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We describe an activemillimeter-wave holographic imaging system that uses compressivemeasurements
for three-dimensional (3D) tomographic object estimation. Our system records a two-dimensional (2D)
digitized Gabor hologram by translating a single pixel incoherent receiver. Two approaches for compres-
sive measurement are undertaken: nonlinear inversion of a 2D Gabor hologram for 3D object estimation
and nonlinear inversion of a randomly subsampled Gabor hologram for 3D object estimation. The object
estimation algorithmminimizes a convex quadratic problem using total variation (TV) regularization for
3D object estimation. We compare object reconstructions using linear backpropagation and TV minimi-
zation, and we present simulated and experimental reconstructions from both compressivemeasurement
strategies. In contrast with backpropagation, which estimates the 3D electromagnetic field, TV minimi-
zation estimates the 3D object that produces the field. Despite undersampling, range resolution is
consistent with the extent of the 3D object band volume. © 2010 Optical Society of America

OCIS codes: 090.1995, 100.3200, 100.6950, 110.1758, 110.3010, 110.3200.

1. Introduction

Various methods exist for concealed weapons detec-
tion [1]. These methods aim to penetrate common
obstructions such as clothing or plastics. X-ray [2]
and millimeter-wave (MMW) [3] imaging systems
are technologies capable of penetrating these bar-
riers for imaging suicide bomb vests or weapons com-
posed of metals, nonmetals, or plastics. While x-ray
imaging capabilities are highly effective, questions
about health risks impair the feasibility of such sys-
tems for real-time imaging. MMW for low-power (on
the order of mW) imaging systems do not present a
health hazard and therefore enable real-time
imaging of targets with high contrast and high
resolution.

Several studies have explored both active and pas-
sive MMW imagers for concealed weapons detection
[4,5] where the system limitation is the detector ar-
ray cost. Some systems include portal, or handheld
devices [6] operating in close range to the target.
Other systems are holographic [7,8]. These MMW fo-
cal and interferometric systems map object informa-
tion onto a two-dimensional (2D) or a linear array
that is typically scanned for image formation. These
scanning systems [9–11] are plagued by their asso-
ciated data acquisition times. For these systems,
there is a trade-off between scan time and measure-
ment signal-to-noise ratio (SNR). Therefore, rapid
scanning of concealed weapons is challenging for cur-
rent MMW systems.

For stand-off explosive detection, rapid scanning of
the target is a necessity. To overcome the bottleneck
associated with current MMW scanning systems, we
consider compressive sensing (CS). Recent studies in
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CS reveal that an N-point image can be restored
from M measurements, where M ≪ N [5,12–14].
Chan et al. [13] used a focal system to randomly sam-
ple spatial frequencies in the Fourier plane for 2D
object estimation at 100 GHz. We are further moti-
vated to investigate CS for MMW imaging based on
similar work in 633 nm compressive holography [15].
Holography, which measures a limited set of spatial
frequencies in the Fourier domain, is a compressive
encoder, because it compresses three-dimensional
(3D) spatial information into a single interferometric
planar field. Since the entire extent of an object’s 3D
spatial frequency band volume can not be captured in
a single exposure, multiangle illumination or object
rotation is typically used to improve 3D object esti-
mation. The results in [15] suggest that 3D tomo-
graphic estimation can be achieved from a 2D
hologram recording.

This paper extends compressive holography to
millimeter wavelengths. The subject matter in this
paper differs from compressive holography at visible
wavelengths, because sparse holographic sampling is
implemented to minimize the data acquisition scan
cost associated with imaging at millimeter wave-
lengths. Also, the MMW holography system operates
in a completely different wavelength region with cor-
responding differences in optics and detectors, so it
required a completely new system design compared
to work at visible wavelengths. Further, in this pa-
per, we holographically sample a subset of spatial fre-
quencies for 3D object estimation. Also, we randomly
subsample a 2D hologram to further analyze the im-
pact of fewer measurements on 3D object estimation.
Our holographic technique is similar to [8], as we are
not band limited by a lens aperture and phase infor-
mation is preserved. We differ in our nonlinear inver-
sion approach for 3D object estimation. Our method
optimizes a convex quadratic problem using total
variation (TV) regularization. Unlike classical recon-
struction with backpropagation, we demonstrate
that undiffracted fields, overlaid in the frequency
domain of a Gabor hologram, can be separated by
imposing a TV sparsity constraint.

Although other contributions in the literature em-
body a mathematical framework similar to compres-
sive holography [16–18], there exists a fundamental
difference in philosophy. Compressive holography
exploits encoding and undersampling for 3D object
estimation, whereas techniques in diffraction tomo-
graphy are designed to overcome sampling limita-
tions imposed by the data collection process. Also,
recent work by Denis et al. [19] presents a similar
twin-image suppression method; however, a spar-
sity-enforcing prior in a Bayesian framework com-
bined with l1 regularization is used for object
estimation. Our work represents the confluence of
MMW digitized holographic measurement and TV
minimization for 3D object estimation with minimal
error. We adapted the algorithm framework of [15]
for sparse holographic sampling and data inversion.

This paper is organized as follows. In Section 2, we
describe the theoretical background for diffraction to-
mography and holographic measurement. Hologram
recording geometry and resolution metrics are also
discussed in this section. Section 3 summarizes our
TVminimization algorithmused for 3Dobject estima-
tion from a 2Ddigitized composite hologram. Also, we
present simulated data of randomly subsampled 2D
holograms to analyze the impact of fewer measure-
ments on 3D object estimation. Section 4 describes
the experimental platform. Section 5 presents TV
minimization and backpropagation reconstructions.
Finally, in Section 6, we provide a summary of the
results and concluding remarks.

2. Theory

Our ultimate goal is to make the smallest number of
measurements about a 3D (x0; y0; z0) object f oðr

0Þ,
where r0 is a 3D spatial vector, such that it is possible
to reconstruct f oðr

0Þ with minimal error. Rather than
attempting to form an image of f oðr

0Þ point by point,
our approach is based on making measurements in
the far field where spatial frequencies (ux and uy)
are measured. To do this, we record a hologram. A ho-
logram gðrhÞ is a record of the interference between
two wave fields, a reference field ErðrÞ and an object
scattered field EoðrÞ. To record a hologram, a square-
law detector in the hologram plane rh ¼ ðx; y; zhÞmea-
sures a time-averaged intensity of the interference:

gðrhÞ ¼ ∣ErðrhÞ þ EoðrhÞ∣
2 ¼ ∣ErðrhÞ∣

2 þ ∣EoðrhÞ∣
2

þ 2∣ErðrhÞEoðrhÞ∣ cos½θrðrhÞ − θoðrhÞ�; ð1Þ

where θrðrhÞ represents the phase associated with the
propagated referencewave field and θoðrhÞ represents
the phase associatedwith the propagated object wave
field. We assume our object field is generated by illu-
minating a 3D object f oðr

0Þ by an on-axis plane wave
expð−2πiuo · r), where uo ¼ ðuxo

;uyo
;uzo

Þ. The 3D ob-
ject f oðr

0Þ represents an object scattering amplitude
where after reference planewave illumination, a frac-
tion of the energy is either transmitted or reflected at
a point in 3D space. We do not assume the object in-
duces any phase change in an incident wave field
through polarization or birefringence.

If the object is transmissive and located at zh dis-
tance away from the hologram plane, under the Born
approximation the scattered field is

EoðrhÞ ¼
−π

λ2

Z

Erðr
0Þf oðr

0Þhðrh − r0Þdr0; ð2Þ

where hðrh − r0Þ is the shift-invariant impulse
response and Erðr

0Þ is the reference plane wave.
For scalar waves in homogeneous space, the impulse
response is

hðrh − r0Þ ¼
expð2πi∣rh − r0∣=λÞ

∣rh − r0∣
: ð3Þ
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We can reformulate the convolution integral in Eq.
(2) using the Fourier convolution theorem. The Four-
ier transform of the scattered field along the trans-
verse axes in the recording plane is

Ê0ðux;uy; zhÞ ¼
1

iπλ
f̂ o

�

ux − uxo
;uy − uyo

;

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

λ2
− u2

x − u2
x

r

− uz0

�

G2Dðux;uy; zÞ; ð4Þ

where

G2Dðux;uy; zÞ ¼

exp

�

2πiz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

λ2
− u2

x − u2
y

q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

λ2
− u2

x − u2
y

q ; ð5Þ

f̂ o is the 3D Fourier-transform of the object density,
and the exponential term represents a propagation
transfer function. Under the small angle approxi-
mation, uz ¼ 1=λ and ux, uy ≤ 1=λ. The frequency-
domain scattered field is then approximated by

Êoðux;uy; zÞ ¼
1

iπλ
f̂ o

�

ux − uxo
;uy − uyo

;−
λ

2
ðu2

x þ u2
yÞ

�

× exp

�

2πiz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

λ2
− u2

x − u2
y

r

�

: ð6Þ

As discussed in Section 3, digital processing of the
Gabor hologram aims to isolate the scattered field,
EoðrhÞ, signal term from background and conjugate
terms. If we assume the recorded hologrammeasures
EoðrhÞ directly and that ErðrhÞ ¼ 1, Eq. (6) demon-
strates that a 2D hologram captures a 3D parabolic
slice of the object’s band volume. Figure 1 describes
tomographic sampling of a 3D band volume in a
Gabor geometry. Typically, the illumination (or the
object) must be rotated to fully sample the 3D band
volume. To increase longitudinal resolution, the sys-
tem may alternatively be scanned in frequency. In-
stead of scanning in the frequency domain on the
surface of a sphere, this approach allows one to scan

a spherical shell with radii corresponding to a wave-
length range. In [15], we showed that one may apply
CS theory to estimate the 3D distribution of f ðr0Þ
from a single holographic image without scanning
in frequency or rotating the object. Instead, we
exploit sparsity. This work extends 3D tomographic
estimation from 2D holographic measurements to
millimeter wavelengths.

A. Hologram Recording Geometry

The geometry used to record the hologram impacts
the postdetection signal processing and the ability
to reconstruct the image. In an off-axis geometry
[20], the signal and its conjugate are separated from
each other in frequency space and from the on-axis
undiffracted energy [see Fig. 2(a)].

Note that the maximum spatial frequency umax

that the detector can record is limited by the sam-
pling pitch (dx) of the detector:

umax ¼
1

2dx
: ð7Þ

With our detector, the pixel pitch is set by the WR-08
waveguide size (2:32 mm × 1:08 mm). The maximum
spatial frequency recorded in the vertical direction is
0:463 mm−1, and in the horizontal direction it
is 0:216 mm−1.

Figure 2(a) shows that the information content of
the object and the pixel pitch of the detector impose
minimum andmaximum limits on the angle θcz of the
off-axis reference. For simplicity, we assume the re-
ference beam has no y component. To separate the
object from its squared magnitude without ambigu-
ity due to detector aliasing or from confusion with un-
diffracted terms, the angle of the off-axis beam must
satisfy

θcmin ≤ θcz ≤ θcmax; ð8Þ

where

θcmax ¼ sin−1

��

λ

2

��

1

dx
− uB

��

; ð9Þ

Fig. 1. Fourier-transform domain sampling of the object band volume in a transmission geometry. (a) 2D slice of a 3D sphere where the
dotted curve represents themeasurement from single plane wave illumination. (b) Rectilinear pattern represents wave vectors sampled by
the hologram due to a finite detector plane sampling. (c) Wave normal sphere cross section for spatial and axial resolution analysis.
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θcmin ¼ sin−1

�

3
λuB

2

�

; ð10Þ

and uB is the spatial frequency bandwidth of the
object.

Use of an off-axis reference beam simplifies our re-
construction because digital signal processing allows
one to yield an estimate of the object field

~goffaxis ¼ ErðrhÞ
�EoðrhÞ: ð11Þ

In an on-axis geometry, it is more difficult to separate
the object field from the undiffracted, zero-order
fields and from its conjugate. The overlap of these
three fields degrades resolution and contrast in
the object reconstruction. One can apply DC suppres-
sion techniques to enhance object reconstructions
[21–23], and measurements of the energy in the re-
ference beam alone can be made and subtracted from
the hologram:

~gonaxis ¼ ∣EoðrhÞ∣
2 þ E�

rðrhÞEoðrhÞ þ ErðrhÞE
�
oðrhÞ:

ð12Þ

In this paper, we record a hologram in an on-axis geo-
metry because the need for an increased bandwidth

in the off-axis case outweighs the complexity for
on-axis object isolation.

B. Hologram Plane Sampling and Resolution Metrics

In our implementation, the field gðrhÞ is sampled and
digitized into a 2D matrix by translating a point de-
tector in x and y at the hologram plane zh. An ana-
lytical discussion of the discrete model is detailed
in [15] and addressed in Section 3.

Holographic measurements captured digitally, by
a scanning detector, are related to measurements
made in the spatial frequency domain. The total
number of detector measurements N is

N ¼ nxny; ð13Þ

where nx and ny represent the number of measure-
ments along each spatial dimension in x and y. Given
the detector sampling pitch (dx), the number of
measurements (nx) in the hologram plane along
the horizontal dimension is given by

nx ¼
Wx

dx
; ð14Þ

where

Fig. 2. (Color online) (a) Spectrum for an off-axis hologram recording depicting an inherent increase in bandwidth for adequate object
separation from undiffracted terms. (b) Spectrum for a Gabor hologram recording, depicting the overlay of undiffracted, object, and con-
jugate terms. (c) Transverse slices from linear inverse propagation results at various z planes.
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Wx ¼
λz

Δxo
; ð15Þ

z is the distance between the object and the detector,
Δxo is the one-dimensional spatial resolution with
which we wish to image the object, and Wx refers
to the spatial extent of a diffracted object (Δxo).
The inverse scaling relationship arises from the
conjugate relationship between the object and the
hologram [24].

Detector sampling over a finite field size affects
sampling resolution in the frequency domain. The
sampling resolution, Δu, in the frequency domain
along both the horizontal and vertical dimensions
(ux and uy), assuming nx ¼ ny, is determined by the
sampling field size at the detector plane, Δu ¼
1=ð2nxdxÞ. The maximum spatial frequency sampled
by the detector is equal to umax in Eq. (7).

Resolution metrics, lateral (Δx) and axial (Δz), for
the Gabor geometry are determined by the illumina-
tion wavelength and the system numerical aperture
(NA). Based on the Gabor recording geometry, the
NA is defined by

n sin θu ¼
Wx

2z
¼

λ

2Δxo
; ð16Þ

where n is the refractive index of air and θu is the
half-angle subtended by the object to half the spatial
extent of the hologram plane (Wx=2). Recall that the
spatial resolution is related to the inverse scaling re-
lationship in the frequency domain. The half-angle,
θu, is also defined as the angular bandwidth sam-
pling on the wave normal sphere due to system
NA. Thus, the NA can also be described in the spatial
frequency domain. The wave vector geometry for
hologram recording is shown in Figs. 1(b) and 1(c).
Considering the geometry in Fig. 1(c), we write

sinðθuÞ ¼
Δux

∣u∣
; ð17Þ

where under the small angle approximation

∣u∣θu ¼ Δux: ð18Þ

If we assume that NA ≈ θu and ∣u∣ ≈ 1=λ, the spatial
resolution is equal to

Δx ¼
λ

NA
: ð19Þ

Similarly, from the wave vector geometry, the spatial
frequency resolution along zðΔuzÞ is determined by

Δuz ¼ Δuz;max −Δuz;min ¼ ∣u∣ð1 − cosðθuÞÞ ¼ ∣u∣θ2u:

ð20Þ

Under the small angle approximation, the axial
resolution is

Δz ¼
λ

NA2
: ð21Þ

After substituting the expression for NA from Eq.
(16) into Eqs. (19) and (21), we see that lateral reso-
lution is also defined as Δx ≈ 2Δxo and range resolu-
tion is defined as Δz ≈ 4Δx2o=λ. Defining the lateral
and axial resolution using NA describes resolution
in terms of system geometry (a function of object dis-
tance), whereas the second metric is modeled as a
function of feature size, Δx0. The maximum of the
two measures for lateral and axial resolution pro-
vides a baseline metric for resolution. We use these
metrics for evaluating resolution from TV minimiza-
tion object reconstructions in Section 5.

This section provided motivation for implementing
a Gabor geometry instead of an off-axis approach.
The impact of detector sampling at the hologram
plane was addressed and a relation between object
sampling and frequency domain sampling was dis-
cussed. Finally, theoretical resolution metrics were
derived.

3. Reconstruction Methods and Simulations

In this section, we discuss two reconstruction meth-
ods: 3D object estimation from a Gabor hologram and
3D object estimation from randomly subsampled
Gabor holographic measurements. Subsampling is
implemented to further analyze the impact of com-
pressive measurement on 3D object estimation.

The continuous model for Gabor holography, mod-
eled under the first Born approximation, is shown in
Eq. (2). The detector plane is located at the zh ¼ 0

plane in the rðx; y; zhÞ coordinate system. The object
data, f , are located in the r0ðx0; y0; z0Þ coordinate sys-
tem. The recorded hologram inEq. (1) can be reformu-
lated ifwe assume thatErðrhÞ ¼ 1 and if operations on
f oðr

0Þ in the convolution integral in Eq. (2) are ex-
pressed using an operator,H. After squared-reference
field subtraction, we can represent the recorded holo-
gram in algebraic notation using

g ¼ ∣Hf ∣2 þHf þH�f þ n; ð22Þ

where g is anN × 1 vectorized detectormeasurement,
H is a 2D discrete systemmatrix, f is anM × 1 vector-
ized object representation [f oðr

0Þ], and n is the noise
associatedwith themeasurement. Ifwe ignore the ob-
ject-squared-field contribution in Eq. (22), we can es-
tablish a linear relationship between the detector
measurement and object field distribution, g ¼ Hf .

Once we record a digital hologram, our goal is to
estimate the object distribution, f . From [15], we
know that the digitized holographic measurement is

gn1;n2
¼
X

l

−1
2D

×

�

f̂m1;m2;lexp

�

ılΔz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

λ2
−m2

1
Δ2

u−m
2

2
Δ2

u

r

��

n1;n2

;ð23Þ
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where −1
2D

represents the 2D inverse fast Fourier
transform (FFT) operation, f̂ represents the FFT of
the object distribution, and the exponential term en-
compasses the transfer propagation function. Indices
n1 and n2 are discrete indices for each spatial dimen-
sion (x and y), l is the discrete index for z, m1 and m2

are the Fourier-transformed indices,Δz is the resolu-
tion cell along the axial plane, andΔu is the sampling
resolution in the Fourier domain due to discretiza-
tion by the detector plane. Using Eq. (23), we can
model H in Eq. (22) as

H ¼ −1
2Dℚ2D: ð24Þ

The adjoint system model of Eq. (23) is

f ¼ H†g; ð25Þ

where H† is the adjoint operator defined as

H† ¼ 2Dℚ
†−1
2D: ð26Þ

Note that † represents the Hermitian transpose
operation. The forward system matrix, H, models
scattering/object field propagation via two FFTs
and a quadratic phase term [24]. The FFT and in-
verse FFT operators are diagonal matrices, and
the exponential term in Eq. (23) is expressed as a
propagation quadratic phase matrix, ℚ ¼ Ql;m1×m2

,
where

Ql¼1;m1;m2
¼ exp

�

ılΔz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

λ2
−m2

1
Δ2

u −m2

2
Δ2

u

r

�

: ð27Þ

We use the adjoint model in Eq. (25) for linear back-
propagation object estimation.

Inverse propagation, otherwise known as back-
propagation, is a linear method for 3D object field
reconstruction. Figure 2(c) shows digitally backpro-
pagated object fields at different z planes. This result
demonstrates the challenges associated with linear
inverse propagation, as the undiffracted and out-
of-focus field contributions make object range detec-
tion challenging. Linear backpropagation provides
an estimate for the 3D field and not the 3D object
density. Minimizing the contribution of the undif-
fracted field or twin-image problem has been ex-
plored [19,25]. Conventional methods to increase
range resolution require either multiple wavelengths
or multiple projections [26,27]. By exploiting results
from CS, we show it is possible to isolate objects
along an axial plane where range resolution is con-
sistent with the object’s spatial extent using only a
single 2D recording.

Recently, the TwIST 2D TV minimization algo-
rithm was adapted for 3D tomographic estimation
from a single digitized 2D hologram [15,28]. Forward
and adjoint operators in Eq. (24) and (25) are incorpo-
rated into the TwIST algorithm. Analytical rigor as-
sociated with the algorithm has previously been

formulated [15]. The algorithm minimizes a convex
quadratic problemwith the addition of a sparsity con-
straint. The sparsity constraint is enforced on the gra-
dient [see Eq. (30)] of the object estimate, f . Applying
the constraint enables improved 3D tomographic es-
timation from a 2D measurement [29] because the
twin-image problem associated with the inverse pro-
pagation method is reduced. Even though we neglect
the effect of the nonlinear term ∣H½f �∣2 in the system
model shown in Eq. (22), a new term, e, is added to
model measurement error. The final measurement
model becomes

g ¼ 2ℜfH½f �g þ nþ e: ð28Þ

In this paper, we minimize a convex quadratic
function using TV regularization denoted by

f � ¼ argmin
f

∥g −Hf ∥2
2
þ τΦTVðf Þ; ð29Þ

where f � is the 3D object estimate and τ is the regu-
larization constant. The ΦTV function is defined as

ΦTV ¼
X

l

X

i;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðf iþ1;j;l − f i;j;lÞ
2 þ ðf i;jþ1;l − f i;j;lÞ

2

q

;

ð30Þ

where l represents the discrete index in z and i and
j correspond to discrete indices for a 2D ðx; yÞ spatial
extent. The ΦTV function preserves edges while
imposing smoothness on a solution. The regulariza-
tion constant, τ, determines the convergence and im-
age quality of the estimate. The TV-regularization
algorithm in Eq. (29) is considered as a special case
in a Bayesian framework because TV regularization
is similar to determining a maximum a posteriori
estimate with a TV-prior distribution. Again, TV
minimization reconstructions enable twin-image
reduction and squared-field reduction otherwise do-
minant in linear inverse propagation. Figure 3 shows
TVminimization object reconstructions.Undiffracted
energy contributions are localized at the z ¼ 0 plane,
while twin-image contributions are weakly scattered
to the object field planes and primarily located at the
conjugate reconstructed object planes [i.e., z ≤ 0 in
Fig. 3]. Compared to the inverse propagation results
in Fig. 3, Fig. 3 demonstrates twin-image suppression
and squared-field suppression because TV-imposed
sparsity enables estimation of the object density
and not the field distribution.

In this paper, we also analyze the impact of sub-
sampled holographic measurements on object recon-
struction. We apply a binary-valued, pseudorandom
transmittance function, tðx; yÞ, to reduce the number
of measurements at the hologram plane. The trans-
mittance function is defined as

tðx; yÞ ¼
X

p;q

tp;qrect

�

x − pΔT

ΔT

;
y − qΔT

ΔT

�

: ð31Þ
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The pseudorandom measurement matrix contains
transmissive (1) and opaque (0) openings. We assume
that the sampling pitch, ΔT , of the matrix is equal to
the receiver sampling pitch. Similarly, indices for the
discrete representation of the measurement matrix
and detector matrix are equivalent (p ¼ n1 and
q ¼ n2). The sparse detector measurement, �g, is
defined as

�gn1;n2
¼ tn1;n2

gn1;n2
: ð32Þ

If the discrete transmittance function, tn1;n2
, for

the aperture is represented as a diagonal matrix,
W, then the new forward and adjoint models are
represented as

g ¼ WF−1
2DQF2Df ð33Þ

and

f ¼ F†
2DQ

†½F−1
2D�

†W†g: ð34Þ

The TV minimization algorithm is adapted for
hologram measurement subsampling using the
aforementioned forward and adjoint models. Sparse
detector measurements are motivated by an existing
need to reduce scan times in MMW imaging applica-
tions. Simulations incorporating the above system
model are explored in the next section to study the
impact of a subsampled 2D holographic measure-
ment on 3D tomographic reconstruction. The goal
is to show that a reduction in the number of measure-
ments can be achieved without a huge compromise in
3D object reconstruction.

A. Simulation Results

In simulation, we demonstrate 3D object estimation
from 2D digitized holographic measurements, as well
as quantify the impact of sparseholographicmeasure-
ment on 3D object estimation. In this section, our si-
mulated detector measurements are constructed
using Eq. (22). Our sparse measurement model is
basedonEq. (33)and incorporated intoEq. (22).Recall
that for sparse measurement, we apply a pseudoran-
dom transmittance function to holographic measure-
ments. Examples of the samplingmatrices under test
are shown in Fig. 4.We evaluate reconstructions from
simulated detector measurements corrupted and un-
corrupted by additive white Gaussian noise (AWGN).
Noise is added to simulated detector measurements
using theMATLAB “awgn” command,where themea-
surement SNR is specified. Also, we analyze the im-
pact of 0% to 54.68% 2D measurement reduction on
3D object estimation. For 3D object estimation, we

compare two inversion methods: a linear backpropa-
gation method and nonlinear TV minimization. We
quantify reconstruction efficacy using peak signal-
to-noise ratio (PSNR) . We define PSNR as

PSNRðdBÞ¼
def

20log10

×

�

MAXA

1

nxnyd

Pnx

i¼1

Pny

j¼1

P

d
l¼1

½Ai;j;l−Bi;j;l�
2

�

; ð35Þ

whereA represents the synthetic object,B represents
the object estimate,nx andny represent the number of
detector pixels along each spatial dimension, d repre-
sents the number of axial planes, and PSNR units are
in decibels (dB). As expected, PSNR decreases as the
percentage of samples removed increases. Also, the
addition of AWGN decreases PSNR.

Simulation system parameters mimic that of our
experimental platform. Each simulated hologram
measures 128 × 128 pixels with a pixel pitch of
2:32 mm. Our synthetic objects were modulated by
a 94 GHz reference illumination field. We tested
two 3D objects: synthetic slits and a synthetic gun
and dagger object located at different depths along
the axial plane. We used the axial resolution defini-
tion in Subsection 2.B as the metric for object separa-
tion along the axial plane. The simulated synthetic
slit targets follow this convention. For example, the
smallest object feature size of the synthetic slit target
measures one wavelength (≈ 3 mm) and the object
distance from the detector measures 20 mm, which
results in an object separation distance of approxi-
mately 10 mm. The synthetic gun and dagger target
in this section attempts to mimic experimental
measurements detailed in Section 5. Further, TV
minimization reconstruction depths are based on
the predetermined object locations.Note that the syn-
thetic targets are 2D and have a uniform amplitude.
Real objects explored in Section 5, however, are 3D
and located in multiple planes. The impact of 3D

Fig. 3. (Color online) Transverse slices from TV minimization re-
constructions at different z planes. A dominant squared-field term
is confined to the z ¼ 0 plane.

Fig. 4. Sampling windows for sparse measurement where (a)
3.9%, (b) 9.77%, (c) 23.83%, (d) 44.56%, and (e) 54.68% of the mea-
surements are removed.
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spatially extended objects alongmultiple axial planes
is not investigated in this manuscript.

First, we simulated a digital hologram of a uniform
3D slit object using Eq. (22). Row one, row two, and
row three of the slit object were located in three se-
parate planes: 20 mm, 30 mm, and 40 mm away
from the detector plane. The slits are 21 pixels long.
Row one contained three sets of three-pixel-wide
slits. Slit pairs were separated by one, two, and three
pixels, respectively. Row two contained three sets of
five-pixel-wide slits. Slit pairs were separated by
two, four, and one pixel(s), respectively. Row three
consisted of three sets of two-pixel-wide slits. Slit
pairs were separated by one, two, and four pixels, re-
spectively. In the postdetection process, linear back-
propagation and TV minimization reconstructions
are compared and shown in Fig. 5. Note that the re-
constructions in Fig. 5 are from simulated detector
measurements corrupted by AWGN at a 30 dB
measurement SNR. Backpropagation accurately es-
timates the object wave field, while TV minimization
accurately estimates the object spatial extent along
the axial plane. Improved twin-image suppression is
obtained with TVminimization. Note that the slit ob-
ject addresses spatial resolution limitations as fewer
holographic measurements are used for data inver-
sion. These limitations are object size-dependent.
A set of five-pixel-wide (11:6 mm) slits separated
by four pixels (9:23 mm) are resolved after nonlinear
inversion, even though 44.46% of the holographic
measurements are removed. Linear backpropagation
object field estimation is challenging when 54.68% of

the holographic measurements are removed. A closer
inspection of Fig. 5 demonstrates other spatial
resolution limitations based on smaller object fea-
ture sizes.

Second, we simulated a hologram of a 3D synthetic
object where a uniform amplitude 2D gun and a 2D
dagger were placed at different distances along the
axial plane. The synthetic data wasmodeled after ex-
perimental data in Fig. 12. The synthetic gun and
dagger were located 30 mm and 140 mm away from
the hologram plane. The smallest feature on the gun,
located at the barrel, measures two pixels (4:64 mm).
The smallest feature on the dagger, located at the
edge of the blade, measures four pixels (9:28 mm).
Figure 6 presents linear and nonlinear inversion es-
timates of the holographically measured data cor-
rupted by AWGN at a 30 dB measurement SNR.
While linear backpropagation fails to estimate the
object field both spatially and longitudinally with
54.68% of the measurements missing, TV minimiza-
tion succeeds in providing adequate spatial resolu-
tion and object localization along the axial plane.

While Figs. 5 and 6 only consider reconstructions
from 3D synthetic targets corrupted by AWGN at a
single measurement SNR, Fig. 7 quantitatively sum-
marizes the effect of AWGN using different sampling
strategies. Simulation results in Fig. 7 use various
values of τð0:2–1Þ. The number of iterations, however,
was fixed. Values for τ were chosen by trial and error
to visually produce the best object contrast in the re-
construction estimate. The number of iterations was
chosen such that the relative difference in the

Fig. 5. (Color online) Synthetic 3D slit object results with an applied transmittance function and corrupted by AWGN at a 30 dB mea-
surement SNR using (a) backpropagation and (b) TV minimization for 3D tomographic object estimation. Various values for τð0:2–1:0Þ are
used for sparsely sampled (0.0–54.68%) TV reconstructions (see Table 1).
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objective function was nominal. In Figs. 7 and 13, dif-
ferent measurement SNR noise levels were analyzed.
Using the same algorithm parameters, multiple re-
construction estimates at each noise level were con-
sistent. The TV minimization reconstruction of the
synthetic 3D slit target for all sampling schemes
convergedat a30 dBmeasurementSNRwithaPSNR
range between 25 dB and 30 dB. The results in
Fig. 7(a) show that a 54.7% measurement reduction
only incurs a 5 dB loss in PSNR. In comparison,
the synthetic 3D gun and dagger object converges
around a 40 dB measurement SNR, which yields ap-
proximately a 32 dB PSNR. For the synthetic dagger
and gun object case,measurement reduction between
0% and 54.7% provides a PSNR range between 29 dB
and 32 dB. Because the 3D gun and dagger gradient
sparsity is smaller, it is not surprising that TV mini-
mization results yield a higher PSNR than the 3D slit
target. Lastly, backpropagation results for both 3D
synthetic objects in Figs. 7(c) and 7(d) converge at a
20 dB measurement SNR for all measurement
schemes and yield a low reconstruction PSNR
(17–20 dB).

In simulation, we can measure object sparsity by
calculating the number of nonzero gradients for each
3D synthetic object under test. We measure object
sparsity for each 3D object by calculating the gradi-
ent and totaling the nonzero values. The nonzero gra-
dient, ∣∇f i;j;l∣, at the (i; j)th pixel location in the lth
axial plane is calculated using

∣∇f i;j;l∣ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðf iþ1;j;l − f i;j;lÞ
2 þ ðf i;jþ1;l − f i;j;lÞ

2

q

: ð36Þ

Note that larger 3D objects produce more nonzero
gradients. The nonzero gradients calculated for the
synthetic 3D slit object and the synthetic 3D dagger
and gun object were 2580 and 1129. Recall that the
simulated 2D hologram measures 128 × 128 pixels.
We analyze the ratio between the total number of
measurements (N) recorded at the detector plane
to the object sparsity/nonzero gradients calculated.
This ratio is listed in Table 1 as the sparsity ratio.
In CS, the number of measurements required for
adequate signal estimation is N ≥ SC logðMÞ [12,15],
where S represents the number of nonzero gradients/
sparsity calculated in the gradient domain, C repre-
sents an empirical constant value, and M represents
the original size of the vectorized object signal f . We
can evaluate the reconstruction of the 3D slit object
with a 54.68% holographic measurement reduction
by analyzing the PSNR and sparsity ratio. A low
PSNR is attributed to the low sparsity ratio shown
in Table 1. For example, a 3D synthetic gun and dag-
ger object with a 54.68% measurement reduction
yields a PSNR of 26.09 and has a sparsity ratio of
6.7. Because the sparsity ratio for the synthetic slit
object with the samemeasurement reduction yields a
low PSNR, we would need to record a larger number
of holographic measurements to improve the recon-
struction PSNR. While the synthetic 3D slit object
addressed spatial resolution limitations and gradi-
ent domain object sparsity concerns in simulation,

Fig. 6. (Color online) Synthetic 3D dagger and gun object results with an applied transmittance function and corrupted by AWGN at a
30 dBmeasurement SNR using (a) backpropagation and (b) TVminimization for 3D tomographic object estimation. A τ value of 0.2 is used
for TV minimization reconstructions from sparsely sampled detector measurements corrupted by AWGN (see Table 1).
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the synthetic 3D gun and dagger object is used to
help evaluate experimental reconstructions taken
of a semitransparent gun and dagger placed along
an axial plane in Section 5.

4. Experimental Setup

Simulations in the previous section indicate that di-
gital holography combined with a TV postdetection
process is effective. To validate the simulations, we
conducted various experiments measuring Gabor ho-
lograms. Our 2D hologram is recorded in a Gabor
geometry, as shown in Fig. 8. RF energy is generated
from a tunable InP Gunn diode oscillator and coupled
to a WR-10 open waveguide with dimensions
2:54 mmðWÞ × 1:27 mmðHÞ. The oscillator is tuned

to 94 GHz and, after attenuation, is found to radiate
with a peak power of 100 mW. In the far field (4D2=λ)
of the waveguide aperture, a collimated reference
beam is directed towards an object having spatial ex-
tent, Lx in Fig. 8. Actual reference beam dimensions
(B) are calculated using the illumination wave-
length (λ), waveguide aperture size (D), and wave-
guide to object distance [z1 in Fig. 8] such that B ¼
0:89λz=D [30]. Energy diffracted from the object in-
terferes with a reference field at a receiver plane
where N measurements are recorded with sampling
pitch dx.

Fig. 7. Plot of reconstruction PSNR (in dB) versus measurement SNR (in dB) from MMW holography detector measurements corrupted
by AWGN. TV minimization reconstruction results with 0.0–54.7% measurement reduction are shown for the (a) synthetic slit target and
(b) synthetic gun and dagger target. Backpropagation reconstruction results with 0.0–54.7% measurement reduction are shown for the (c)
synthetic slit target and (d) synthetic gun and dagger target.

Table 1. Synthetic 3D Slit (ST) and 3D Gun and Dagger (GD) Sparsity

% Removed ST Sparsity Ratio GD Sparsity Ratio

1 0 6.35 14.51
2 3.9 6.10 13.95
3 9.77 5.73 13.09
4 23.83 4.84 11.05
5 44.46 3.53 8.06
6 54.68 2.88 6.58

Fig. 8. (Color online) Optical schematic for MMWGabor hologra-
phy containing awaveguide (WG), object extent (Lx), detector plane
sampling with number of pixels (N) and pixel pitch (dx), waveguide
to object distance (z1), and object to receiver distance (z3).
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Our detector is an incoherent, single pixel receiver
circuit shown in Fig. 9. Incident energy (at 94 GHz)
at the receiver circuit is collected with a WR-08 open
waveguide measuring 2:32 mmðWÞ × 1:02 mmðHÞ.
In the circuit, energy is mixed with a local oscillator
[LO in Fig. 9] at 85 GHz and down converted to an
intermediate frequency [IF in Fig. 9(b)] at 9 GHz.
The IF signal is amplified twice with a low noise am-
plifier (LNA) and a MITEQ (8–12 GHz) amplifier. A
bandpass filter is applied to the signal before a vol-
tage measurement is read from a Schottky diode de-
tector. The bandpass filter passes frequencies
between 7–11 GHz, thereby making the receiver
spectrally sensitive over a bandwidth of 4 GHz.

The output of the diode is a DC voltage, and mea-
surements recorded with the receiver circuit con-
firmed that the system was operating in the linear
region. We measured the sensitivity of the receiver
as 48:31 mV=μW. Also, there exists a DC offset in
the receiver response due to the inherent circuit
noise, as well as the data acquisition system. We cal-
culate this DC offset or mean noise value by record-
ing 1000 measurements per pixel over a region of
60 × 60 pixels. The mean background/noise value is
15 mV. The standard deviation of the noise level
about the mean (0:1472 mV) provided an indication

for the circuit noise caused by the receiver. Also,
while the mean signal value within the recorded
composite hologram is object dependent, the mean
signal value for the reference beam is greater than
20 times themean background signal. Thus, our com-
posite holograms were not limited by inherent circuit
noise or background noise levels.

For real-time measurement, we acquired voltages
from our receiver circuit using a National Instru-
ments 9(NI) USB high-speed M series data acquisi-
tion module (USB-6251). A LabView GUI was used
to automate the data collection process from the
NI-DAQmodule, aswell as to automate dual-axis ðx −
yÞ translation of the receiver circuit. For receiver
translation, we used a step size sampling rate of
1000 samples per second. Our sampling process
involved scanning a step size of one-fifth of a
2:32 mm pixel pitch (step size of 73 motor steps) in
the horizontal direction to more accurately acquire
data using a raster-scanmethod. In the vertical direc-
tion, our step size equaled a 2:32 mmpixel pitch (step
size of 365motor steps). Further,we averaged 21 sam-
ples per step in both the horizontal and vertical direc-
tions. For all holograms detailed in this paper, we
record a raster-scanned ðx − yÞ 128ðHÞ × 640ðWÞ im-
age. The data acquisition time for a raster-scanned
128 × 640 pixel image took about 28 minutes.

5. Experiment Results

We recorded several Gabor holograms using the in-
coherent receiver circuit described above. We bin

Fig. 9. (Color online) Superheterodyne receiver (a) circuit dia-
gram and (b) experimental layout where incident energy (RF in)
is mixed with a local oscillator (LO), down converted to an inter-
mediate frequency (IF), amplified by both an LNA and a second
amplifier, filtered with a bandpass filter (BPF), and detected with
a Schottky diode.

Fig. 10. (Color online) Object scale of a semitransparent polymer
(a) wrench, (b) dagger, and (c) gun.

Fig. 11. (Color online) Experimental holographic recording of a (a) model dagger and a model gun and (b) model dagger, model gun, and
model wrench located in different z planes.
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our raster-scanned image by five along the horizontal
direction to generate a 128 × 128 pixel image. Each
hologram is digitally recorded with 16 bit accuracy,
as specified by the DAQmodule. In the postdetection
process, the composite hologram is reference beam
subtracted, DC filtered in the spectrum of the holo-
gram, and zero padded to create a 168 × 168 pixel im-
age. Zero padding the system matrix helps to avoid
circular convolution effects from the FFT operation
used in the forward and adjoint models in the TV
minimization algorithm. In this section, we compare

two methods for 3D object reconstruction: conven-
tional backpropagation and TV minimization algo-
rithms detailed in Section 3. Recall that Fig. 3
depicts a squared-field term isolated at the z ¼ 0

plane and twin-images located at object planes z ≤
0 using the TV minimization algorithm. For simpli-
city, we compare and evaluate both the backpropa-
gated and TV minimization reconstructions at z > 0

planes.
Figure 10 illustrates three semitransparent

polymer objects analyzed in this paper. Specific

Fig. 12. (Color online) Experiment with a polymer model gun and dagger placed at two different distances along the axial plane. (a)
Photograph of the experiment. Transverse slices in four different z planes of the (b) backpropagated and (c) TV minimization reconstruc-
tions. Amplitude pixel ðx; yÞ as a function of z, in 10 mm increments, where TVminimization and backpropagation for a central point on the
(d) barrel of the gun and (e) on the blade edge of the dagger are plotted.
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properties associated with the object polymer mate-
rial have been addressed elsewhere [31]. These ob-
jects were made with an Eden 333 prototyping
machine that lays thin layers of photopolymer and
UV cures each layer, building a 3D object slice by
slice. We uniformly illuminated a 5 mm thick sheet
of the polymer material under test [see Fig. 10] with
94 GHz energy. The material was found to attenuate
the incident energy by less than 20%. In the
experiment, we mounted the polymer objects to
Styrofoam blocks (also semitransparent in the
MMW) or suspended the objects using string. Test
objects, in Fig. 10, include a model wrench with
2 inðWÞ × 6 inðHÞ spatial extent, a model dagger
with 0:25–0:5 inðWÞ × 14 inðHÞ spatial extent, and
a model gun with 0:16–1 inðWÞ × 5 inðHÞ spatial ex-
tent. We used combinations of these test objects in
the experimental setup. Further, we used MMW
RF absorber [ABS in Figs. 12(a) and 13(a)] to mini-
mize stray reflected energy collected at the receiver.

We conducted three separate experiments. In each
experiment, the spatial extent of the 128 × 128 pixel
hologram was 296:96 mm in both the horizontal and
vertical dimensions. The holograms were zero
padded to 168 × 168 pixels. Zero padding the holo-
gram does not have any impact on reconstruction be-
cause we can assume that no object data exist in
those regions. In the first experiment [see Fig. 12(a)],
we recorded a hologram of a polymer model gun and
model dagger placed 22 mm and 107 mm away from
the receiver platform, as shown in Fig. 11(a). Recall
that the optical schematic for the hologram recording
geometry is shown in Fig. 8. Using linear inversion,
we backpropagate the holographic measurement to
four different z planes, as shown in Fig. 12(b). We
see that linear backpropagation estimates the 3D
electromagnetic object field at each z plane, but
out-of-focus diffracted energy present in all z planes
hinders object localization. In Fig. 12(c), however, TV
minimization results provide a means for localizing

Fig. 13. (Color online) Experiment with a polymer model wrench, gun, and dagger placed at three different distances along the axial
plane. (a) Photograph of the experiment. Transverse slices in four different z planes of the (b) backpropagated and (c) TV minimization
reconstructions. Amplitude pixel ðx; yÞ as a function of z, in 5 mm increments, where TV minimization reconstructions and backpropaga-
tion estimates for a center point on the (d) wrench, (e) gun, and (f) dagger are plotted.
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objects to their corresponding z planes. Note that
the baseline axial resolution metrics, derived in
Section 2, suggest an axial resolution of approxi-
mately 20 mm for an object feature size of 4 mm.
The pixel amplitude as a function of distance in z
is plotted in 10 mm increments in Figs. 12(d) and
12(e). These plots are generated at a finer resolution
than the theoretical limit at 20 mm.We plot the pixel
amplitude at a central pixel ðx; yÞ located at the bar-
rel of the synthetic gun and at the blade edge of
the synthetic dagger. The axial plots in Figs. 12(d)
and 12(e) show that TV minimization reconstruc-

tions falls short of the theoretical limit. While back-
propagation results provide an estimate of the object
field along the axial plane, TV minimization enables
object localization that is consistent with the spatial
extent of the object. Our experimental axial resolu-
tion with the gun and dagger experiment is approxi-
mately 30 mm. Errors are attributed to the residual
diffracted energy (out-of-focus energy) found in
neighboring z planes for the TV minimization re-
sults. We can minimize this measurement error by
acquiring a larger number of measurements (>128

pixels).

Fig. 14. (Color online) Sparse measurement reconstruction of experimental data using (a) linear backpropagation and (b) TV minimiza-
tion for 3D object estimation. Amplitude of a central pixel ðx; yÞ on the blade edge of the dagger as a function of z, plotted in 10 nm in-
crements, from (c) 3.9% holographic measurement removal and (d) 54.68% holographic measurement removal.
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In a second experiment, we placed a semitranspar-
ent polymer wrench, gun, and dagger at three differ-
ent distances away from the receiver [see Fig. 13(a)].
These distances were 48 mm, 155 mm, and 205 mm.
We recorded a digital hologram of the three objects,
as shown in Fig. 11(b). A higher background signal,
compared to the previous experiment, is attributed
to an increase in illumination source power. We esti-
mate the 3D object using linear backpropagation and
TVminimization. Object estimates are reconstructed
at four separate z planes, as depicted in Figs. 13(b)
and 13(c). Linear backpropagation estimates reveal
object field distributions in each z plane and limited
object localization, while TV minimization estimates
show a reduction in out-of-focus contributions from
twin images. Amplitude data from a single spatial
location in each object is plotted in increments of
5 mm along the axial plane in Figs. 13(d)–13(f). Ob-
ject localization using TV minimization is shown in
Figs. 13(c)–13(f), while backpropagation field esti-
mates cannot provide any axial resolution. Still,
the theoretical measure for a 4 mm feature size on
the polymer gun object should enable 20 mm axial
resolution. Axial plots from TV minimization recon-
struction in Figs. 13(d) and 13(e) show an axial reso-
lution of approximately 30 mm. Capturing more
measurements with the receiver circuit would
further improve TV estimation of the 3D object.

Lastly, we analyze the impact of sparse holographic
measurements with real data. Sampling matrices
shown in Fig. 4 are applied to experimental measure-
ments. Because holographic measurements (128×
128 pixels) are zero padded to a spatial extent of 168 ×
168 pixels, we zero pad the 128 × 128 transmittance
functions, discussed in Section 2, to themeasurement
data size. For backpropagation estimates, the detec-
tor pixel locations containing absolute zero values
(due to the subsampling measurement matrix) were
substituted with interpolated values calculated from
measurements at neighboring pixels. Similar to the
synthetic gun anddagger simulations inSection 2, ex-
perimental data show adequate spatial resolution
and object localization along the axial plane when
54.68% of the measurement data are removed. This
is feasiblewhenagradient sparsity constraint is used.
Again, pixel amplitude versus distance in z plots are
generated in increments of 10 mm along the axial
plane and shown in Figs. 14(c) and 14(d). Measure-
ment reduction by 3.9% and 54.68% does not seem
to impact object localization using TV minimization.
However, we notice from simulation and experimen-
tal data that spatial resolution is sacrificed using
backpropagation and TVminimizationwith a 54.68%
reduction of the measurement data.

In summary, this section discussed three experi-
ments where objects were placed along the z axis at
either two different planes or three different planes.
While data acquisition timeswere long (e.g.,<30min-
utes), 3D object estimation and improved object loca-
lization along the axial plane are made possible with
TVminimization. Linear backpropagation accurately

estimates the object field along the axial plane;
however, out-of-focus diffracted fields hinder object
localization. Sparsemeasurement impacts object spa-
tial resolution using linear backpropagation because
object field reconstruction is challenging. TVminimi-
zation results improve upon a linear backpropagation
method where a twin-image term and a squared-field
term affect object reconstruction. Sparse measure-
ment reconstructions in simulation and with experi-
mental data demonstrated that reconstructed object
quality is maintained with fewer measurements.
Also, sparse measurement reconstruction with ex-
perimental data further motivated the potential for
decreasing data acquisition times using fewer scans.

6. Summary and Conclusion

An improved method for 3D tomographic estimation
from 2D holographic measurements has been pre-
sented. Linear backpropagation estimation of a 3D
object is hindered by a squared-field term and a
twin-image term in reconstruction. TV minimization
of 2D holographically recorded data shows suppres-
sion of these out-of-focus terms. Our nonlinear inver-
sion scheme exploits object sparsity in the gradient
domain. Further, simulations and experimental data
reconstructions show that randomly sampled 2D ho-
lographicmeasurements enable 3Dobject estimation,
even when 54.68% of the measurements have been
removed. However, there is a degradation in spatial
resolution. PSNRvalues in simulation decreasewhen
holographic measurements are removed. Also, a
sparse measurement scheme for adequate 3D object
estimation is object dependent. Successful 3D object
estimation from 2Dholographic measurements using
TV minimization depends on the object feature size
(Δxo), which translates into the recorded hologram
spatial extent.

This paper has focused on the analysis of semitran-
sparent objects at millimeter wavelengths. In prac-
tice, objects of interest are not semitransparent.
Thus, a reflection geometry may be better suited
in a practical implementation. Data inversion tech-
niques discussed in this paper can still be applied
to a reflection geometry. The reflection case is more
challenging, as speckle impacts holographic mea-
surement. Also, because gradient-imposed sparsity
is object dependent, a thorough object study on reso-
lution for both transmissive and reflection cases still
needs to be undertaken.

The authors would like to thank Ryoichi Horisaki,
a member of the compressive holography team at
Duke University, for his valuable suggestions. C. F.
Cull acknowledges the support of a National Defense
Science and Engineering Graduate Fellowship.
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