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Milk: a postnatal imprinting system 
stabilizing FoxP3 expression and regulatory  
T cell di�erentiation
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Abstract 

Background: Breastfeeding has protective effects for the development of allergies and atopy. Recent evidence 

underlines that consumption of unboiled farm milk in early life is a key factor preventing the development of atopic 

diseases. Farm milk intake has been associated with increased demethylation of FOXP3 and increased numbers of 

regulatory T cells (Tregs). Thus, the questions arose which components of farm milk control the differentiation and 

function of Tregs, critical T cell subsets that promote tolerance induction and inhibit the development of allergy and 

autoimmunity.

Findings: Based on translational research we identified at least six major signalling pathways that could explain 

milk’s biological role controlling stable FoxP3 expression and Treg differentiation: (1) via maintaining appropriate 

magnitudes of Akt-mTORC1 signalling, (2) via transfer of milk fat-derived long-chain ω-3 fatty acids, (3) via transfer of 

milk-derived exosomal microRNAs that apparently decrease FOXP3 promoter methylation, (4) via transfer of exoso-

mal transforming growth factor-β, which induces SMAD2/SMAD3-dependent FoxP3 expression, (5) via milk-derived 

Bifidobacterium and Lactobacillus species that induce interleukin-10 (IL-10)-mediated differentiation of Tregs, and (6) 

via milk-derived oligosaccharides that serve as selected nutrients for the growth of bifidobacteria in the intestine of 

the new born infant.

Conclusion: Accumulating evidence underlines that milk is a complex signalling and epigenetic imprinting net-

work that promotes stable FoxP3 expression and long-lasting Treg differentiation, crucial postnatal events preventing 

atopic and autoimmune diseases.
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Background

Children who grow up on traditional farms are pro-

tected from atopic diseases [1]. Early-life consumption of 

unboiled cow’s milk has been identified as the most pro-

tective factor for the development of atopy [2–10]. Farm 

milk exposure has been associated with increased num-

bers of CD4+CD25+FoxP3+ regulatory T cells (Tregs), 

lower atopic sensitization and asthma in 4.5-year-old 

children [11]. Treg cell numbers are negatively associated 

with asthma and perennial immunoglobulin E serum lev-

els [11]. However, the allergy-preventive effectors of milk, 

which stimulate the development of Tregs remain elusive. 

Based on translational research we provide six potential 

milk-derived signalling pathways that could promote 

appropriate differentiation and maturation of Tregs.

Findings

Amino acids

Milk is the postnatal nutritional environment of all 

mammals that mediates immune stimulatory functions, 

especially long-term stable expression of FoxP3, the 

key transcription factor of Tregs. Milk protein provides 

appropriate amounts of certain insulinotropic amino 
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acids such as essential branched-chain amino acids that 

induce the secretion of insulin as well as amino acids 

such as tryptophan that increase hepatic insulin-like 

growth factor-1 (IGF-1) secretion [12–21]. Both growth 

hormones synergistically activate the phosphoinosite-3 

kinase (PI3K)-Akt pathway. Control of PI3K in Treg 

cells is essential for Treg lineage homeostasis and stabil-

ity [22, 23]. Diminished control of PI3K activity in Treg 

cells reduces expression of the interleukin-2 (IL-2) recep-

tor α subunit CD25, accumulation of FoxP3+CD25− cells 

and, ultimately, loss of expression of the transcription 

factor FoxP3 in these cells [23]. Excessive postnatal pro-

tein intake via infant formula feeding has been demon-

strated to increase infant’s serum levels of insulin and 

IGF-1 accelerating growth and weight gain (early protein 

hypothesis) [24–26]. Rapid weight gain in infancy has 

been linked to an increased risk of asthma [27–29].

Tregs are a developmentally and functionally distinct T 

cell subpopulation that is engaged in sustaining immuno-

logical self-tolerance and homeostasis. �e transcription 

factor FoxP3 plays a key role in Treg development and 

function [30–33]. �ere is accumulating evidence that 

insufficient maturation and differentiation of Tregs play a 

key role in the development of common allergic diseases 

and autoimmunity [34–39].

Notably, FoxP3 expression is linked to nutrient sig-

nalling via Akt-mediated phosphorylation of the 

transcription factors FoxO1 and FoxO3. Increased insu-

lin/IGF-1 signalling leads to inactivation of FoxO1 and 

FoxO3a by their phosphorylation-dependent extru-

sion form the nucleus into the cytoplasm. Both FoxO1 

and FoxO3a exert stimulatory effects on FoxP3 expres-

sion [40] (Fig.  1). A FoxO3a-binding motif is present in 

the proximal region of the FOXP3 promoter [40]. �e 

absence of FoxO1 severely curtails the development of 

FoxP3+ Tregs. In addition, the absence of FoxO3 exacer-

bates the effects of the loss of FoxO1 [41]. �us, there is 

compelling evidence that increased PI3K-Akt-signalling 

blocks FoxP3 expression by sequestering FoxO factors 

[42]. FoxO transcription factors cooperatively control the 

differentiation of FoxP3+ Tregs [43]. FoxO proteins func-

tion in a Treg-intrinsic manner to regulate thymic and 

TGF-β-induced FoxP3 expression, in line with the abil-

ity of FoxO proteins to bind to FOXP3 locus and control 

FOXP3 promoter activity [43]. FoxO proteins are con-

sidered to play crucial roles in specifying the Treg cell 

lineage [43]. Genome-wide analysis of FoxO1 binding 

sites reveals ~300 FoxO1-bound target genes that do not 

seem to be directly regulated by FoxP3. �ese findings 

show that the evolutionarily ancient Akt-FoxO1 signal-

ling module controls a genetic program indispensable for 

Treg cell function [44].

Upregulated PI3K-Akt signalling in the presence of 

sufficient amounts of branched-chain amino acids and 

Fig. 1 Synoptic working model for milk-induced FoxP3 expression and regulatory T cell (Treg) differentiation. The transcription factors FoxO1, 

FoxO3a, SMAD3 and STAT3 all enhance FoxP3 expression. Milk exosomal microRNAs and TGFβ attenuate DNA methyltransferase (DNMT) expression 

promoting TSDR demethylation (AAs: amino acids; ω3-FAs; ω-3 fatty acids; HMO: human milk oligosaccacharides; I: insulin; IGF1: insulin-like growth 

factor-1; miRs: microRNA-148a, microRNA-29, microRNA-21; mTORC1: mechanistic target of rapamycin complex 1; TGFβ: transforming growth 

factor-β; STAT3: signal transducer and activator of transcription 3; TSDR: Treg-specific demethylated region)
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glutamine increases the activity of the nutrient-sensi-

tive kinase mechanistic target of rapamycin complex 1 

(mTORC1) [45–47]. Milk has recently been identified 

as a signalling system of mammalian evolution control-

ling mTORC1-dependent translation [48, 49]. Enhanced 

mTORC1 activity was found in the brain and ileum of 

mice with cow’s milk allergy (CMA) [50]. Treatment with 

the mTORC1 inhibitor rapamycin significantly increased 

the mRNA expression of FoxP3 in the ileum and Peyer’s 

patches of CMA mice. A correlation between the extent 

of mTORC1-mediated S6K1 phosphorylation and FoxP3 

mRNA expression in the ileum was demonstrated [50].

Taken together, the Akt-mTORC1 axis controls FoxP3 

expression and differentially regulates effector and Treg 

cell linage commitment [43, 51–53]. It is thus conceivable 

that a well-balanced transfer of critical amino acids via 

breastfeeding controls Akt-mTORC1-mediated Treg dif-

ferentiation, which may be disturbed by artificial formula 

feeding with high protein content [54, 55].

Long-chain ω-3-fatty acids

Part of the asthma-protective effect is associated with 

the intake of raw cow’s milk and was explained by higher 

levels of polyunsaturated ω-3 fatty acids of farm milk 

[56]. Remarkably, it has been demonstrated in a mouse 

model of atopic dermatitis that administration of the ω-3 

fatty acid docosahexaenoic acid upregulates the genera-

tion of TGF-β-dependent CD4+ Foxp3+ Tregs [57, 58]. 

Furthermore, fatty acids play a role in mTORC1 activa-

tion. Whereas the saturated fatty acid palmitate activates 

mTORC1, the ω-3 fatty acid eicosopentaenoic acid inhib-

its mTORC1 activation [59]. �us, ω-3-fatty acids may 

not only attenuate pro-inflammatory eicosanoid biosyn-

thesis but may exert direct effects on FoxP3 Treg activity. 

In fact, it has been demonstrated that Tregs transfer ω-3 

long chain polyunsaturated fatty acids-induced tolerance 

in mice allergic to cow’s milk protein [60].

MicroRNAs

Extracellular RNAs and especially exosomal microR-

NAs are regarded as most important factors involved in 

the regulation of the immune system [61, 62]. Human 

breast milk is a body fluid that is highly enriched in 

mRNAs and microRNAs [63]. MicroRNAs are either 

packaged with proteins (i.e. Ago2, HDL, and other 

RNA-binding proteins or wrapped in small membra-

nous particles (i.e. exosomes, microvesicles, and apop-

totic bodies) [64–67]. Human, bovine and porcine milk 

transfer high numbers of exosomes that contain micro-

RNAs [68–70]. Recent evidence indicates that human 

milk microRNAs primarily originate from the mammary 

gland resulting in unique microRNA profiles of frac-

tionated milk [71]. Recently, we hypothesized that milk 

transmits microRNAs (microRNA-155, microRNA-148a, 

microRNA-29b, microRNA-21) that may induce thymic 

FoxP3+ Treg differentiation thereby preventing the devel-

opment of allergy [72]. Indeed, farm milk consumption is 

associated with higher FOXP3 demethylation and higher 

Treg cell numbers [11]. Stable expression of FoxP3 in 

Tregs depends on DNA demethylation at the Treg-spe-

cific demethylated region (TSDR), a conserved CpG-

rich region within the FOXP3 locus [73–75]. In contrast, 

hypermethylation of the FOXP3 gene has been associated 

with reduced Treg function and allergy [76, 77]. Notably, 

atopic individuals express lower numbers of demethyl-

ated FoxP3+ Tregs [78].

�ere are two potential mechanisms of DNA dem-

ethylation: (1) passive demethylation through inhibi-

tion of DNA methyltransferases (DNMTs) and (2) active 

demethylation mediated by ten-eleven-translocation 

(TET) 2 and 3 [79]. TET2 binding to CpG-rich regions 

requires the interaction of TET2 with the protein IDAX 

(also known as CXXC4) [80]. Intriguingly, the CXXC 

DNA-binding domains can bind unmethylated DNA and 

recruit TET2 via IDAX [81]. �us, DNMT inhibition may 

favour active TET2-mediated TSDR demethylation.

Both DNMT1 and DNMT3b are associated with the 

FOXP3 locus in CD4+ cells [82, 83]. Remarkably, DNMT1 

deficiency resulted in highly efficient FoxP3 induction fol-

lowing TCR stimulation [82]. Importantly, DNMT1 is a 

direct target of microRNA-148a [84], which is abundant in 

bovine colostrum, mature cow’s milk, and human breast 

milk [68, 85, 86]. MicroRNA-148a is highly expressed in 

bovine milk fat and milk fat globules of human breast 

milk [87, 88]. MicroRNA-148a directly downregulates 

the expression DNMT1 and DNMT3b, whereas micro-

RNA-21, another abundant microRNA of cow’s milk, 

indirectly inhibits DNMT1 expression by targeting RAS-

GRP1 [84]. MicroRNA-29b increases dose-dependently 

in human serum after intake of pasteurized cow’s milk 

[89]. MicroRNA-29 targets DNMT3a and DNMT3b [90]. 

Remarkably, nucleotide sequences of microRNA-148a-3p, 

microRNA-29b and microRNA-21 of Homo sapiens and 

Bos taurus are identical (mirbase.org). Kirchner et al. [87] 

recently suggested that microRNAs of unprocessed cow’s 

milk mediate the allergy preventive farm milk effect. It is 

of functional importance that most milk-derived microR-

NAs are transported either in exosomes or milk fat glob-

ules [48, 49, 69, 70, 88–93].

It has recently been demonstrated that bovine milk 

microRNAs (microRNA-29b, microRNA-200c) are taken 

up in reasonable amounts by healthy human subjects 

after consumption of pasteurized cow’s milk [88]. Further 

evidence underlines that bovine milk exosomes are able 

to cross human intestinal cells and vascular endothelial 

cells via endocytosis [94, 95].
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Notably, boiling of raw cow’s milk abolishes the allergy-

preventive farm milk effect [3] and results in substantial 

loss of microRNA-148a-3p [87]. MicroRNA-155, another 

important immune regulatory microRNA of milk [72], 

targets suppressor of cytokine signalling 1 (SOCS1), 

which maintains STAT5 activity further enhancing Treg 

differentiation [96]. Boiling of milk may disrupt the pro-

tective lipid bilayer of milk exosomes accelerating the 

degradation of critical milk microRNAs. Furthermore, 

heat-induced alterations of exosomal membrane proteins 

may disturb intestinal exosome uptake. �us, native milk-

derived exosomal microRNAs via suppressing DNMTs 

may provide pivotal epigenetic signals stabilizing FoxP3 

expression and Treg differentiation.

Exosomal transforming growth factor-β

It has been demonstrated that exosomes of cow’s milk 

not only transfer microRNAs but also transforming 

growth factor-β (TGF-β) [97]. �e TGF-β signalling 

pathway activates the transcription factors SMAD2 and 

SMAD3 [98, 99]. SMAD3 is a crucial transcription fac-

tor enhancing FoxP3 expression via binding to the con-

served non-coding sequence 1 (CNS1) of FOXP3 [100] 

(Fig.  1). Experimental evidence reveals that TGF-β in 

the context of T cell receptor (TCR) stimulation induces 

FoxP3 gene transcription in thymic Treg precursors, 

CD4+ CD8− CD25− semimature and mature single-

positive thymocytes [101]. TGF-β also converts naïve 

T cells into inducible Treg (iTregs) and protects Tregs 

against apoptosis and destabilization [102]. Importantly, 

it has been demonstrated that TGF-β-induced expres-

sion of FoxP3 in T cells is mediated through inactivation 

of the kinase ERK [103]. TGF-β via inhibition of ERK 

activation downregulates the expression of DNMT1, 

DNMT3a and DNMT3b associated with increased FoxP3 

expression [97]. Recently, Arntz et  al. [104] confirmed 

that bovine milk exosomes induce FoxP3 expression and 

Treg differentiation in murine splenocytes. �ymus-

derived exosomes as well are able to induce FoxP3+ 

Tregs in peripheral tissues [105]. Moreover, the incuba-

tion of peripheral blood mononuclear cells with isolated 

human breast milk exosomes increased the number of 

FoxP3+CD4+CD25+ Tregs [106]. �us, milk-derived 

exosomal TGF-β acts via transcriptional control and epi-

genetic regulation of FoxP3 expression. It is noteworthy 

to mention that deficient TGF-β signalling is associated 

with activation of the PI3K/Akt pathway [107], which 

suppresses FoxO signalling.

Bi�dobaceria and lactobacilli

Human milk is a source of living bifidobacteria and lac-

tobacilli for the infant gut [108–111]. Bifidobacterium 

breve, B. adolescentis, B. bifidum, and Lactobacillus 

plantarum WLPL04 were isolated from human milk 

samples [108, 110]. �ere is accumulating evidence that 

probiotic bacteria generate FoxP3 T-cell responses in the 

small intestine [112]. L. plantarum WCFS1, L. salivarius 

UCC118, and L. lactis MG1363 upregulate numbers of 

CD11c+ MHCII+ dendritic cells in the immune-sam-

pling Peyer’s patches [112]. L. plantarum, L. salivarius, 

and L. lactis attenuate �2 responses and increase Treg 

frequencies in healthy mice in a strain dependent man-

ner [113]. Oral consumption of Bifidobacterium infantis 

35624 enhanced IL-10 secretion and FoxP3 expression in 

human peripheral blood cells pointing to the immune-

stimulatory effect of bifidobacteria on FoxP3+ iTreg 

induction [114, 115]. Furthermore, it has been demon-

strated that bifidobacteria stimulate TGF-β, which con-

tributes to Treg differentiation [116].

Special attention has been paid on the critical role of the 

anti-inflammatory cytokine IL-10 in probiotica-induced 

anti-inflammatoy intestinal immune responses [110, 117, 

118]. Despite heat-killing, Lactobacillus pentosus strain 

S-PT84 exhibited anti-allergic effects by modulating the 

�1/�2 balance and inducing Tregs [119]. Live and heat-

killed Lactobacillus rhamnosus suspensions were able to 

induce the synthesis of different cytokines including IL-10 

[120]. Heat-killed Lactobacillus acidophilus strain L-92 

produced higher levels of Foxp3, IL-10 and TGF-β com-

pared to control mice and suppresses allergic contact der-

matitis [121]. In a bovine β-lactoglobulin-sensitized mice 

model, oral administration of heat-killed L. acidophi-

lus exhibited increased mRNA expression of Foxp3 and 

TGF-β [122]. It should be noticed, that heat-treatment 

of probiotics may also result in a loss of immune-regu-

latory functions. However, the majority of studies using 

either native or heat-treated bifididobacteria or lactoba-

cilli exhibits an upregulation of IL-10, TGFβ and FoxP3 

[116, 119–122]. Remarkably, IL-10 potentiates differen-

tiation of human induced Tregs via STAT3 and FoxO1 

[123]. Hsu et al. [123] demonstrated that the presence of 

IL-10, in addition to TGF-β, leads to increased expan-

sion of Foxp3+ iTregs with enhanced CTLA-4 expression 

and suppressive capability, comparable to that of natural 

Tregs. �is process is dependent on IL-10R-mediated 

STAT3 signalling. Additionally, IL-10-induced inhibition 

of Akt phosphorylation and subsequent preservation of 

FoxO1 function are critical. In contrast to formula feed-

ing, the presence of maternal milk in β-lactoglobulin-

sensitized rat pups exhibited an immune response profile 

similar to that of unchallenged dam-reared rats but with 

greater FoxP3 mRNA expression and CD4+ FoxP3+ cells 

[124]. �ese data may explain the preventive effect of pro-

biotics for sensitization to common food allergens associ-

ated with a reduced incidence of atopic eczema in early 

childhood [125]. However, due to a lack of well-designed 
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studies convincing evidence for the prevention of aller-

gic asthma by probiotic treatment is still missing [126, 

127]. �e time of onset of probiotic exposure, which is 

physiologically natural birth and the period of breastfeed-

ing, may play critical roles for probiotica-induced Treg 

maturation.

Milk oligosaccharides

Human milk contains large amounts of free oligosac-

charides (HMOs). HMOs have been shown to exert 

anti-inflammatory properties, and evidence for their 

immune-modulatory effects is increasing [128–130]. A 

growing literature suggests that human milk contains 

viable bacteria [131]. McGuire et  al. [131] postulated 

that human milk should be regarded as a probiotic food. 

Human milk oligosaccharides (HMOs) are minimally 

digested by the infant and are utilized by bifidobacteria 

[132]. One postulated function for these oligosaccha-

rides is to enrich a specific “healthy” microbiota contain-

ing bifidobacteria, a genus commonly observed in the 

faeces of breastfed infants [133]. Recent studies show 

that some species of bifidobacteria are equipped with 

genetic and enzymatic sets dedicated to the utilization 

of HMOs promoting HMO-dependent growth of bifi-

dobacteria [134]. Among gut microbes, the presence 

of enzymes required for degrading HMOs with type-1 

chains is essentially limited to infant-gut-associated bifi-

dobacteria, suggesting HMOs serve as selected nutri-

ents for the bacteria pointing to a co-evolution between 

bifidobacteria and human beings mediated by HMOs 

[135]. Formula feeding in comparison to breastfeeding 

compromises the development of the physiological gut 

microbiome. In breastfed Rhesus infants Bifidobacteria 

and Lactobacillus predominated, whereas in formula-fed 

infants Ruminococcus was predominant [26]. Breastfed 

human infants harbour a faecal microbiota more than 

twice increased in Bifidobacterium numbers compared to 

formula-fed infants [136]. After formula feeding, Atopo-

bium was found in significant counts and the numbers 

of Bifidobacteria dropped followed by increasing num-

bers of Bacteroides population [136]. Infant formulas 

containing non-digestible oligosaccharides similar to 

the composition in breast milk or a combination of lac-

tic acid bacteria have been shown to harbour preventive 

effects towards immune-regulatory disorders [137, 138]. 

In fact, recent studies with whey and casein-sensitised 

mice showed that CD25+ Treg contribute to the suppres-

sion of the allergic effector response in sensitised mice 

induced by dietary intervention with non-digestible car-

bohydrates [139, 140]. �us, it appears that milk is mam-

mal’s early life probiotic nutrient system supporting and 

maintaining Bifidobacteria and Lactobacillus species that 

induce Tregs and control immune responses.

Conclusions

Compelling evidence underlines that milk is not a simple 

food for infants but represents a sophisticated signalling 

network that promotes the differentiation and long-last-

ing maintenance of Tregs, the central players suppress-

ing the development of allergy and autoimmunity. Milk 

provides an intricate metabolic, epigenetic, probiotic and 

stem cell-derived system that induces stable expression 

of FoxP3, the master transcription factor of Tregs. �e 

critical allergy-preventive factor in cow’s milk appears to 

be heat-sensitive and is abolished by boiling of milk. As 

amino acids and the majority of long-chain ω-3 fatty acids 

withstand the boiling process, heat-sensitive compounds 

such as milk exosomes, probiotic bacteria and stem cells 

are the potential candidates for long-lasting Treg differ-

entiation. In more than 200,000 million years of lacta-

tion [141, 142] the evolution of milk had plenty of time 

to create a sophisticated regulatory network optimiz-

ing the infant’s Treg differentiation allowing appropriate 

tolerance development during the postnatal period of 

mammalian life. In this regard, unprocessed milk should 

be regarded as a conditioner for tolerance development. 

After birth, the newborn’s immune system encounters 

foreign environmental antigens such as nutrients, pollens 

and house dust mite allergens, which via antigen-specific 

TCR-mediated activation induce antigen-specific Tregs. 

�e milk-related signalling pathways presented here, may 

in a synergistic manner enhance antigen-specific Treg 

generation associated with the induction of allergen-spe-

cific immune tolerance (Fig. 1).

Most recent data underline that developing natural 

Treg (nTreg) cells in the thymus acquire a Treg-specific 

and stable hypomethylation pattern in a limited num-

ber of genes, which encode key molecules including 

FoxP3, essential for Treg cell function. �is epigenetic 

change is acquired via TCR stimulation, beginning prior 

to FoxP3 expression. �e Treg-specific DNA hypometh-

ylated regions generally act as gene enhancers in steady 

state nTreg cells, contributing to the stable expression of 

Treg function-associated key genes including Ctla4, Il2ra, 

and Ikzf4 in addition to FoxP3 [143, 144]. Recent work 

suggests that the establishment and stability of Tregs is 

mediated by a number of mechanisms besides FoxP3 

expression, such as epigenetic modifications, FoxO1, 

FoxO3a localization, expression of Eos and signalling via 

Neuropilin-1 [143]. To understand the pathogenesis of 

allergy development it is most important to characterize 

the immune regulatory networking of native milk. Future 

studies should thus focus on natural unprocessed milk 

and its regulatory mechanisms that support long-lasting 

stability of Tregs mediating livelong tolerance induction 

against harmless environmental antigens and autoanti-

gens [145, 146]. We are at the beginning to understand 



Page 6 of 9Melnik et al. Clin Transl Allergy  (2016) 6:18 

the complex interplay of milk’s regulatory factors induc-

ing and stabilizing the infant’s FoxP3 expression. Yet, we 

have no idea about the functional priority of milk-derived 

factors involved in Treg lineage commitment. It is thus 

prudent to rely on the regulatory effectiveness of our 

own lactation genome, which co-evolved with the lacta-

tion-associated microbiome. �erefore, we recommend 

breastfeeding for adequate Treg maturation and the pre-

vention of allergic diseases of human infants. However, 

for mothers who are not able to provide breast milk, 

human donor milk might be an alternative for appropri-

ate Treg differentiation. Countrywide access to operating 

human milk banks in East Germany before Germany’s 

unification in 1990, may explain the lower prevalence 

rates of atopic diseases in East versus West Germany 

[147, 148]. Artificial formulas still substantially differ 

from human breast milk. If milk exosomal microRNAs 

play a key role in Treg differentiation, it is of critical con-

cern that current infant formula only contains very few 

human lactation-specific microRNAs [149]. �e addition 

of bovine milk exosomal microRNAs may represent a 

future improvement of artificial formula feeding. Due to 

legal aspects and the risk of pathogen transfer, raw cow’s 

milk can not be recommended as an agent for allergy pre-

vention. However, in the future, it might be possible to 

prepare sterilized bovine milk exosomes for this purpose. 

It has already been shown that bovine milk exosomes 

increased Foxp3 expression and attenuated arthritis in 

two mouse models [104].
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