions) but not a detailed record.
NoSQL also optimizes data writing: simulation data
do not involve complex transactions, and the records
are relatively independent of each other. However,
relational database systems take extra time in check-
ing the data consistency. �ese unnecessary features
are discarded by HBase. In addition, HBase employs
a distributed architecture with load balancing capa-
bility so that data are stored and processed at �exible
scale. Wu and Gong [74] presented an example which
transformed the data format of a simulated entity
status from database to HBase.

Table 2 compares the primary features of above methods.
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3.3. Data Analysis. Data analysis includes algorithms and
tools which extract information frombig data and present the
results to analysts.We �rst discuss the purpose ofMS big data
analysis and then review the emerging analytical methods
and applications.

3.3.1. Purpose. Because of the diversity of military decision-
making problems, the purpose of data analysis varies signif-
icantly. It is di�cult to get a complete view of all possible
subjects and related methods. Generally, the purposes can
be classi�ed into three levels according to the degree of data
usage: descriptive, predictive, and prescriptive [17].

(1) Descriptive Analytics. Descriptive analytics is a primary
use of a dataset and describes what has occurred. A typical
case is the measure of weapon performance or system e	ec-
tiveness. �e analyzed data involve interactive events related
to the simulated entity and its current status. Descriptive ana-
lytics can also be assisted by visualization, which presents the
simulation result (e.g., scoreboard and all kinds of statistical
charts) or the simulation procedure (e.g., playbackwith 2D or
3D situational display). Descriptive analytics usually employ
traditional statistical methods when processing the original
results, but the analysis process can also involve complex
machine learning and data mining algorithms. For example,
in virtual training the human action data need be recognized
for automatic scoring.

(2) Predictive Analytics. Predictive analytics is used to project
the future trend or outcome by extrapolating from historical
data. For example, the casualty rate or level of ammunition
consumption in a combat scenario can be predicted by mul-
tiple simulations. Two typical methods are linear regression
and logistic regression. �e basic idea is to set up a model
based on an acquired dataset and then calculate the result
for the same scenario using new data input values. Predictive
analytics can also utilize data mining tools to discover the
patterns hidden in massive data and then make automated
classi�cations for new ones [79]. However, it is recognized
that military problems have pervasive uncertainty, and so it
is almost impossible to produce accurate predictions [28].

(3) Prescriptive Analytics. As mentioned above, accurate pre-
dictions are di�cult to obtain, but military users still need
to get valuable information or insights from simulations
to improve their decision-making. �is kind of analysis
concerns all aspects of simulation scenarios. Prescriptive
analytics focuses on “what if” analysis, which means the
process of assessing how a change in a parameter value will
a	ect other variables. Here are some examples: What factors
aremost important?Are there any outliers or counterintuitive
results? Which con�guration is most robust? What is the
correlation between responses?�ese questions require deep
analysis of the data and o�en employ data mining methods
and advanced visualization tools. Usually users are inspired
by the system and become involved in the exploratory
process. On the other hand, a small dataset cannot re�ect a
hidden pattern, and only a large amount of data frommultiple
samples can support this kind of knowledge discovery.

3.3.2. Methods and Applications. �e big data concept
emphasizes the value hidden inmassive data, sowe focus here
on the emerging technologies for data mining and advanced
visualization together with their applications. Nevertheless,
traditional statistical techniques have been widely applied in
military simulation, and they are still useful in big data era.

(1) Data Mining. Data mining refers to the discovery of
previously unknown knowledge from large amounts of data.
As awell developed technology, it could be applied inmilitary
simulation to meet various kinds of analysis requirements.
�ere are several cases:

(1) Association rules analysis shows the correlation
instead of causality among events. For example, in
the context of a tank combat simulation, detecting
the relationship between tank performance and oper-
ational results may be useful.

(2) Classi�cation analysis generates classi�ers with prela-
beled data and then classi�es the new data by prop-
erty. For example, it can be used to predict the ammu-
nition consumption of a tank platoon during combat
according to large amounts of simulation results.

(3) Cluster analysis forms groups of data without previ-
ous labeling so that the group features can be studied.
For example, it can be used to identify the destroyed
enemy groups by location and type. A normal data
mining algorithm may be modi�ed to comply with
the practical problem. �e Albert project adopted a
characteristic rule discovery algorithm to study the
relationship between simulation inputs and outputs
[80]. A characteristic rule is similar to an association
rule, but its antecedent is prede�ned. Furthermore,
the relevance is calculated by measures of “precision”
and “recall” instead of “con�dence” and “support”.

In practice, the US Army Research Laboratory (ARL)
used classi�cation and a regression tree to predict the battle
result based on an urban combat scenario of OneSAF. �e
experiment executed the simulation 228 times and de�ned
435 analytic parameters. Finally, the accuracy of prediction
reached about 80% [81].�e Israeli Army’s Battle-Laboratory
studied the correlations between events generated on a
simulated battle�eld by analyzing the time-series, sequence,
and spatial data. Various data mining techniques were
explored: frequent patterns, association, classi�cation and
label prediction, cluster, and outlier analysis [82]. In addition,
they proposed a process-oriented development method to
e	ectively analyze military simulation data [83]. Yin et al.
[84] mined the associated actions of pilots from air combat
simulations. �e key involved a truncation method based
on a large dataset. As a result, interesting actions about
tactical maneuvers were found. �e method was also used
to control �ying formations of aircra�, and then a formation
consistent with high quality was chosen [85]. Acay explored
the Hidden Markov Models (HMM) and Dynamic Bayesian
Network (DBN) technologies in the semiautomated analysis
of military training data [86].
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Figure 7: Example of advanced visualization techniques (taken from [20]).

(2) Visualization. Visual analytics tools are supplements for
data mining, and they are o�en bound together. For big
data, visualization is indispensable to quickly understanding
the complexity. �e analyst does most of the knowledge
discovery work, and the visualization tool is able to provide
himwith intuition and guide his analysis. All kinds of images,
diagrams, and animations can be used to examine data
for distribution, trends, and overall features. Furthermore,
advanced visualization tools provide interactive capabilities
such as linking, hypotheses, and focusing to �nd relevance or
patterns among large numbers of parameters. In this case, the
data views are dynamically changed by drilling or connecting.
�e research hot spots include various visual techniques
built on large datasets, versatile visualization tools, and a
framework for the �exible analysis of big data.

�e US Marine Corps War �ghting Laboratory’s Project
Albert [20, 87] employed di	erent diagrams to understand
simulation results: the regression tree showed the structure
of the data and was able to predict the Blue Team casual-
ties; the bar chart showed the relative importance of various
combat input variables; the three-dimensional surface plots
showed the overall performance measure with multiple fac-
tors; and so forth. Horne et al. [20] also reported several
new presentation methods for combat simulation proce-
dure analysis. Movement Density Playback expanded the
traditional situation display by exhibiting agent trails from
multiple simulation replicates (Figure 7(a)). It revealed the
interesting areas/paths or critical time points of the scenario,
so that the emergent behaviors or outliers could be studied.
Delayed Outcome Reinforcement Plot (DORP) was a static
view which showed all entities’ trails frommultiple replicates
during their lifecycles (Figure 7(b)). It indicated the kill zone
of battle�eld. In addition, the Casualty Time Series chart
showed the casualty count at each time step in terms of mean
value from multiple simulations.

Chandrasekaran et al. [88] presented the Seeker-Filter-
Viewer (S-F-V) architecture to support decision-making for
COA planning. �is architecture was integrated with the
OneSAF system, which provided simulation data.�eViewer
was regarded as the most useful component [89] because it
visually tested hypotheses, such as whether an output was
sensitive to speci�c inputs or intermediate events. An explo-
ration environment was set up with interactive cross-linked
charts so that the relationships between di	erent dimen-
sions could be revealed.

Clark and Hallenbeck [90] introduced the University
XXI framework, which emphasized visual analysis for very
large datasets. It used interactive interfaces to derive insights
frommassive and ambiguous data. Various data sources, data
operators, processing modules, and multiview visualization
were integrated and connected to check expected results and
discover unexpected knowledge from operational tests, for
example, ground-combat scenarios containing considerable
direct-�re events.

4. MS Big Data Platforms

Based on the technologies discussed in Section 3, several
simulation platforms addressing the data-intensive issues
have been preliminarily developed. In this section, we will
review two such pioneering platforms specially designed for
MS big data: the Scalable Data Grid (SDG)manages data col-
lected from large-scale distributed simulations, and Scalarm
provides both simulation execution and data management.
Each platform involves some of the technologies illustrated
in Figure 2, and they use di	erent technical architectures to
structure them.

4.1. SDG. US JFCOM developed SDG to address the
data problem in large simulations [13, 14]. SDG supports
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distributed simulation data (i.e., staying on (or near) the
simulation nodes).�e data analysis is also distributed so that
HPC resources are reused a�er the simulation is complete.
�erefore, it is not necessary to move the logged data across
the network, because SDG sends only small results to the
central site. Analysis results are aggregated via a hierarchical
structure managed by SDG. �is design guarantees scalable
simulation and data management. A new computer node can
be simply added into SDG to satisfy the growth in data size.

Figure 8 illustrates the detailed architecture of a local
SDG node. �e original data from a simulation are collected
and saved in a rational database through the SDG Collector
module. In a joint experiment based on JSAF, a plug-inwithin
the simulation federate intercepts RTI calls and sends RTI
data to the SDG Collector using network sockets. �en the
SDG Cube Generator extracts facts to populate more tables,
which represent user views as multidimension cubes. �e
SDG Query Server returns cube references for query. �e
SDG Aggregator receives cube objects returned from other
nodes and combines them into a new one. �e data query is
initiated by the Web Application.

As a distributed system, SDG consists of three kinds of
managers: top-level, worker, and data source (Figure 9). �e
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Figure 10: High-level architecture of Scalarm.

data source manager stores actual data, and the top-level
manager provides a uni�ed entrance for accessing the sim-
ulation data. �e user �rstly submits a data query task to the
top-levelmanager; then the task is decomposed into subtasks,
which will be assigned to other managers. �e execution
results of the subtasks are aggregated from bottom to top, and
the �nal result is delivered by the top-level manager.

SDG accommodates big simulation data with scalable
storage and analysis. It takes full advantage of grid computing
technology and retains some �ne features from the database
world, such as descriptive language interface. Compared with
themost popular big data framework,Hadoop, SDGprovides
a relatively simple concept. Furthermore, SDG is very suitable
for transregional data management, which is common in
joint military experiments.

4.2. Scalarm. Scalarm is a complete solution for conducting
data farming experiments [27, 30, 91]. It addresses the scalable
problem that is outstanding in a large-scale experiment
which usesHPC to execute constructive and faster-than-real-
time simulations. Scalarm manages the execution phase of
data farming, including experiment design, multiruns of the
simulation, and results analysis.

�e basic architecture is designed as “client-master-
worker” style. �e master components organize resources
and receive jobs from the client, and the worker components
execute the actual simulation. Figure 10 presents the high-
level overview of the architecture.

Experiment Manager (master component) is the core of
Scalarm. It handles the experiment execution request from
the user and the scheduling of simulation instances using
Simulation Manager (worker component). It also provides
the user with interfaces for viewing progress and analyzing
results. Simulation Manager wraps the actual simulation
applications and can be deployed in various computing
resources, for example, Cluster, Grid, and Cloud. Storage
Manager (another kind of worker component) is responsible
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Table 3: Comparison of two MS big data platforms.

Platform
Application
characteristics

Areas of focus Technical architecture Advantages Disadvantages

SDG
Real-time;
distributed; virtual
and constructive

Data collection,
storage, and query

Grid
Scalable; supports
heterogeneous
simulation

Deployment is not �exible;
complex data processing is
not supported

Scalarm
Super real-time;
constructive

Simulation job
scheduling;
data storage

SOA, cloud
Scalable; �exible;
support heterogeneous
resources

Complex simulation such
as distributed simulation is
not considered;
high performance data
analysis is not supported

“Entry point”

Load balancer

Service instance Service instance Service instance

Scalability 

manager
Monitoring

· · ·

Figure 11: Structure of self-scalable service.

for the persistence of both simulation results and experiment
de�nition data using a nonrelational database and �le system.
It is implemented as a separate service for �exibility and
managing complexity. Storage Manager can manage large
amounts of distributed storagewith load balancingwhile pro-
viding a single access point. Information Manager maintains
the locations of all other services, and its location is known by
them. A service needs to query the location of another service
before accessing.�erefore Scalarm is also a Service Oriented
Architecture (SOA) system.

Two important features are supported to improve
resource utilization: load balancing and scaling. Not only
worker components but also master components are scalable
in Scalarm. For these purposes, more components are added
as master or worker to create a self-scalable service. Figure 11
illustrates the function structure. Here, a service instance
can be an Experiment Manager, Simulation Manager, or
Storage Manager. �e load balancer forwards incoming tasks
to service instances depending on their loads. �e moni-
toring component collects workload information from each
node. �e Scalability Manager adjusts the number of service
instances according to theworkload level, so that scaling rules
could be satis�ed. �e scaling rules are prede�ned by expert
knowledge.

Scalarm considers both simulation and storage require-
ments in the data farming experiment. It supports hetero-
geneous resources and provides massive scalability. Other

features, such as experimentmanagement, statistical analysis,
and service reliability, are also available. As an emerging open
source platform, Scalarm promises to be a foundation of
future large-scale data farming projects.

4.3. Summary. �e two platforms presented in this section
have di	erent focuses because of their di	erent application
backgrounds and objectives. Neither one of them can cover
all requirements of an experiment. In addition, each has its
respective advantages and disadvantages in implementation.
Table 3 shows a comparison of the two systems.

5. Challenges and Possible Solutions

Both theory and technology ofMS big data havemade certain
advancements; but there are still some challenges that can
be identi�ed from ongoing published research.�e following
challenges provide directions for future work.

(1) Bigger Simulation and Data. More simulated entities
and more complex models will be supported by com-
putational resources with higher performance [20,
71, 77], and thus bigger datasets will be created. �e
requirements for usability, reliability, �exibility, e�-
ciency, and other quality factors of the entire system
will increase along with simulation scale. �e oppor-
tunity is that we will be able to obtain more value
through simulation, and military decision-making
can be improved.

(2) Uni�ed Framework Serving Both Large-Scale Simu-
lation and Big Data [91]. Many business platforms
based on cloud computing have incorporated big
data framework to enhance their services and expand
their applications, such as Google Cloud Platform,
Amazon EC2, and Microso� Azure [92]. Usually MS
big data is both created and processed by an HPC
system; however, a complete platform serving both
military simulation and big data is rather limited in
number. We need an integrated platform to access
the models, applications, resources, and data via a
single entrance point. �e experimental work�ow
from initial problemde�nition to �nal analysis should
be automated for the military user to the greatest
extent possible. Furthermore, multiple experiments
should be scheduled and accessed simultaneously.
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(3) Generating Data E�ciently. High-performance sim-
ulation algorithms and so�ware are still insu�cient
[67]. Large-scalemilitary simulation can be compute-
intensive, network-intensive, and data-intensive at
the same time.�erefore, it is one of themost complex
distributed applications, and performance optimiza-
tion is very di�cult to achieve. For example, the
load balancing technology needs to be reconsidered
because of the great uncertainty intrinsic to military
models.

(4) Consolidate Data Processing and Analytical Ability
with the Latest Big Data Technology. �ere are only
a few practices applying the mainstream big data
methods and tools to MS big data. �e new parallel
paradigms such as MapReduce based on Key-Value
Pair representation forMS data need further study. In
addition, although open source so�ware for big data
is available, it is o�en designed for a common purpose
and can be immature in some aspects [17]. Generally
it needs to be modi�ed and further integrated into a
productive environment. For example, MS big data
are usually spatiotemporal, so the data storage and
query must be optimized based on open source so�-
ware.

(5) Big Data Application. �ere are many new analysis
methods and applications emerging frombusiness big
data, such as social network analysis, recommenda-
tions, and community detection [93]. By contrast,
new applications for military simulation are limited.
Military problems are still far from being well-
studied, and big data provides a chance to reach a
deeper understanding. Some new ideas emerging
from the commercial sector can be borrowed by mil-
itary analysts, and the military requirements should
be investigated systematically, so that the user can
make better use of MS big data. On the other hand,
modeling and simulation itself can also bene�t from
big data. For example, the simulation data can be used
to validate models or optimize simulation outputs.

(6) Change of Mindset. Military simulation data are gen-
erated from models which need to portray the per-
vasive uncertainty, and this work is still confronted
with many di�culties. As a result, people o�en doubt
the simulation result. But big simulation data is useful
because it has potential value for revealing patterns,
if not accurate results. Mining value from simulation
data means a change of viewpoint about the simu-
lation’s purpose, that is, from prediction to gaining
insight [28]. �is may be the biggest challenge in the
�eld today. As proof, the concept of data farming
has been proposed for many years, but it is still not
broadly applied. However, a change of mindset will
advance military simulation theory and technology.

Related with the emerging technologies including web
service, cloud service, modeling and simulation as a ser-
vice, and model engineering, [94–98], a layered framework
(Figure 12) is proposed to serve as the basis for future

solutions. �is framework addresses the system architectural
aspects of challenges above. It provides a uni�ed environment
for whole lifecycle ofmilitary simulation experiment.�e key
data technology is management of resources and workloads.

�is framework contains 5 layers, which are explained
here in detail:

(i) �e portal provides all users with a uni�ed entry point
for ease of access and use. �e functions include user
management, resource monitoring, and experiment
launching. Di	erent phases in an experiment can
be linked by the work�ow tool so that the process
is automated. Tools supporting collaboration among
users are also needed.

(ii) �e application layer provides a set of tools to de�ne
and perform experiments. �e functions include
creating models, de�ning experiment, running sim-
ulation, and analyzing results. �e important compo-
nents are the simulation and data processing engines,
which accept experiment tasks and access computa-
tion and storage resources.

(iii) �e service layer includes common services used
by the above applications. �e computing service
provides computational resources for running sim-
ulations or performing analysis. �e data service
responds to the requests for data storage and access.
�e monitor service collects workload information
from the nodes for load balancing scheduling. It
also collects health information used for achieving
reliability.�e communication service provides appli-
cations with simple communication interfaces. �e
service manager is a directory containing theMetain-
formation of the resources and service instances.

(iv) �e platform layer provides all kinds of resources
including computing, storage, and communication
middleware. A resource itself could be managed by
a third-party platform, such as MapReduce system or
HDFS. �e third-party platform can directly ensure
scalability or reliability with its own merit. In any
case, all system resources are wrapped by upper-level
services.

(v) �e repository includes a set of data resources, such as
experiment inputs and outputs, and components used
for executing simulation and analysis.�e algorithms
library includes parallel computation methods to
implement the high performance simulation at the
lowest level as illustrated in Figure 4 together with
parallel data processing algorithms.

�e service layer in Figure 12 is the core part of the frame-
work. �e computing service encapsulates di	erent com-
puting resources with uni�ed resource objects and registers
itself in the service manager. A�erwards, the simulation
and data processing module in the application layer request
computing resources with a uni�ed workload model from
the service manager. �e service manager allocates appro-
priate computing services according to demand and system
workload conditions.�is allocation is coarse-grained of pro-
cesses. Application engines canmake �ne-grained scheduling
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Figure 12: Recommended architecture of uni�ed experiment platform.

decisions of threads. �erefore, di	erent experiments run-
ning simulation or data analysis can be e�ciently scheduled
within the same framework.

�e framework is designed for multitask and multiuser
considering the shared experimental resources. Each exper-
iment mainly contains two tasks: simulation execution task
and data analysis task. �ere are two scheduling methods
available. First, if the computing resource has private storage,
we should keep the data at local storage and schedule the
data analysis task to the same position (see Figure 13(a)). In
this method, the simulation application engine should have
already ensured the load balancing; thus the data analysis is
automatically load balanced. Second, if the storage resource

is separated from computing resource, we can group the
computing resources with the two tasks to facilitate the
resource allocation (see Figure 13(b)). In this case, two groups
of resources should take short distance to reduce the overhead
from data transfer.

Because resources are not managed directly by the up
level applications, new resources can be simply added to sat-
isfy the increasing scale of the simulation and data. Although
our framework also employs SOAwith loosely coupled mod-
ules, it has two important di	erences from Scalarm: (1) the
computing service does not access the data service directly,
and both of them are accessed by encapsulated services or
applications; (2) both simulation and analysis applications
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can request computing service and then bemanaged with the
uni�ed management service.

6. Conclusion

With the development ofHPC technology, complex scenarios
can be simulated to study military problems. �is requires
large-scale experiments and gives rise to the explosive growth
of generated data. �is paper discussed the advancement of
MS big data technology, including the generation, manage-
ment, and analysis of data.We also identi�ed the key remain-
ing challenges and proposed a framework to facilitate the
management of heterogeneous resources and all experiment
phases.

MS big data can change our mindsets on both simulation
and big data. First, simulation was typically viewed as an
approach to predict outcomes. However, prediction needs
to �x many parameters for accuracy, and usually this is not
feasible formilitary problems. However, big data can improve
the analytical capability by obtaining the entire landscape
of future possibilities. In fact, the idea behind big data is
not novel in military simulation. Hu et al. believed that the
old methodologies like data mining and data farming are
consistent with big data, and the latter provides new means
to resolve big simulation data requirements [67]. Second,
the current big data paradigm relies on observational data
to �nd interesting patterns [99]. �e simulation experiment
breaks this limitation and allows the virtual data gathered

from multiple possible futures to be our advantage. �is
mindset will make the best use of big data and bring more
opportunities than we can imagine.

Although the big data idea inmilitary simulation has been
around for a long time, the techniques and systems are still
limited in their ability to provide complete solutions. Espe-
cially, for those cases which need strict timeliness, military
decision-making is posing challenges for the generation and
processing of abundant data. We believe that in the near
future the big data theory will further impact the military
simulation community, and both analyst and decision-maker
will bene�t from the advancement of big data technology.
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