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Abstract: The unprecedented quality of the astrometric measurements obtained with the ESA Gaia
spacecraft have initiated a revolution in Milky Way astronomy. Studies of star clusters in particular
have been transformed by the precise proper motions and parallaxes measured by Gaia over the
entire sky as well as Gaia’s deep all-sky photometry. This paper presents an overview of the many
topics of cluster science that have been impacted by the Gaia DR1, DR2, and EDR3 catalogues from
their release to the end of the year 2021. These topics include the identification of known clusters and
the discovery of new objects, the formation of young clusters and associations, and the long-term
evolution of clusters and their stellar content. In addition to the abundance of scientific results,
Gaia is changing the way astronomers work with high-volume and high-dimensionality datasets
and is teaching us precious lessons to deal with its upcoming data releases and with the large-scale
astronomical surveys of the future.

Keywords: star clusters; open clusters; milky way; astrometry; data mining; stellar evolution

1. Introduction
1.1. The Gaia Mission

The ESA Gaia space mission [1,2] is one of the most successful projects in the history of
astronomy. The spacecraft was launched in December 2013 and has since been performing
repeated measurements of the positions of stars in the sky with unprecedented precision.
These measurements allow not only for the production of the deepest and most detailed
two-dimensional map of the celestial sphere ever made but also for repeated observations
that enable the measurement of the apparent motions of stars (proper motions) and their
annual parallaxes (which can, in turn, be used to estimate their distances). In addition to
this five-dimensional dataset, Gaia measures the apparent luminosity of every source as
well as its colour. This all-sky dataset is the finest astrometric catalogue ever produced, and
its impact and success are made even greater by the fact that the catalogues are completely
public and freely available to anyone in the world with internet access1.

The first Gaia data release (DR1) took place in September 2016 [3]. Its catalogue
contained positions and G-band magnitudes for over a billion sources but only listed a
full astrometric solution (proper motion and parallax) for two million stars that were in
common with the Tycho-2 dataset [4]. Two years later, the second data release (DR2; [5]) had
an immediate and transformative impact on Galactic astronomy due to the unprecedented
precision of its astrometry (up to a hundred times better than previous proper motion
catalogues) and to the depth and quality of its photometry (reaching G ∼ 20.5) available for
1.7 billion sources. Over five thousand papers referring to Gaia DR2 are listed on NASA’s
Astrophysics Data System, and the number of new papers is still steadily increasing (see
Figure 1). The third data release has been split into two steps, with Early Data Release 3
(EDR3, [6]) in December 2020 and a full DR3 planned for 2022. The EDR3 catalogue most
notably contains improved astrometric solutions for 1.8 billion sources.
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Figure 1. Citations per month for the Gaia mission paper [2] and the papers corresponding to DR1 [3],
DR2 [5], and EDR3 [6], up to December 2021.

The availability of this enormous amount of all-sky data has not only enabled a deluge
of scientific results but also changed the working habits of many astronomers to the point
that, according to Brown [7], Gaia has “quickly become an indispensable part of the astronomical
ecosystem”. From the Gaia archive, one can now, in a few minutes, retrieve deep photometric
measurements for any field of view of any arbitrary size, where just a few years ago the
same data would have required several nights of ground-based observations (and often
months of planning proposal writing).

Brown [7] gives a historical overview of astrometry up to Gaia’s microarcsecond
precision as well as selected science highlights showing Gaia’s contribution to astronomy,
from Solar System and exoplanet science to the distant universe.

1.2. Star Clusters

Since the majority of young stars are observed to be located near other young
stars [8–10], it has long been assumed that stars are born in groups [11–16]. These groups
subsequently disperse, and most stars in the Milky Way follow lonely orbits, unrelated to
their temporary neighbours, in what is commonly referred to as the Galactic field. In some
cases, stars might remain gravitationally bound to their siblings, forming what is currently
referred to as a star cluster. For historical reasons, the very old, dense, and almost spherical
clusters orbiting the halo of our Galaxy are called globular clusters, while the sparser and
significantly younger groups found in the disc of the Milky Way are called open clusters,
or Galactic clusters. From ancient times to the 20th century, these clusters were identified
as stellar over-densities: wherever a group of stars appeared tightly distributed in the sky,
it was assumed they formed a physical cluster. Modern datasets also allow us to verify that
these stars are indeed travelling together through the Milky Way (they share a common
proper motion and radial velocity) and are physically close enough to each other to be
considered physically related (their parallaxes indicate they are all the same distance away
from us). The clean colour–magnitude diagrams resulting from this astrometric selection
can quickly provide a visual confirmation that a group of stars is a true cluster. The power
of this all-Gaia characterisation is shown in Figure 2. The dense cluster NGC 2509 was
discovered in the 18th century [17,18] but was poorly characterised until recently. The
cluster LP 589 is much sparser and was only discovered due to DR2 data (by [19]) as a clear
group in proper motion space.
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Figure 2. Example of two clusters (LP 589 in cyan and NGC 2509 in yellow) characterised with
Gaia EDR3. The top-left panel shows the sky distribution of the stars and their vector proper motion.
The top-right panel shows the distribution in proper motion space. The bottom-left panel shows
the colour–magnitude diagram of the cluster stars, selected based on their proper motions, and the
noncluster stars (white). The bottom-right panel shows the parallax distribution of the stars, which
can be used to estimate distance to the cluster.

As groups of coeval stars (born at the same time) sharing the same initial chemical
composition (born from the same molecular cloud), they constitute ideal laboratories to
test stellar evolution models. Since estimating the age of and distance to a cluster is easier
than for individual field stars, clusters have long been used as tracers of the structure and
evolution of the Milky Way (e.g., [20–26]) and its metallicity gradient (e.g., [27–35]). The
questions of how clusters (and stars) form, and how clusters are disrupted by the tidal
forces of the Milky Way and by encounters with giant molecular clouds are also central
to several aspects of Galaxy evolution. The overall mass function of the Galactic field
has been shown to be steeper than in individual clusters (with relatively fewer high-mass
stars [36,37]), as it depends on both the stellar mass function within clusters and the mass
functions of clusters themselves [38–40]. Detailed study of the stellar content of clusters
and of possible variations in their initial mass functions [41,42] is therefore important for
our understanding of the Galaxy as a whole.

Clusters are also frequently used as reference objects to assess the quality of the Gaia
data [43–46] and value-added catalogues such as StarHorse [47]. This review aims at
presenting the variety of observational studies pertaining to Milky Way star clusters that
rely on Gaia data or on synergies with Gaia and documenting the immense impact Gaia’s
DR1, DR2, and EDR3 have had on the field, both in terms of results and methods. Excellent
reviews on overlapping topics exist in the literature. In [48], the authors covered young
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massive star clusters in the Milky Way and in external galaxies, both from an observational
and a theoretical perspective. Krumholz et al. [49] provided a recent review of the literature
on cluster formation, evolution, and disruption. Krause et al. [50] presented an overview of
different approaches to simulating the physics of star cluster formation. In the same series,
Adamo et al. [51] reviewed observational results, mostly focusing on external galaxies
but also discussing new developments in Milky Way clusters. An excellent summary of
our knowledge and understanding of OB associations in the Milky Way, with historical
perspective and emphasis on new results, was given by [52].

This manuscript is organised as follows: Section 2 covers the contribution of Gaia to
the Milky Way cluster census. Section 3 presents results obtained for young clusters and
associations. Section 4 discusses studies of older clusters and their dynamical and stellar
evolution. Section 5 presents important results obtained with combinations of Gaia data
and other space- and ground-based observations. Section 6 mentions methods and tools of
particular interest to modern studies of star clusters, and Section 7 closes with a summary
and concluding remarks.

2. The Cluster Census and the Galactic Structure

The first important contribution of Gaia to Milky Way cluster studies concerns the
cluster census itself: where are the clusters located in the sky, what are their main properties,
and which stars are members of these clusters? The most cited pre-Gaia catalogues of cluster
parameters are the works of Dias et al. [53] and Kharchenko et al. [54]2.

A study by Cantat-Gaudin et al. [56] relied on Gaia DR1 and its Tycho-Gaia Astrometric
Solution (TGAS), supplemented with proper motions from the UCAC4 catalogue [57],
which, in some regions of the sky, were still more precise than TGAS. That study applied the
unsupervised UPMASK method [58] to identify the members of clusters in a 5D astrometric
space. Since DR1 did not provide colours for its sources, the 2MASS photometry [59] of
the identified members was used and analysed with the automated isochrone fitting tool
BASE-9 [60]. Their work was, however, limited to 128 nearby and prominent clusters,
mostly located within 1 kpc of the Sun.

Relying on DR2 data, Cantat-Gaudin et al. [61] intended to characterise all the known
clusters listed in Dias et al. [53] and Kharchenko et al. [54]. They were only able to identify
1229 objects out of over 3000 listed in the literature. A large number of objects listed in
catalogues with expected nearby locations and low extinctions have remained undetected
in the Gaia data despite the many searches conducted by various teams (see Section 2.1). The
explanation, also proposed by Kos et al. [62] and extensively investigated by Cantat-Gaudin
and Anders [55], is therefore that many apparent stellar over-densities are not made of
related stars and despite being located on the same region of the sky, Gaia shows that they
do not share a common motion through the Milky Way. The nonexistence of these once
proposed objects has implications for our understanding of the Milky Way. The majority of
these asterisms were located towards the Galactic bulge, where strong extinction patterns
create local over-densities of redder stars. They were therefore suspected to be old inner-
disc clusters and even possibly associated with the Galactic thick disc. Anders et al. [63]
showed that removing these asterisms from cluster catalogues leads to an observed cluster
age function in much better agreement with theoretical models of cluster formation and
destruction rates.

Soubiran et al. [64] used the radial velocities provided in Gaia DR2 to obtain line-
of-sight velocities for 861 clusters and study their 6D phase–space distribution. They
show with unprecedented precision that young clusters (under 100 Myr) have low vertical
velocities (with a dispersion smaller than 5 km s−1) and are, on average, closer than 100 pc
of the Galactic plane. Despite their larger scale height, clusters older than 1 Gyr exhibit a
vertical velocity dispersion of 14 km s−1, typical of the Milky Way thin disc. These radial
velocities can be supplemented with ground-based spectroscopy (see [65] for a cross-match
of Gaia with GALAH and APOGEE). Building upon those samples, Tarricq et al. [66]
integrated Galactic orbits for 1382 clusters. They showed that all clusters younger than
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30 Myr follow very circular orbits and that the clusters with large excursions above the
Galactic plane are all older than 1 Gyr. Although these results are in perfect agreement
with our understanding of Galactic evolution, where stars (and clusters) are formed on
circular orbits near the Galactic midplane, obtaining such a clear observational picture of
this mechanism would not be possible without Gaia.

Star clusters have the convenient property of hosting coeval stars of different masses,
which makes it relatively easy to estimate their ages from a colour–magnitude diagram
(CMD). This can be accomplished by comparing the distribution of stars in a CMD with a
theoretical model. In practice, automatically fitting such a theoretical isochrone to photo-
metric data is not straightforward, and for studies of individual clusters this step is often
performed by hand (through visual inspection). Such an approach is impractical when
dealing with samples of hundreds or thousands of clusters, in addition to leading to sub-
jective and nonreproducible results. A rigorous analysis of the CMDs of 269 clusters was
performed by Bossini et al. [67], applying the Bayesian code BASE-9 to Gaia DR2 photome-
try and adding constraints from the Gaia parallaxes used as distances prior. The exquisite
photometry and the ability to effeciently remove nonmember stars from the analysis allow
for extremely good statistical precision on the estimated parameters, and in most cases the
uncertainty on the absolute age of clusters is now dominated by uncertainties on stellar
evolution models themselves.

A growing number of studies combine different types of data into a single analysis.
Perren et al. [68] applied the Automated Stellar Cluster Analysis pipeline (ASteCA, [69]) to
simultaneously estimate distance, reddening, total mass, age, and metallicity for sixteen
clusters. A batch analysis of clusters was also performed by Monteiro and Dias [70], provid-
ing ages for 150 objects via isochrone fitting, and Dias et al. [71] extended the same approach
to 1743 known clusters. A different approach was chosen by Cantat-Gaudin et al. [72], who
trained an artificial neural network (ANN) to estimate age, reddening, and distance for
clusters with Gaia photometry and parallaxes. The ANN processes the CMD as a 2D his-
togram and does not offer the same degree of statistical precision as a Bayesian tool such as
BASE-9, but using real clusters as a training set allows the machine to account for the many
effects that can hamper an isochrone-fitting procedure, such as the presence of unresolved
binaries, blue stragglers, differential reddening, etc. They published an unprecedented
catalogue of 1867 clusters with associated parameters. The same ANN was later applied
to 664 clusters reported by Castro-Ginard et al. [73], producing a homogeneous catalogue
of 2531 clusters. The machine-learning approach was also chosen by Kounkel et al. [74],
who built the Auriga neural network [75] and provided ages and cluster parameters for the
cluster sample of Cantat-Gaudin et al. [61] using Gaia and 2MASS photometry.

The youngest clusters from the Cantat-Gaudin et al. [72] sample were used by Castro-
Ginard et al. [76] to investigate the spiral pattern of the Galactic disc. They determined that
the different spiral arms exhibit different pattern speeds, favouring the idea that the arms
are transient features rather than long-lived structures3.

Another point revealed by the spatial distribution of young clusters is that the spiral
arms appear fragmented (see Figure 3). The most prominent gap is seen in the Perseus
arm. As demonstrated by Cantat-Gaudin et al. [83] and Castro-Ginard et al. [84], the lack of
young clusters in this region is not due to an incompleteness of the cluster census and truly
corresponds to an under-density of young stars. The gap is visible in the spatial distribution
of a variety of young tracers (see the discussion is Section 5.1 of [72]) and CO clouds [85].
Tchernyshyov et al. [86] (relying on spectra of diffuse interstellar bands) and Baba et al. [87]
(with a sample of Gaia DR1 Cepheids) proposed that the Perseus arm is in a disrupting
state, while the local arm might be in expansion. Xu et al. [88] showed that the local
arm extends into the third Galactic quadrant, further than previously thought (confirmed
by [89], tracing OB stars with Gaia EDR3) and should not be considered a secondary spiral
feature. Poggio et al. [89] also reported a large pitch angle for the Perseus arm, at odds
with the Reid et al. [90] model but supporting the young cluster distribution. Figure 3 also
shows a hint of the Cepheus spur revealed by Pantaleoni González et al. [91] with DR2 OB
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stars, extending from the local arm towards Perseus, and a tentative cluster counterpart to
the Sagittarius spur, revealed by Kuhn et al. [92] with EDR3 data of young stellar objects.
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Figure 3. Distribution of all clusters from Cantat-Gaudin et al. [72] and Castro-Ginard et al. [73]
younger than 60 Myr (green) and between 60 and 100 Myr (blue), projected on the Galactic plane. The
trace of the spiral arms is the model of Reid et al. [90], which was obtained with VLBI trigonometric
parallaxes of high-mass star-forming regions. The Sun is located at (0,0).

The distance Z of clusters with respect to the Galactic midplane is shown in Figure 4
as a function of Galactocentric distance. The correlation between age and Z is clearly
visible, with older clusters reaching high Z while young objects are all found within a few
hundred parsecs of the plane. This figure also shows a dearth of old clusters in the inner
disc, showing that clusters are more likely to be quickly disrupted by interactions with
giant molecular clouds in these dense regions. The spatial distribution of clusters also
follows the known flaring of the Galactic disc, with a larger scale height in the outer disc
than in the inner disc.

It is interesting to remark that few clusters are known beyond 14 kpc from the Galactic
centre, and that all of them are older than 500 Myr. At the extreme edge of the disc,
Berkeley 29 and Saurer 1 were once believed to have originated from outside the Milky
Way. Making use of EDR3 data, Gaia Collaboration et al. [93] showed that these clusters
follow circular orbits typical of disc stars. The question of how many clusters are left to
be discovered between 14 and 20 kpc from the Galactic centre remains open. None of the
664 new clusters recently found by Castro-Ginard et al. [73] with EDR3 data are located in
that region.
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Figure 4. Distance above the Galactic plane (Z) against Galactocentric radius (Rgc) for all 2531 clusters
with ages from Cantat-Gaudin et al. [72] and Castro-Ginard et al. [73], colour-coded by age. The
change of scale height between the inner and outer disc is clearly visible. The two distant clusters
Berkeley 29 and Saurer 1 are labelled.

2.1. Discoveries of New Clusters

The task of discovering new objects is somehow different from reidentifying known
clusters, as one is practically looking for needles in a proverbial haystack of astrometric
data. Although some authors have reported serendipitous discoveries of new clusters
located in the same field of view as known objects [61,94–96], the majority of new clusters
were identified through dedicated searches. In this endeavour, the main strength of the
Gaia DR2 data is the high precision of the proper motions of Gaia DR2, allowing us to
easily detect groups of stars that are spatially sparse, as long as they are kinematically
coherent. Modern searches for star clusters largely benefit from the variety of clustering
algorithms developed for data science and made available in libraries, such as the Python
package scikit-learn [97], or density analysis, using tools such as wavelet decompositions
(e.g., [98,99]). Although the majority of data mining is performed directly on the Gaia
observables, some searches have been performed on transformed quantities such as the
action-angle space (e.g., [100,101]). The many available approaches, combing schemes, and
algorithms (density-based, centroid-based, etc.) make it possible to find new objects even
in regions that have already been searched multiple times.

While searching the Galactic halo for faint Milky Way satellites in the Gaia DR1 data,
Koposov et al. [102] discovered two massive clusters in the disc. Castro-Ginard et al. [103]
applied the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algo-
rithm to the Gaia DR1 data, identifying 31 new objects which were confirmed with DR2
data. Cantat-Gaudin et al. [83] investigated the Perseus arm in the direction of the Galactic
anticentre in order to understand whether the apparent lack of known clusters was due to
an incomplete census. Identifying proper motion over-densities with a Gaussian Mixture
Model, they reported 41 new identified clusters around and behind the gap, confirming
that this region is effectively devoid of young clusters. An investigation of the same region
by Castro-Ginard et al. [84] using DBSCAN revealed 53 more objects, again located around
the gap rather than inside.

Other automated searches have reported large numbers of previously unknown ob-
jects. He et al. [104] found 74 clusters with a nearest-neighbours approach. Liu and
Pang [19] applied a friend-of-friend cluster finder method to propose 76 new candidates.
Sim et al. [105] flagged 207 new objects, most of them closer than 1 kpc, through a visual
inspection of proper motion diagrams. Ferreira et al. [106] detected 25 distant objects
with a combination of spatial and photometric filters, inspecting the resulting change of
contrast in proper motion space. Hunt and Reffert [107] applied DBSCAN, HDBSCAN,
and Gaussian Mixture Models (GMMs) to the DR2 data and identified 41 new cluster
candidates. They showed that HDBSCAN with a minimum cluster size of 10 stars is the
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most efficient at recovering known objects in the Gaia data but that it also produces the
largest rate of false positives, which they mitigate by assessing the significance of each
candidate cluster compared to the field density. On the other hand, GMMs are efficient at
identifying members of known clusters but are an impractical approach when performing
blind searches in catalogues as large as Gaia DR2.

The all-sky data-mining searches of Castro-Ginard et al. [108] in DR2 and Castro-
Ginard et al. [73] in EDR3 respectively present 582 and 664 new objects using an implemen-
tation of DBSCAN in the parallel computation environment PyCOMPS on a supercomputer.
Given the increasing volume of astronomical catalogues, it is expected that such Big-Data
approaches to data processing will become increasingly common in this decade.

The sheer pace at which cluster discoveries are published nowadays sometimes makes
it difficult to keep catalogues updated. Clusters presented as newly discovered might have
already been reported, and cross-identification can be made difficult by the fact that not all
authors share the individual list of stars they consider members of a given cluster.

At the extreme low end of what can be considered a star cluster, pairs of comov-
ing stars have been identified in Gaia DR1 [109,110] and DR2 [16]. Although some of
them are not conatal [111], their frequency relative to field stars is still an indication of
the level of clustering and the virial state associated with star formation, as illustrated
in Kamdar et al. [112], who computed the two-point correlation function in spatial and
kinematic space for the DR2 stars with 6D phase space information within 1 kpc of the Sun.

2.2. Globular Clusters

Although globular clusters (GCs) are not the focus of this review, bulge GCs located at
low Galactic latitudes can be detected in surveys of the Milky Way plane with the same
methods as open clusters, as they represent spatial and kinematic over-densities. The inner
Milky Way is a very crowded region in which clusters can be difficult to notice, but GCs
present the double advantage of being very dense and having significantly different veloci-
ties from the field stars. In a systematic search of known clusters, Cantat-Gaudin et al. [61]
remarked that BH 140 and FSR 1758, classified until then as open clusters, are in fact GCs.
Probing the inner disc and the Galactic bulge is, however, difficult at optical wavelengths,
and most recent discoveries of bulge GCs have required the use of near-infrared photometry.
For instance, Ryu and Lee [113] reported two new GCs found with WISE data [114], and
five new GCs were reported by Camargo [115] with a combination of 2MASS [59] and Gaia
data. FSR 1758 was further characterised by Barbá et al. [116] using near-IR data from the
DECaPS survey [117].

The VISTA Variables in the Via Lactea (VVV, [118]) survey produces deep near-IR
photometry which has been used to identify a number of GC candidates. The combination
of this photometry with Gaia proper motion has led to a number of unprecedented new
discoveries since the 19th century [119–131].

3. Young Clusters and Associations

Aggregates of young stars have historically been identified as groups of luminous
O- and B-type stars and are commonly referred to as OB associations. Most of them are
too sparse to be gravitationally bound, and for a long time they were considered to be
the expanded remnants of (once dense) clusters. This picture has, however, recently been
challenged by a number of observational studies made possible by Gaia, which allows
us to reliably identify members of associations down to low masses, trace their spatial
distribution (in three dimensions for those nearby), and investigate their internal kinematics.
We refer the reader to the wonderful and thorough review of Wright [52] for an exhaustive
list of known OB associations and our current knowledge of their properties.

In the context of the present review, we will focus on three main results brought
about by Gaia: (a) OB associations are born extended and highly substructured and only
exhibit slow expansion patterns. They are not the expanded remnants of dense clusters.
(b) Coeval structures span large distances, reflecting the original size and morphology of



Universe 2022, 8, 111 9 of 30

their parent gas filament. (c) There exists a continuous distribution of sizes and densities
between the structures once called associations and those called clusters, making the
distinction arbitrary.

Using Gaia DR2 data, Kuhn et al. [132] and Melnik and Dambis [133] showed that most
associations exhibit small but measurable levels of expansion. Ward and Kruijssen [134]
and Ward et al. [135], however, demonstrated that the proper motions within each associa-
tion also reveal many kinematic substructures and are not compatible with a model where
most of the velocities trace radial expansion. They also showed that in associations that
are spatially very elongated, the velocity distributions are not highly anisotropic, which
means that these elongated morphologies were imprinted at birth. These observations are
in agreement with models predicting that star-forming regions of low density can produce
substructures close to virial equilibrium [136,136] but so far have not been reproduced
by numerical simulations taking into account a full range of physical processes, such as
stellar feedback. We refer the reader to Krumholz et al. [49] (Sections 3.4.2 and 3.5.2) and
Wright [52] (Section 5.3) for discussions of the theoretical knowledge on the origin of such
stellar aggregates.

3.1. Orion

The Orion complex, which still hosts ongoing star formation, is perhaps the most
studied nearby stellar complex. Using a combination of Gaia DR2 and APOGEE data [137],
Kounkel et al. [138] investigated the 6D structure of the region (3D spatial and 3D velocity)
and identified distinct kinematic groups. All of them exhibit further kinematic substruc-
tures, but one in particular (λ Ori) shows strong signs of radial expansion, attributed to a
supernova explosion.

Subsequent DR2 studies of this complex were performed by Kos et al. [139],
Großschedl et al. [140], Jerabkova et al. [141], Zari et al. [142], Swiggum et al. [143], and
Kounkel et al. [144], all taking advantage of the possibility to follow the three-dimensional
structures of individual stars and to map their velocities. The groups have ages rang-
ing from 0 (in the currently star-forming Orion Nebula Cluster) to 21 Myr and are not
distributed in space in age order.

3.2. Scorpius–Centaurus (Sco–Cen OB2)

This region has also been receiving considerable attention for a long time, and our
understanding of its structure has been transformed by Gaia. This structure is the closest
region of recent star formation to us and spans across several constellations in the sky due
to its proximity.

The work of de Zeeuw et al. [145], based on Hipparcos data, identified 500 members
separated in three components (Upper Scorpius, Upper Centaurus–Lupus, and Lower
Centaurus–Crux). Due to Gaia’s ability to observe faint, low-mass members of associations,
recent studies based on DR1 [146–148] and DR2 [149–154] now report up to 15,000 candidate
members. The age of the Upper Scorpius grouping has been a topic of debate in the
literature, with estimates based on high-mass stars suggesting ∼5 Myr, while low-mass
stars suggest a smaller age of 10 Myr. Luhman and Esplin [155] performed an empirical
comparison with β Pictoris (whose age was estimated using the Li depletion boundary
technique) to show Upper Scorpius 10.5 to 12 Myr old and Upper Centaurus–Lupus and
Lower Centaurus–Crux 18 to 21 Myr old.

Žerjal et al. [154] identified eight different kinematic subgroups in the complex. Wright
and Mamajek [148] noted that the high degree of kinematic substructure indicates that “Sco-
Cen was likely born highly substructured, with multiple small-scale star formation events contribut-
ing to the overall OB association, and not as single, monolithic bursts of clustered star formation”.

3.3. Vela–Puppis

This nearby region (300 to 500 pc) is perhaps the stellar complex for which the Gaia
data have had the most transformative effect. The complex hosts a group of young stars
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(∼10 Myr) historically known as Vela OB2. Several dense groups of slightly older stars were
classified as open clusters (in particular NGC 2547, NGC 2451B, and Trumpler 10). Making
use of ground-based spectroscopy, Jeffries et al. [156] have shown that the youngest stars
are in fact distributed in at least two kinematic groups.

Due to Gaia DR2, the number of known members of this historically lesser-studied
structure has increased from ∼200 [145] to over 14,000 [157–163]. Seven main coeval kine-
matic groups have been identified, each of them presenting a complex spatial substructure
(shown in Figure 5). Similarly to the Orion complex, no age gradient is visible in the region.
A subsequent EDR3 study by Wang et al. [164] proposes that the structure can be split
into two main filaments and stretches over 400 pc to the Orion constellation. The coeval
populations are spatially too extended (over 100 pc) to be the result of expansion.
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Figure 5. Distribution of young stars in the Vela–Puppis complex. The main groups known prior to
Gaia are labelled. Adapted from Cantat-Gaudin et al. [161].

The peculiar ring-like structure of the youngest population [160] and the presence
of a slightly older population at the centre of this ring led the authors of [161] to propose
that the feedback from the massive stars of each generation triggered the formation of the
following age group.

3.4. Other Gaia Studies of Young Aggregates

Other historically lesser-studied regions have been investigated with Gaia data. The
Taurus region has been shown to exhibit a filamentary structure with no strong signs of ex-
pansion [165–167]. The quality of the proper motions allows us to split Chameleon 1 [168]
and Cep OB3 [169] into two kinematic subgroups. Santos-Silva et al. [170] identified
28 different groups in the direction of the Canis Major OB1 association. Figure 6, repro-
duced from their study, illustrates the difficulty of cross-matching the increasingly complex
results of clustering algorithms with existing catalogues.
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Figure 6. Stellar groups and clusters identified by Santos-Silva et al. [170] in Cep OB3. The labelled
groupings are those that the authors reported to be listed in various catalogues in the literature.
Reproduced from Santos-Silva et al. [170] with the permission of the authors.

A large number of studies have focused on individual objects which were poorly studied or
sometimes unknown before Gaia, for instance, Cánovas et al. [171] and
Grasser et al. [172] for ρ Oph; Manara et al. [173] and Galli et al. [174] for Lupus;
Damiani et al. [175] for NGC 6530; Zuckerman [176] for the Argus association; Zhong et al. [177] for
the Persei double cluster; Yalyalieva et al. [178] for Sco OB1; Berlanas et al. [179], Berlanas et al. [180],
Quintana and Wright [181], and Orellana et al. [182] for Cyg OB2;
Miret-Roig et al. [183] for IC 4665; Pang et al. [184] for NGC 2232 and LP 2439; Miret-Roig et al. [185]
for β Pictoris; Galli et al. [186] for Chameleon 1 and 2; or Zuckerman et al. [187] and Galli et al. [188]
for χ1 Fornacis.

Some of these young objects are still surrounded by significant amounts of dust and
gas, and several of the aforementioned studies combine Gaia with infrared photometry from
Herschel [189] or WISE [114]. The Gaia parallaxes have been used to characterise the spatial
structure of star-forming regions and molecular clouds by producing 3D maps of the dust
content of the Milky Way disc (e.g., [190–193]). In particular, the 1-pc resolution dust map
of the Solar neighbourhood (∼400 pc) by Leike et al. [194] was used by Zucker et al. [195]
to trace the three-dimensional morphologies and density profiles of nearby complexes and
star-forming regions, including Chameleon, Ophiucus, Orion, Lupus, and Taurus.

Further constraints on the early conditions of star formation can be gained by in-
vestigating the population of dynamically ejected stars (called runaway stars) around
star-forming regions, which can be accomplished by identifying stars with high Gaia
proper motions originating from a particular region. Two mechanisms can expel those
stars at velocities greater than 30 km s−1 (even reaching hundreds of km s−1 in [196]). In
the binary-supernova scenario [197], the binary companion of a massive star that un-
dergoes a supernova explosion can escape the cluster at a velocity close to its orbital
velocity. In younger systems, dynamical ejection [198,199] can cause stars to be accel-
erated in the disruption of single–binary or binary–binary interactions within a dense
cluster. McBride and Kounkel [200] identified 26 runaway stars around the Orion neb-
ula. Schoettler et al. [201] showed that the number of ejected stars identified is consis-
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tent with an initially moderate amount of substructure and a subvirial dynamical state.
Schoettler et al. [201] searched the region around NGC 2264. The number of runaway and
walkaway stars they observed indicates a significant amount of initial substructure and den-
sities reaching 10,000 M� pc−3. Runaway stars have also been identified around NGC 3603,
by Drew et al. [202] and Drew et al. [203], and around Westerlund 2, by Drew et al. [203]
and Zeidler et al. [204] (shown in Figure 7).

Figure 7. High-velocity stars moving away from Westerlund 2, identified from their proper motions
and radial velocities. Reproduced from Zeidler et al. [204] with the permission of the authors and
the AAS.

3.5. Strings, Pearls, and Other Extended Structures

Perhaps one of the most surprising results enabled by Gaia DR2 is that the variety of
complex spatial distributions observed in young stellar aggregates persists at older ages.

Meingast et al. [98] reported a nearby kinematically cold structure spanning 400 pc
and 120◦ across the sky. Dubbed the Pisces–Eridanus stream (or Meingast 1), this massive
group [205] is 120 Myr old [206]. Kounkel and Covey [207] and Kounkel et al. [74] also
reported on a large number of sparse and extended structures and further grouped those
that appear coeval and show continuity in kinematic space into “strings”4 spanning hun-
dreds of parsecs. They show that young groups are more likely to be part of strings than
older ones but that such superstructures can still be identified in stars with ages of several
hundred Myrs.

Increasingly detailed maps of stellar structures in the Solar neighbourhood are being
published [147,208–210]. The variety of spatial arrangements we now observe in stellar
aggregates is reflected in the vocabulary used in recent publications, referring to groups as
streams [98], strings [207], rings [160], snakes [164], and pearls [101], thereby blurring the
traditional distinction made between clusters, associations, and moving groups.

4. Old Clusters
4.1. Dynamical Evolution

Despite being bound by gravity, star clusters slowly dissolve into the Galactic field over
time scales of several hundred million years, due to two-body and three-body interactions
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accelerating stars to velocities higher than the cluster’s escape velocity. When plunged in a
Galactic potential, clusters preferentially lose stars through their Lagrange points L1 and
L2 (e.g., [48]), which leads to the formation of two so-called tidal tails made up of stellar
escapees. This mechanism is theoretically well understood (e.g., [211–214]) but has so far
only been observed in globular clusters, which are denser, more massive, older, and often
further from the Galactic plane than open clusters.

The spatial elongation of the Hyades cluster was first observed Reino et al. [215]
using Gaia DR1 data. The full extent of its tidal tails was revealed by Lodieu et al. [216],
Röser et al. [217], and Meingast and Alves [218] using Gaia DR2. Through complete dynam-
ical modelling, Oh and Evans [219] estimated that the cluster (which is currently 680 Myr
old) will become entirely unbound within the next 30 Myr. Jerabkova et al. [220], using
EDR3 data, traced the Hyades tidal tails over a distance of 800 pc. Another cluster for
which the tidal tails can be observed very clearly is Praesepe (NGC 2632), studied by Röser
and Schilbach [221]. Figure 8 shows the extension of the tails over 200 pc.

Other studies have witnessed the ongoing dynamical disruption of older clusters, for
instance, Yeh et al. [222] in Ruprecht 147, Carrera et al. [223] in M 67, Tang et al. [224]
in Coma Berenices, Sharma et al. [225] in Czernik 3, Zhang et al. [226] in Blanco 1,
Ye et al. [227] in IC 4756, or Bhattacharya et al. [228] in NGC 752. Piatti and Malhan [229]
reported that IC 4665 and Collinder 350, with respective ages of ∼50 Myr and ∼600 Myr,
are unrelated in origin but currently located within each other’s tidal radii. They both
present an elongated morphology, and their relative velocity is only ∼5 km s−1, which
means they could be driving each other’s dynamical disruption.

Figure 8. Members of the Praesepe cluster (NGC 2632) identified by Röser and Schilbach [221],
displayed in Cartesian Galactic coordinates centred on the cluster. The grey, orange, and cyan points
are secure, likely, and possible members of the cluster (respectively). The shaded background is the
tidal tail model from Kharchenko et al. [230]. Credit: Röser and Schilbach [221], A&A, 627 (2019) A4,
reproduced with permission © ESO.

Meingast et al. [231] investigated ten nearby clusters and showed that for most of them,
more than half of the total cluster mass is located beyond the tidal radius. Comparable
figures were obtained by Heyl et al. [232] for four young nearby clusters. With EDR3 data,
Pang et al. [233] studied the 3D morphology of thirteen clusters within 500 pc, concluding
that five of them appear as oblate spheroids, five as prolate spheroids, and three as triaxial
ellipsoids. They also found that the semimajor axes tend to align with the Galactic midplane,
a result confirmed by Hu et al. [234] with 265 clusters and Hu et al. [235] with 1256 clusters
(both results based on DR2 membership lists). Using EDR3, Tarricq et al. [236] characterised
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369 clusters older than 50 Myr and closer than 1.5 kpc, finding tidal tails in 71 of them.
The ability offered by Gaia to reliably identify cluster members and reveal their full spatial
extension opens the possibility to study them as dynamical objects interacting with their
Galactic environment, rather than as isolated and idealised spheres of self-gravitating stars.

Further insight on the dynamical evolution of clusters, and possibly on the conditions
of their formation as well, can be obtained by investigating the rotation of the cluster
and the spin of its stars, especially if the Gaia data are supplemented with ground-based
spectroscopy (see Section 5). For instance, isotropic (random) distributions of spin axes
might indicate that the stars were formed in a turbulent environment, while aligned spin
axes could be evidence that the stars inherited the angular momentum of their parent
molecular cloud. Healy and McCullough [237] reported that no significant signs of an
alignment are present in NGC 2516. Healy et al. [238] reached a similar conclusion for the
Pleiades and Praesepe but found that their data for M 35 correspond to a moderate spin
alignment. Kamann et al. [239] reported that NGC 6791 rotates, with a possible correlation
with the spin axes of its stars, while NGC 6819 shows no sign of rotation.

4.2. Stellar Evolution

The colour–magnitude diagrams of clusters make it possible to identify stars in differ-
ent phases of stellar evolution. One particular type of star which is much harder to identify
outside of clusters ar blue straggler stars (BSSs). Blue straggler stars are bluer and brighter
than the main sequence turnoff traced by the rest of the cluster members. Their origin is
still unclear and could be due to mass transfer between closely interacting binaries or direct
dynamical mergers. The pre-Gaia reference for BSSs in clusters was the catalogue of Ahumada and
Lapasset [240], who pointed out the difficulty to identify them in CMDs contaminated by field stars.
They have been extensively investigated in globular clusters, but studies of open cluster
BSSs were rare until now. The BSS populations in Berkeley 17, NGC 7789, and Collinder 261
were studied by Bhattacharya et al. [241], Nine et al. [242], and Rain et al. [243], respectively.
A subsequent study by Rain et al. [244] investigated BSSs in Trumpler 5, Trumpler 20, and
NGC 2477, showing that they are not spatially more concentrated than high-mass red giant
branch stars. Vaidya et al. [245] studied seven clusters hosting BSSs and found that in two
of them (Berkeley 39 and NGC 6819) the BSSs are not mass-segregated. Their study and a
subsequent paper by the same team investigating eleven clusters with BSSs [246] found that
the radial distribution of BSSs within old open clusters correlates with their dynamical age
in the same way as in young globular clusters [247]. Leiner and Geller [248] investigated
sixteen old open clusters and found that standard population synthesis produces too few
BSSs with respect to observations, suggesting that canonical mass-transfer prescriptions
must be updated using a higher critical mass ratio and considering mechanisms such as
nonconservative mass transfer.

Another aspect of stellar evolution that can be more easily investigated in clusters is
extended main-sequence turnoffs (eMSTOs). This phenomenon, observed mostly in Magel-
lanic Cloud clusters and characterised with Hubble Space Telescope photometry [249–251],
was also shown to be present in Milky Way clusters such as NGC 2099, NGC 2360, or
NGC 2818. The main competing scenarios to explain these observations were different
rotation rates and intrinsic age spreads within clusters. The quality of the Gaia photometry
as well as the ability to securely select cluster members to be observed from the ground has
shown that the redder side of the eMSTO corresponds to fast rotators (v sin i > 150 km s−1),
while bluer stars are slower rotators [252–254].

Star clusters are also relevant to white dwarf (WD) studies. The study of the initial–
final mass relation (IFMR), which links the final mass of a WD to the initial mass of its
progenitor, is also important to stellar evolution, and additional constraints can be obtained
by studying WDs in clusters (e.g., [255–257]). Prišegen et al. [258] and Richer et al. [259]
have built upon the Gaia DR2 WD catalogue of Gentile Fusillo et al. [260]. Interestingly, they
did not identify WD precursors more massive than 6 M�, which is lower than expected
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from observed SN II rates. A possible explanation is that WDs with precursors of higher
mass could be expelled from their clusters by dynamical events.

Several studies have been devoted to finding variable stars in clusters, for instance,
Michalska [261] in NGC 2244, Joshi et al. [262] in NGC 1960, or Murphy et al. [263],
who reported five young Delta Scuti stars in the Pleiades. Breuval et al. [264] and Zhou
and Chen [265] identified 14 and 33 Cepheids, respectively, in open clusters, to which
Medina et al. [266] added 138 candidates. These objects are especially valuable because
they can be used to refine the Milky Way Leavitt law (the period–luminosity relation). Using
the host cluster’s mean parallax rather than the parallax of the Cepheid itself provides
improved distances, as their Gaia astrometric reduction assumes the source does not change
colour (an assumption valid for most stars but not for variables). Cepheids are primary
distance indicators of choice for cosmological studies, and Gaia offers the first opportunity
to calibrate their distances without the use of geometrical parallaxes from the Hubble Space
Telescope [264]. A refined distance scale will help us understand, for instance, how and
why measurements of the Hubble constant in the local universe differ from the ΛCDM
cosmological model (the so-called Hubble tension, e.g., [267–269]).

5. Synergies with Other Instruments
5.1. Spectroscopy and Chemical Abundances

The Gaia spacecraft hosts an on-board spectrograph (RVS, [270]), which was able to
deliver radial velocities for 7.2 million stars in DR2 and will provide more in the upcoming
data releases. The RVS spectra can also be used to estimate chemical abundances, but due
to its short spectral range (λ ∈ [845, 872] nm), medium resolution (R ∼11,000), and small
exposure times (about a minute per transit due to Gaia’s constant spinning motion), the
depth and precision of its measurements cannot rival ground-based observations such as
those of the Gaia-ESO Survey [271,272], LAMOST [273,274], GALAH [275], APOGEE [137],
or the upcoming WEAVE [276] and 4MOST [277].

A recurrent theme in Milky Way astronomy is the question of the metallicity gradient
of the Galactic disc. We know that stars in the inner disc present higher abundances of
all chemical elements than stars in the outskirts, with a negative gradient which seems to
flatten at a distance of 12 kpc from the Galactic centre. The shape of the gradient is the
consequence of various mechanisms, such as the star formation rate at different Galactic
radii, how efficiently the enriched gas mixes in the disc, and how often stars migrate during
their lifetimes. A vast amount of literature exists on the topic, and clusters have long been
tracers of choice for studies of the metallicity gradient because their distances and ages can
be estimated with greater precision than the same for other tracers. This is still true in the
Gaia era.

Donor et al. [34], Carrera et al. [65], Donor et al. [278], and Spina et al. [35] have
exploited the ability to select cluster members and estimate their distance to revise the
Galactic metallicity gradient. At present, two main issues persist. The first is that too
few clusters are known in the outer disc to reliably trace the gradient and its change
of slope. The second issue concerns studies of the age dependence of the gradient. In
cluster studies, the impact of radial migration is made more complicated by the fact that
clusters appear to survive longer when they migrate outward rather than inward. This
idea was proposed by Anders et al. [279] and is also discussed in Cantat-Gaudin et al. [72]
and Spina et al. [35]. The bias introduced by this mechanism is difficult to account for, as
migration and destruction rates are not currently known in detail.

A remarkable result by Spina et al. [35] is that the observed metallicity gradient can
be made significantly tighter by using the guiding radii of the cluster orbits rather than
their current Galactocentric distances. Although unsurprising, this result can only be
obtained through numerical integration of cluster orbits, which requires knowledge of
their 6D phase space (3D position and 3D velocity). Studies of the present-day metallicity
distribution are still hampered by the effect of radial migration, which changes the guiding
radius of particles and cannot be accounted for by orbit integration. Chen and Zhao [280]
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estimated a migration rate of 1.5 kpc Gyr−1, while Netopil et al. [281] (with APOGEE data)
and Zhang et al. [282] (with LAMOST) found a rate of 1 kpc Gyr−1 for clusters younger
than 2 Gyr and 0.5 kpc Gyr−1 for older objects.

Jackson et al. [283] and Jackson et al. [284] combined Gaia data with radial veloci-
ties from the Gaia-ESO Survey to obtain membership probabilities in 63 open clusters.
Carrera et al. [285] also provided radial velocities for clusters that, until then, lacked
those measurements.

Performing high-resolution spectroscopy, Casamiquela et al. [286] provided age–
abundance relations for 25 elements in red clump stars. Such a study is impossible for field
stars, as estimating the age of a field red clump star is very uncertain. The Stellar Population
Astrophysics (SPA) project also investigates the abundance patterns of clusters, using Gaia
as the basis of their target selection and observing recently discovered clusters [287–291].

The large number of newly reported objects and the ability to identify member stars
even in their sparse outskirts is valuable to the upcoming spectroscopic surveys WEAVE
and 4MOST. This new generation of multiobject spectrographs is able to observe hundreds
of targets in a single pointing and to provide chemical and kinematic characterisation of
the clusters and extended structures unravelled by Gaia.

5.2. Light Curves and Gyrochronology

A by-product of the high-precision photometry of exoplanet-hunting missions such as
CoRoT [292], Kepler [293], K2 [294], the Transiting Exoplanet Survey Satellite (TESS, [295]),
or the upcoming PLATO [296] are measurements of surface rotation periods for large
numbers of stars. The study of how stellar rotation spins down with time has led to
the emergence of gyrochronology, which allows us to use rotation period as a proxy for
age. A great advantage of colour–period diagrams over CMDs is that they provide ages
for main-sequence stars, while CMD techniques, such as isochrone fitting, rely on the
presence of stars in key evolutionary phases or on well-defined MSTOs. This technique
was successfully used well before Gaia [297–300], but combined with secure membership
lists established with Gaia data, it can be used to estimate ages for sparse clusters, especially
if a sufficient number of well-characterised clusters can be used as empirical calibrators.

A spectacular application of the method by Curtis et al. [206] shows that the Pisces–
Eridanus stream, once suggested to be as old as 1 Gyr, is in fact coeval with the Pleiades
(120 Myr). The old estimate was driven by one bright red star with uncertain membership
status. The colour–rotation diagram established from TESS data includes dozens of stars
which unmistakably indicate that the stream is much younger than 1 Gyr and coeval with
the Pleiades (Figure 9).

Bouma et al. [301] provided TESS light curves for stars that Gaia data have shown to
be probable members of clusters. Recent publications combining Gaia and rotation periods
include Douglas et al. [302] for the Hyades and Pleiades, Curtis et al. [303] for NGC 6811,
Gruner and Barnes [304] and Curtis et al. [305] for Ruprecht 147, and Fritzewski et al. [306]
and Bouma et al. [307] for NGC 2516. Godoy-Rivera et al. [308] also showed that rotation
periods obtained from ground-based observations can be as constraining as space-based
observations if the Gaia astrometry is used to clean the sample from nonmembers.
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Figure 9. Relation between colour (effective temperature) and rotation period for stars in three
well-studied clusters and for the Pisces–Eridanus structure. The Psc–Eri structure appears indistin-
guishable from the Pleiades, indicating that they are of very similar age. Reproduced from [206] with
the permission of the authors and the AAS.

6. Tools and Methods

Given the large amount of data and the possibility to characterise large numbers
of clusters at the same time, recent publications increasingly rely on automated proce-
dures. A key aspect in many cluster studies is to determine which stars are members
of a particular object. The unsupervised membership assignment code UPMASK [58]
and its adaptation to astrometric data [56] have been used in a number of publications
and were recently published as a Python package by Pera et al. [309]. The UPMASK
approach was also adapted by Peña Ramírez et al. [310] to use both the Gaia astrometry
and the VVV photometry as input. The code Clusterix [311] is an unsupervised proce-
dure as well, comparing the proper motion distribution of the cluster to that of the field
stars to identify cluster members. Yuan et al. [312] developed the unsupervised scheme
StarGO, originally to reveal substructures in the Milky Way halo (see also [313]), based
on self-organising maps. StarGO has since been successfully applied to a number of star
clusters (e.g., [163,184,224]). Agarwal et al. [314] developed the ML-MOC tool, which also
performs unsupervised membership assignment from astrometric data. Jaehnig et al. [95]
applied the extreme deconvolution method of Bovy et al. [315] to determine members in
431 clusters. Gagné et al. [316] introduced the BANYAN Σ algorithm to identify members
of young nearby stellar associations and clusters. Their code needs star coordinates and
proper motions but can also integrate parallax and radial velocity information as well
as photometric data. The task of identifying members of a given structure can also be
performed with supervised learning if a preliminary list of secure members is available, as
conducted, for instance, by Ratzenböck et al. [205] and Grasser et al. [172] using One-Class
Support Vector Machines.

The ASteCA code [69] performs membership assignments but also estimates clus-
ter parameters for stellar isochrones (metallicity, age, extinction, and distance) and re-
turns uncertainties on those values. The Bayesian code BASE-9 von Hippel et al. [60]
also performs automated cluster parameter estimates. Without fitting theoretical models,
Cantat-Gaudin et al. [72] used machine learning to estimate cluster parameters for two
thousand objects. Monteiro et al. [317] presented an isochrone fitting procedure that can
also characterise thousands of clusters. Overall, papers presenting a basic characterisation
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of a single cluster (age, distance, morphology, etc.) are becoming increasingly rare, and
recent publications either provide an analysis of a large sample of clusters or present deep
studies of selected clusters. For the particular task of estimating distances to clusters,
Olivares et al. [318] published the code Kalkayotl, which employs a Bayesian hierarchical
model and takes into account the known small-scale correlations in the Gaia parallaxes
(e.g., [319]).

The task of automating cluster studies would be very difficult without the tools
allowing us to script queries to the Gaia archive. As a part of the Astropy project [320], the
Astroquery tool Ginsburg et al. [321] now includes the astroquery.gaia package5. Similar
queries can be made with the pygacs package6. These projects are extremely valuable to
the community, as they provide efficient libraries for data query and analysis and allow
reproducible science. Standardised methods enable more direct comparisons between
studies. However, a diversity of methods is also desirable, as it allows for robust cross-
checking of results, especially when they were obtained with black-box systems such as
machine-learning procedures. Developing and maintaining a variety of methodological
tools is a sign of a scientifically healthy community.

The high dimensionality of the input data can also make it difficult to present re-
sults in the traditional format of a two-column journal article. An increasing number
of publications include animations as electronic material (e.g., the distribution of young
Vela stars in [160])7 or interactive visualisation, for instance, the material of Kounkel and
Covey [207]8 or Zucker et al. [195]9, or the 3D, animated, interactive model of Orion by
Swiggum et al. [143]10.

7. Conclusions and Future Prospects

The Gaia data (and especially DR2) have unlocked a deluge of new results related to
many astronomical topics and transformed our ability to study star clusters and stellar
structures in the Milky Way. The cluster census has been vastly improved, and dubious
objects have been dusted off in the literature. Automated and homogeneous characteri-
sations of hundreds or even thousands of clusters are increasingly common. Maps of the
Galactic disc reveal groupings on a wide range of scales and densities, forcing us to revise
the traditional distinctions between clusters and associations and providing important
observational constraints on star formation. The nature of the Gaia data allows us to wit-
ness a broad variety of physical phenomena, from the internal kinematics of clusters and
associations to their overall dispersion in the Milky Way disc. The Gaia catalogue provides
a reliable target selection for follow-up studies, in particular spectroscopic observations,
and will represent an anchor for many upcoming surveys in the decades to come.

Galactic astronomy is no longer a data-starved science, and this trend will continue in
the upcoming decade. For instance, the ground-based Pan-STARRS DR1 catalogue [322]
features 3 billion sources with photometry, a number to be increased in the upcoming Pan-
STARRS DR2. The Legacy Survey of Space and Time [323], expected to begin operations in
2023, will provide astrometry and multiband photometry for 20 billion stars and a similar
number of galaxies. A proposed near-infrared space-based astrometric mission [324–326]
would be able to observe five times more sources than Gaia. Many lessons learned from
handling Gaia data will therefore apply to future astronomical surveys.

The Gaia catalogue itself is still growing and improving. The DR3 data are scheduled to
arrive in 2022 and will notably increase the number of stars with measured radial velocities
from ∼7 to ∼20 million. Gaia DR4 will be based on 66 months of observations (compared
to 34 in DR3, 22 in DR2, and 14 in DR1), thus providing parallaxes more precise than DR2
by a factor of about two and proper motions more precise by a factor of about five. In
addition to this improved astrometry, DR4 will also contain the time series of astrometric,
photometric, spectroscopic, and spectrophotometric measurements for every source. The
scientific potential of such a gigantic dataset is immense, and the Gaia revolution is far
from over.



Universe 2022, 8, 111 19 of 30

Funding: This work is a result from the GaiaUnlimited project which has received funding from
the European Union’s Horizon 2020 research and innovation program under grant agreement
No 101004110.

Acknowledgments: I thank the anonymous referees for their suggestions and comments.

Conflicts of Interest: The author declares no conflicts of interest.

Notes
1 https://gea.esac.esa.int/archive/ (accessed on 15 December 2021).
2 See the introduction of Cantat-Gaudin and Anders [55] for a historical overview of cluster catalogues.
3 The question of whether the Milky Way spiral perturbations are global and stationary Lin and Shu [77] or local and transient

Toomre [78] has been a matter of debate for decades (see reviews by [79–82]).
4 Some of the reported structures are so vast in coordinate and kinematic space that automated matches with other cluster

catalogues fail. A number of clusters mentioned in Section 2.1 might be rediscoveries of groupings first reported by Kounkel and
Covey [207] and Kounkel et al. [74] under the denomination Theia.

5 https://astroquery.readthedocs.io/en/latest/gaia/gaia.html (accessed on 15 December 2021).
6 https://pypi.org/project/pygacs/ (accessed on 15 December 2021).
7 https://www.aanda.org/articles/aa/olm/2019/01/aa34003-18/aa34003-18.html (accessed on 15 December 2021).
8 http://mkounkel.com/mw3d/ (accessed on 15 December 2021).
9 https://faun.rc.fas.harvard.edu/czucker/Paper_Figures/3D_Cloud_Topologies/gallery.html (accessed on 15 December 2021).

10 https://faun.rc.fas.harvard.edu/czucker/Paper_Figures/orion_movie.html (accessed on 15 December 2021).
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