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Résumé : Les futures applications sans fil 

anticipent une explosion de la pléthore de cas 

d'utilisation et de services, qui ne peut être 

soutenue par des améliorations incrémentielles 

des schémas de communication existants. Pour 

cela, deux axes de recherche sont 

particulièrement intéressants: la densification du 

réseau à l'aide de petites cellules et la 

communication par ondes millimétriques (ondes 

millimétriques). Dans cette thèse, nous 

modélisons et évaluons des réseaux cellulaires 

constitués de petites cellules à ondes 

millimétriques utilisant la technique d'accès 

multi-radio (RAT) déployées au-dessus de la 

macro-architecture existante. Premièrement, 

nous modélisons mathématiquement un 

déploiement homogène de petites cellules multi-

RAT et caractérisons les performances de 

l'utilisateur et du réseau en termes de probabilité 

de couverture signal sur brouillage plus rapport 

de bruit (SINR), de débit descendant et de 

probabilité de surcharge de cellule. Ensuite, nous 

étudions l'association des utilisateurs à différents 

niveaux et la sélection optimale de différents 

RAT, de manière à optimiser ces mesures de 

performance. En règle générale, les modèles de 

réseau cellulaire qui supposent des déploiements 

homogènes de petites cellules ne tiennent pas 

compte des nuances des caractéristiques de 

blocage urbain.  

Pour résoudre ce problème, nous modélisons les 

emplacements de petites cellules le long des 

routes d'une ville, puis nous prenons en compte 

les blocages de signaux dus à la construction 

d'immeubles ou au déplacement de véhicules sur 

les routes. Sur ce réseau, nous supposons que 

l’opérateur prend en charge trois types de 

services v.i.z., les communications ultra-fiables à 

faible temps de latence (URLLC), les 

communications massives de type machine 

(mMTC) et le haut débit mobile amélioré 

(eMBB) avec des besoins différents. En 

conséquence, nous étudions la sélection optimale 

de RAT pour ces services avec divers blocages 

de véhicules. 

 

Enfin, sur la base du modèle de déploiement sur 

route de petites cellules à ondes millimétriques, 

nous étudions un réseau conçu pour prendre en 

charge simultanément des services de 

positionnement et de données. Nous 

caractérisons la précision du positionnement en 

fonction des limites de la localisation, puis 

étudions des stratégies optimales de 

partitionnement des ressources et de sélection de 

la largeur de faisceau afin de répondre à diverses 

exigences de positionnement et de débit de 

données. 
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Abstract : Future wireless applications 

anticipate an explosion in the plethora of use-

cases and services, which cannot be sustained by 

incremental improvements on the existing 

To address this, we model the small cell 

locations along the roads of a city, and 

subsequently, we take into consideration the 

signal blockages due to buildings or moving 
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communication schemes. For this, two research 

directions are particularly attractive: network 

densification using small cells and millimeter 

wave (mm-wave) wave communications. In this 

thesis, we model and evaluate cellular networks 

consisting of multi-radio access technique 

(RAT) mm-wave small cells deployed on top of 

the legacy macro-architecture. First, we 

mathematically model a homogeneous 

deployment of multi-RAT small cells and 

characterize the user and network performance 

in terms of signal to interference plus noise ratio 

(SINR) coverage probability, downlink 

throughput, and the cell overloading probability. 

Then, we study users association to different 

tiers and optimal selection of different RATs, so 

as to optimize these performance metrics. 

Generally, cellular network models that assume 

homogeneous deployments of small cells fail to 

take into account the nuances of urban blockage 

characteristics.  

vehicles on the roads. In this network, we 

assume that the operator supports three types of 

services v.i.z., ultra-reliable low-latency 

communications (URLLC), massive machine-

type communications (mMTC), and enhanced 

mobile broadband (eMBB) with different 

requirements. Consequently, we study the 

optimal RAT selection for these services with 

varying vehicular blockages. 

 

Finally, based on the on-road deployment model 

of mm-wave small cells, we study a network 

designed to support positioning and data 

services simultaneously. We characterize the 

positioning accuracy based on the localization 

bounds and then study optimal resource 

partitioning and beamwidth selection strategies 

to address varied positioning and data-rate 

requirements. 
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Abstract

Future wireless applications anticipate an explosion in the plethora of use-

cases and services, which cannot be sustained by incremental improvements

on the existing communication schemes. For this, two research directions are

particularly attractive: network densification using small cells and millimeter

wave (mm-wave) wave communications. In this thesis, we model and evaluate

cellular networks consisting of multi-radio access technique (RAT) mm-wave

small cells deployed on top of the legacy macro-architecture. First, we mathe-

matically model a homogeneous deployment of multi-RAT small cells and char-

acterize the user and network performance in terms of signal to interference

plus noise ratio (SINR) coverage probability, downlink throughput, and the cell

overloading probability. Then, we study users association to different tiers and

optimal selection of different RATs, so as to optimize these performance metrics.

Generally, cellular network models that assume homogeneous deployments

of small cells fail to take into account the nuances of urban blockage charac-

teristics. To address this, we model the small cell locations along the roads of

a city, and subsequently, we take into consideration the signal blockages due

to buildings or moving vehicles on the roads. In this network, we assume that

the operator supports three types of services v.i.z., ultra-reliable low-latency

communications (URLLC), massive machine-type communications (mMTC),

and enhanced mobile broadband (eMBB) with different requirements. Conse-

quently, we study the optimal RAT selection for these services with varying

vehicular blockages.

Finally, based on the on-road deployment model of mm-wave small cells,

we study a network designed to support positioning and data services simul-

taneously. We characterize the positioning accuracy based on the localization

bounds and then study optimal resource partitioning and beamwidth selection

strategies to address varied positioning and data-rate requirements.
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Chapter 1

Introduction

1.1 Future of Mobile Networks and 5G

We are living in an exciting time of wireless research. Not only the techno-

logical advances in this field have increased by leaps and bounds, but also the

services supported by the wireless technologies have experienced a tremendous

boom. The study of wireless networks is not longer a niche subject, but it

has integrated itself into a plethora of industries, with use cases like intelligent

transport systems, wireless power transfer, cyber-physical systems, and criti-

cal control of smart objects. In the context of cellular communication, we are

witnessing extensive research efforts, and in parallel, standardization activities

towards the 5G mobile systems. This thesis is within the purview of present

and next-generation cellular communication systems, and reports findings that

aim to equip the mobile operator with guidelines and dimensioning rules for the

resource planning and the design of network deployment.

Devising effective solutions for the next generation mobile communications

is the need of the hour, since as indicated by the visual network index report

released by Cisco [1], the explosion of mobile data traffic will be of such a high

order, that it cannot be supported by incremental improvements on the existing

communication technologies. To quantify this growth, it is worth to note that

the total data handled by the wireless networks has augmented from 3 exabytes

in 2010 to about 190 exabytes in 2018, and is envisaged to cross 500 exabytes

by 2020 [2].

In addition to this tremendous increase in the volume of data, the number

of connected devices and the per-link data rate requirements will continue to

grow exponentially. Due to the variety of applications and services planned to

be offered in the 5G ecosystem, the number of connected devices is expected to

cross tens or even hundreds of billions [3].
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In this section, we summarize several key requirements that define the nature

of the 5G mobile systems. Then, we present some key technologies proposed by

the wireless research community that aim to address the key requirements.

1.1.1 Key Requirements of 5G

Data Rate

Undeniably, the need to support the ever-increasing demand for high data-rates

services is the key driver of innovation in cellular communication systems. In

this context, different metrics are used to characterize the system performance,

as described below:

1. Area spectral efficiency refers to the amount of data the network can

serve per second per unit area. The general consensus is that the area

spectral efficiency will need to increase by roughly 1000× from fourth

generation (4G) to 5G [4].

2. The cell-edge rate is a measure of the worst-case data rate that a user

can receive with a high degree of certainty. The target 5G cell-edge rate

ranges from 100 Mbps (sufficient for supporting high-definition streaming)

to as high as 1 Gbps. In reality, meeting 100 Mbps for 95 percent of users

presents one of the most crucial technological challenges in the context of

5G [2].

3. Finally, the peak physical data rate represents the data rate that a

user can receive in the best-case scenario. The 5G vision for the peak

physical data rate is expected to be in the range of tens of Gbps [2].

Latency

Another important characteristic of the 5G ecosystem is the ability to provide

ultra-low latencies for several applications. Currently, in the radio access net-

work of 4G systems, the end-to-end round-trip time is of the order of 10-20

ms [5], which is sufficient for a majority of current cellular services [6]. How-

ever, the future wireless applications like two-way gaming, tactile Internet, and

virtual reality need the cellular networks to be optimized for providing ultra-

low latency. In fact, for several applications, the 5G access network will need

to be able to support a round-trip latency as low as 1 ms [7]. This presents

a challenge for the design of the sub-frame structure and the protocol stack.
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Furthermore, reducing the latency in the core and the transport network is also

a key requirement to reduce the end-to-end latency.

Reliability

In addition to supporting services characterized by high data-rates and very low-

latency, one of the major novelties within the 5G ecosystem is the provisioning

of ultra-reliable communications. In a nutshell, ultra-reliable communication

aims at facilitating end-to-end successful1 communication links up to 99.999%

or even 99.99999% of the times [8]. Exemplary services in this mode include

disaster search and rescue [9], tele-surgery [10], industrial automation [11] and

reliable vehicle-to-vehicle (V2V) communication [12].

Massive Connectivity

Another feature of the future wireless networks is the need to support massive

access by a large number of devices. It consists of providing wireless connectivity

to tens of billions of often low-complexity low-power machine-type equipments.

In the crux of these services is the need for scalable connectivity for an increasing

number of devices, wide area coverage, and deep indoor penetration. A typical

example of this type of service is the collection of the measurements from a

large number of sensors, such as smart metering [13].

Energy Efficiency

As the 5G technologies are developed and deployment pick momentum, a major

consideration will be to maintain the per-link energy [2]. A major consideration

in this regard is to maintain the per-link energy costs. To go into details, as the

per-link data rates offered by the operator increases by about 100×, the Joules

per bit will need to diminish by at least 100× [14] to maintain the revenue of

the operators.

Flexible and Low-Cost Network Management

Finally, it is imperative to note that the future mobile networks must be op-

timized in terms of cost. For example, the 5G small cells should be 10-100×
cheaper to deploy than the legacy macro BSs for enabling the flexibility to de-

ploy new services [15]. Another major cost consideration for 5G is the backhaul

1The definition of ”successful” depends on the actual applications.
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from the network edges to the core. This is more crucial in the 5G networks as

compared to the legacy 4G networks, due to the high BS densities and increased

bandwidth [16].

1.1.2 Key Technologies for 5G

In this section we describe some of the key technologies to address the key

requirements for 5G networks as described in Section 1.1.1. The technologies

enumerated below do not present an exhaustive list in the context of 5G, and

we focus only the ones relevant to this thesis.

1. Massive MIMO technology [17], which is based on the aggregation of a

large number of antennas in the BS, is an important direction of research,

specially for enhancing the data rate per node per unit of spectrum. Apart

from the better throughput and spectrum efficiency, massive MIMO can

also improve the improvement of the coverage performance of the network

by exploiting transmit diversity [18] and beamforming techniques in mm-

wave [19]. Furthermore, due to the possibility of parallel transmission

of multiple data streams, massive MIMO also promises to reduce the

communication latency.

2. Ultra-dense deployment of small cells [20] enables to bring the users closer

to their access points. This enhances the downlink performance by aug-

menting the received power. Furthermore, due to the reduced proximity

of the users to the BSs, the uplink transmit power is also reduced, which

decreases the interference and improves the handset battery life [21]. It

also presents the possibility of improving reliability in communications,

owing to the multiple available proximal access points. Thus, a user can

switch to a new access point, or transmit using multiple links [22], in case

the link to the serving access point deteriorates.

3. Operating at higher frequency spectrum which were previously deemed

unusable, specially at the mm-wave range [23], is another key direction

of research. The higher frequency transmission will bring with it massive

bandwidths, which would enhance the data rates.

Additionally, recently the enhanced positioning capability with mm-wave

has been investigated [24]. In the future 5G networks, positioning will

play an ever-increasing role, not only for location-based services like au-

tonomous vehicles, but also for location-aware intelligent communication
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solutions such as proactive radio resource management. It is widely be-

lieved that 5G architecture with ultra-densification, large antenna arrays,

and wide bandwidths will provide excellent resources for efficient position-

ing and ranging.

4. Finally, network slicing [25] is expected to play a critical role in 5G net-

works because of the multitude of use cases and new services. These will

place different demands on the network in terms of functionalities, and

their performance requirements will vary significantly. Within the purview

of network slicing, each virtual network (network slice) comprises an in-

dependent set of logical network functions that supports the requirements

of the particular use case. Each slice will be optimized to provide the

resources and network topology for the specific service to be supported.

Thus, network slicing presents an attractive solution for enabling low-cost

network management by optimizing the utility of physical infrastructure,

i.e., communication, computational, and storage resources.

Other technological advancements such as enhanced interference management [26],

non-orthogonal multiple-access (NOMA) [27], full duplex communications [28],

carrier aggregation [29] etc., may also contribute to data-rate improvements.

In this thesis we deal with some of these technologies and characterize and

optimize the coverage, the downlink data-rate, and the localization performance

of cellular users operating within different deployment geometries of mm-wave

small cells. In what follows, we discuss mm-wave and multi-RAT communi-

cations in the context of 5G. Then, we introduce the notion of stochastic

geometry, which is a mathematical tool for analyzing complex heterogeneous

networks involving multiple tiers and RATs.

1.2 Mm-Wave and Multi-RAT Challenges

1.2.1 Mm-wave Communications

The limited bandwidth of the traditional frequency bands is expected to fall

short of providing sufficient resources for sustaining the high data rates envis-

aged for the future wireless applications. As mentioned in the previous section,

one key direction of research in this regard is the usage of higher frequencies,

specifically in the mm-wave band from 30 GHz to 300 GHz. Most of the cur-

rent work in the context of mm-wave communication is focused on the 28 GHz
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band [30], the 38 GHz band [31], the 60 GHz band [32], 71–76 GHz band and

the 81–86 GHz band [33]. In fact, for indoor wireless personal area networks

(WPAN) or wireless local area networks (WLAN), several standards with mm-

wave technology are already defined, such as the IEEE 802.15.3c [34] and IEEE

802.11ad [35]. This stimulates growing interests for the study and experimen-

tation of mm-wave transmissions in cellular systems.

However, transmissions in such high frequencies are heavily susceptible to

blockages by obstacles (e.g., humans and vehicles) [36, 37]. This is precisely due

to the fact that the electromagnetic waves fail to diffract significantly around

obstacles of size larger than the wavelength. For example, blockage by a hu-

man penalizes the mm-wave link budget by 20-30 dB [38]. Furthermore, the

rain attenuation and atmospheric and molecular absorption characteristics of

the mm-wave propagation limit the range of communications [23]. Therefore,

maintaining a reliable connection, specially for delay-sensitive applications such

as high-definition broadcasting/multi-casting is a big challenge for mm-wave

communications.

The signal loss due to attenuation in the mm-wave band can be efficiently

mitigated using beamforming techniques, with large number of antennas [39].

As the wavelengths are shorter in the mm-wave frequency bands, antennas are

consequently smaller. Thus, deploying a large number of antennas in a given

area becomes feasible. By tuning each antenna element, the antenna array can

steer the mm-wave beam towards the desired direction and provide high antenna

gain, while simultaneously reducing the gain in other directions. Consequently,

the highly directional antennas also reduces the co-channel interference [40].

On the downside, thin beamwidths pose new challenges in terms of ubiq-

uitous coverage and user tracking. Furthermore, providing initial access to

standalone mm-wave BS presents a difficult design challenge [41]. To make the

transmitter and receiver direct their beams towards each other, the procedure

of beam training is needed, which may result in an increased access delay [42].

In the context of both providing initial access and enhancing communication

reliability, one solution consists of using the sub-6GHz band to aid the mm-wave

links [43]. Specifically, from the initial access point of view, given suitable signal

processing mechanisms, the position and orientation of the users relative to a

sub-6GHz BS can be determined [44]. If sub-6GHz and mm-wave BS are co-

located, or their position and orientation relative to one another are known,
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the coarse-grained angle information for beam-training of the mm-wave radio-

frequency (RF) front-end can be derived easily, which significantly speeds up

the initial access procedure. On the other hand, from the reliability point of

view, efficient algorithms need to be devised to switch the data transfers from

the high-speed mm-wave links to the more reliable sub-6GHz links when the

quality of the former degrades [45].

Due to this reliance on the legacy bands for operation, it is unrealistic to

assume ubiquitous coverage with only mm-wave small cells, and it is envisioned

that multiple RATs will co-exist in future cellular networks [46] [47]. In what fol-

lows, we briefly discuss the concept of multi-RAT association, its requirements,

and the modeling challenges associated with it. This gives us a motivation for

the stochastic modeling of complex multi-RAT networks, which forms the crux

of this thesis.

1.2.2 Multi RAT Association

As the 5G technologies evolve, and the new radio deployment picks momentum,

the cellular networks will become more and more heterogeneous. As discussed in

the previous sub-section, a key feature therein will be the increased integration

and interoperability between different RATs, specially different radio bands [48].

An illustration of a 5G cellular deployment is shown in Figure 1.1. Here multi-

RAT and standalone mm-wave small cells are deployed on top of the existing

macro and small cell architecture [45]. It is clear that typical 5G devices should

be able to support not only new 5G standards (e.g., operation at mm-wave

frequencies), but also be backward compatible with respect to the 3G and 4G

LTE standards. In this context, accurate modeling of the cellular networks is

needed for efficient design of user association algorithms with different tiers and

RATs, which results in the improvement of user performance [49]. For example,

even a simple inter-cell interference scheme consisting of cell range expansion

and almost-blank sub-frames, has been shown to increase edge rates by as much

as 500 percent [50]. In this thesis, we consider small cells overlaid on top of the

macro architecture and equipped with multi-RAT antennas, thereby enabling

them to opportunistically switch between mm-wave and the sub-6GHz bands.

In this context, we study the optimal user association with the different tiers

and RATs to address different performance objectives such as load balancing,

user throughput, and deal with diverse requirements of 5G services.
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Figure 1.1: An illustration of 5G cellular architecture consist-
ing of mm-wave multi-RAT small cells.

The existence of multiple RATs, in addition to the increased ad-hoc de-

ployments of the access points, leads to a complex heterogeneous architecture,

which can be difficult to model and analyze [14]. Additionally, determining

the optimal user association with the access points, and the selection of ra-

dio bands therein, presents a difficult combinatorial optimization problem [49].

This is further complicated by the fact that future wireless applications will

have diverse requirements, not all of which can be modeled by a limited set of

performance metrics [51]. In the following section, we introduce the notion of

stochastic geometry, which is a mathematical tool that has gained popularity

in the modeling and analysis of the large scale, complex, multi-tier multi-RAT

networks.

1.3 Stochastic Geometry Based Modeling

One of the main tools that has recently gained interest to tackle the modeling

challenge of cellular networks is stochastic geometry [52]. Specifically, stochastic

geometry models the positions of the nodes of the network (BSs, users, etc.) as

stochastic processes. Subsequently, it enables the operator to perform efficient

initial resource planning and dimensioning of the cellular networks prior to the

actual deployments [53]. In what follows, we first highlight some basic notions

of stochastic geometry analysis. Then, we briefly describe a classical SINR

modeling in single-tier large-scale networks, so as to introduce the elements of

stochastic geometry to the reader. For a rigorous and complete mathemati-

cal treatment of stochastic geometry based modeling of wireless networks, the

reader may refer to the works by Chiu et al. [52] and Baccelli et al. [54]
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1.3.1 Key Notions of Stochastic Geometry

• Point processes: A point process is a measurable mapping φ from a

probability space to the space of point measures2 on some space E . The

process φ can be denoted by a sum of Dirac measures on E :

φ =
∑

i

δXi
,

where {Xi} represent the points of φ. In this thesis, the space E is the

Euclidean space R
d of dimension d ∈ {1, 2}.

• Intensity measure: The intensity measure Λ of φ is defined as Λ(B) =

E[φ(B)] for Borel B, where φ(B) denotes the number of points in φ ∩ B.

Thus, the intensity measure represents the expected number of points of

the point process in a given Borel set B.

• PPP: Let Λ be a locally finite measure on R
d. A point processes φ is

Poisson on R
d if the following conditions hold true:

1. For all disjoint subsets A1, . . . , An of E , the random variables φ(Ai)

are independent, and

2. For all sets A of E , the random variables φ(A) are distributed ac-

cording to a Poisson random variable with parameter Λ.

An important property of the PPP used throughout this thesis is that:

conditionally on the fact that φ(A) = n, the n points in A are indepen-

dently (and uniformly for homogeneous PPP) located in A.

• Laplace functional: The Laplace functional evaluated for a function f

is defined for point processes φ as:

L(f) = E

[

exp

(

−
∫

R
d

f(x)φ(dx)

)]

= E

[

exp

(

−
∑

Xi∈φ
f(Xi)

)]

. (1.1)

• Probability generating functional: The probability generating func-

tional (PGF) of a point process φ evaluated for a function ν is defined

2A point measure is a measure which is locally finite and which takes only integer values.
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mathematically as the Laplace functional of − log ν, and is calculated as:

Gφ(ν) = E

[

∏

xi∈φ
ν(xi)

]

, (1.2)

where the expectation is with respect to φ.

• Palm probability: The Palm probability refers to the probability of

an event conditioned on a point of the process being located at a given

position. Accordingly, the Palm distribution represents how the point

process would look when viewed from one of its atoms (points).

• Slivnyak’s theorem: Slivnyak’s theorem [52] for a PPP (φ) states that

conditioning on the event that a point of φ is located at the origin (o)

(in other words o ∈ φ), is equivalent to add a point at o to the PPP φ.

Mathematically,

P(φ ∈ Y |o) = P(φ ∪ {o} ∈ Y ),

where Y is any point process property.

This can be thought of as removing an infinitesimally small area corre-

sponding to a ball B(x, r) for r → 0, since the distributions of points in

all non-overlapping regions are independent for a PPP. This means that

any property seen from a point o is the same whether or not we condition

on having a point at o in φ.

With these definitions in mind, in the following section, we describe how stochas-

tic geometry fundamentals can be used to characterize the downlink SINR of a

single tier network.

1.3.2 SINR Coverage in Single-Tier Networks

In large-scale cellular networks, the received signal power at an average user

is a random variable, due to the uncertainty in the spatial distribution of the

serving BS and the users, and due to channel fading [53]. Additionally, due to

concurrent co-channel transmissions throughout the network, the interference

power is governed by a number of different stochastic processes e.g., the spatial

distribution of the location of the interfering BSs, the random shadowing, and

fading [55]. Mathematically, the SINR for a receiver placed at the origin o can
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be written as:

SINR =
S

N + I
, where S = Pthtℓ (||xt||) , I =

∑

i∈T
Pihiℓ (||xi||) , (1.3)

where S, N , and I are the desired signal, noise, and interference powers, re-

spectively. The subscript t refers to the transmitter, which can be selected

according to an association scheme such as maximum downlink power associa-

tion or nearest-BS association. The summation for the calculation of I is taken

over the set of all interfering transmitters T . Here, Pi is the transmit power,

and hi is a random variable that characterizes the cumulative effect of shad-

owing and fast-fading from the transmitter i ∈ T . The path loss function ℓ is

assumed to depend only on the distance ||xi|| from the origin to the interferer

situated at position xi in space. In general, T , ht, hi, xt and xi, and possibly

Pi are random quantities. Thus, characterizing the average SINR is a difficult

challenge to address. However, thanks to the results from stochastic geometry,

and some convenient, yet meaningful assumptions, the complementary CDF of

the SINR (or the SINR coverage probability) can be easily derived. In simple

terms, the SINR coverage probability PC(γ) is the probability that an average

user in the network receives an SINR above a certain threshold γ. In other

words, it represents the fraction of the users under coverage in the network

with respect to an SINR threshold γ.

Let us assume that the locations of the set of interfering BSs are modeled

as points of a PPP. Furthermore, we assume that the fast-fading in all the

links are independent and distributed according to a Rayleigh distribution with

variance equal to one3. Then, mathematically, we have:

PC(γ) = P

(

Pthtℓ (||xt||)
N +

∑

i∈T Pihiℓ (||xi||)
≥ γ

)

= P

(

ht ≥
γ
(

N +
∑

i∈T Pihiℓ (||xi||)
)

Ptℓ (||xt||)

)

(a)
= E

[

exp

(

−γ
(

N +
∑

i∈T Pihiℓ (||xi||)
)

Ptℓ (||xt||)

)]

(b)
= E

[

exp

(

− γN

Ptℓ (||xt||)

)

E

[

exp

(

−γ
∑

i∈T Pihiℓ (||xi||)
Ptℓ (||xt||)

)]]

3These are standard assumptions for the modeling of sub-6 GHz networks [56]. In this
thesis, we will outline other assumptions regarding the network geometry based on the de-
ployment scenario investigated in each case.
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(c)
= E

[

exp

(

− γN

Ptℓ (||xt||)

)

E

[

∏

i∈T
exp

(

−γPihiℓ (||xi||)
Ptℓ (||xt||)

)

]]

. (1.4)

Here step (a) follows from the exponential distribution of the random variable

ht. In step (b), the outer expectation is with respect to the serving BS, whereas

the inner expectation is with respect to the positions of the interfering BSs. Step

(c) follows from the fact that the exponential of the sum equals the product of

the exponentials. Now the second part of the above expression is evaluated

using classical results from stochastic geometry as follows:

E

[

∏

i∈T
exp

(

−γPihiℓ (||xi||)
Ptℓ (||xt||)

)

]

(d)
= exp

(

−
∫

1− E

[

exp

(

−γPihiℓ (||x||)
Ptℓ (||xt||)

)])

Λ(dx)

(e)
= exp

(

−
∫

1− 1

1 + γPiℓ(||x||)
Ptℓ(||xt||)

Λ(dx)

)

. (1.5)

Here, step (d) follows from the evaluation of the PGF of the PPP [52]. The

expectation inside the exponential is with respect to the independently and

identically distributed (i.i.d.) exponential random variables hi, and accordingly,

in step (e) we use the Laplace functional of h.

For some special cases of path-loss functions the expression (1.5) and hence

(1.4) can be easily computed. As an example, let us assume that Pi = Pt ∀i
and ℓ (||x||) = K · ||x||−2 [45]. Then (1.5) becomes:

E

[

∏

i∈T
exp

(

−γPihiℓ (||xi||)
Ptℓ (||xt||)

)

]

= exp

(

−
∫ ∞

xt

γ||x||−2

γ||x||−2 + ||xt||−2
λdx

)

(1.6)

Thus, the characterization of the SINR becomes simpler as compared to

evaluating the statistical properties of (1.3) directly4. In Figure 1.2 we plot

the SINR coverage probabilities for two cases of transmit powers. The higher

transmit power results in an improved SINR coverage probability.

The CDF of the SINR is then studied to derive meaningful insights on the

user performance in a network. For example, the outage probability of an

4It must be noted that this analysis is just one example of wireless network characterization
using stochastic geometry. For a detailed discussion of stochastic geometry modeling of
wireless networks, the reader may refer to the work by Andrews et al. [56]
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Figure 1.2: SINR coverage probability vs SINR threshold with
respect to different transmit powers.

average user in the network is calculated directly as one minus the coverage

probability. Furthermore, once the CDF of the SINR is derived, the downlink

data-rate coverage (PR) probability is then easily characterized as follows:

PR(R0) = PC
(

2
R0
B − 1

)

. (1.7)

The data-rate coverage probability denotes the fraction of users in the network

that receive a data-rate of more than R0 bps. The SINR and the rate coverage

probability of the users are further used to derive other non-trivial performance

metrics such as the network load [57] the user throughput [45]. In this thesis, we

define and study several of these metrics in the context of the key requirements

of 5G, with varying deployment geometries, physical blockages (e.g., due to

buildings), as well as moving objects such as vehicles. Thereby, we provide a

realistic evaluation of the mm-wave multi-RAT networks for aiding the operators

for the deployment of the future 5G architecture.

1.4 Bound-Based Characterization of mm-wave

Positioning

In the 5G cellular networks, highly accurate position information will be a neces-

sity, especially due to the exponential increase of the device-centric and context-

aware applications [58]. Conventional positioning techniques using global po-

sitioning system (GPS) and terrestrial radio-location technologies that rely on

the existing wireless communication standards such as Bluetooth and WiFi are

expected to fall short of addressing the positioning accuracy needed for the fu-

ture wireless applications. This is precisely due to the fact that these existing

solutions provide positioning accuracy of a few meters at best [59, 60]. In this
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context, the mm-wave technology operating in large available bandwidths with

compact and highly directive antenna arrays, and hence, to the capability of

getting spatialized information with very high reactivity under device mobility,

offers an attractive solution [23]. Furthermore, with the advent of massive de-

ployment of small cells, there will be an increasing number of anchor nodes to

aid to the localization accuracy [61, 62]. Thus, on the one hand, the mm-wave

infrastructure can be utilized for highly accurate positioning. Whereas, on the

other hand, to facilitate effective data-communication for 5G application using

mm-wave beams, accurate positioning will be necessary for functionalities such

as initial access, user tracking etc [2]. The position information can not only

be considered as an add-on feature, but rather an integral feature necessary for

the communications [58].

Benchmarking localization performance in wireless networks has tradition-

ally been done using the Cramer-Rao lower bound (CRLB), which provides a

lower bound on the position or orientation error of any unbiased estimator [63].

Common practice has been to analyze the CRLB in fixed scenarios of anchor

nodes and a target. This strategy produces a scalar/fixed value for the CRLB

and is specific to the scenario being analyzed. Although these analyses give

meaningful insights about the positioning performance, it fails to take into ac-

count the randomness in the location of the nodes in the network. In random

networks, as the position of the nodes being localized (e.g., a UE in a cellular

network) or the anchor nodes (such as a SBS) are stochastic and follow different

distributions, the CRLB itself becomes a random variable [64]. In this thesis,

we evaluate the statistical characteristics of the CRLB of the position estimates

of randomly located users based on received signal-strength indicator (RSSI)

measurements.

As an example, in what follows, we describe the CRLB formulation based on

RSSI measurements in a one-dimensional network (such as on-road deployment

of SBSs). Let the transmit power of the anchor SBS be given by PL, and let us

assume that the SBSs are of height hB, and equipped with directional antennas

of gain G0. Let each user be localized by its nearest SBS. Using our previously

described notions of stochastic geometry, we can derive the distance distribution

of the nearest SBS for a deployment density of λ as:

fd(x) = 2λ exp (−2λx) (1.8)



1.4. Bound-Based Characterization of mm-wave Positioning 15

Now, if the transmit signal for localization is x(t), the received signal can

be written as:

y(t) =

√
KG0PL

(h2B + d2)
α
4

x (t) + n(t), (1.9)

where n(t) is a zero mean additive white Gaussian noise resulting in estimation

errors. In the following lemma, we calculate the Fischer information for the

estimation of d using RSSI measurements. Then, the CRLB, i.e., a lower bound

on the variance of any unbiased estimator of d, is the inverse of the Fisher

information.

Lemma 1. The expected value of the Fisher information for the estimation of

the distance (d) is calculated as:

JD =
KG0PL2λf̄ 2

σ2
N

∫ ∞

1

e−2λx

(h2B + x2)
α
2

dx, (1.10)

where f̄ 2 = 1.25π2B2. Furthermore, the prior information is: Jp = log (2λ)−1.

Proof. The Fisher information for a given d is [63]:

Jd =
KG0PL

(h2B + d2)
α
2 σ2

N

f̄ 2, (1.11)

where f̄ 2 =
∫∞
−∞(2πf)2|X(f)|2df
∫∞
−∞ |X(f)|2df is the effective bandwidth of the signal. In our case,

we assume that the signal has a flat spectrum [24], and accordingly, we have

f̄ 2 = 1.25π2B2. Now using the distribution of d from (1.8), the expectation of

the Fisher information is calculated as:

JD = Ed [Jd] =
KG0PL2λf̄ 2

σ2
N

∫ ∞

1

e−2λx

(h2B + x2)
α
2

dx. (1.12)

Finally, the prior information can be calculated as:

Jp = E [log(fd(x))] =

∫ ∞

0

log (fd(x)) fd(x)dx

=

∫ ∞

0

log (2λ exp (−2λx)) 2λ exp (−2λx) dx

= log (2λ)− 1

This completes the proof.
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Figure 1.3: The BCRLB with varying deployment densities
for two values of transmit power.

Finally, the Bayesian information can be obtained as JB = JD + JP . Conse-

quently, the BCRLB and Jeffrey’s prior, (which is simply the square root of the

Bayesian information) corresponding to the Bayesian information are calculated

as 1
JB

and
√
JB, respectively.

We study the BCRLB for a mm-wave system with 1 GHz bandwidth. In

Fig. 1.3 we plot the BCRLB with respect to the deployment densities for two

values of transmit powers. We notice that as the deployment gets more dense,

the positioning accuracy increases due to closer proximity of the UE to the serv-

ing SBS. The positioning accuracy improves with increasing transmit power as

well. We observe a linear relationship between the BCRLB and the deployment

density in the log domain. Finally, it is interesting to note that the variance

of positioning error is in the sub-meter range with mm-wave. In Part II of

this thesis, we characterize and optimize the positioning error of the UE in the

network in relation to their data-communication performance.

Now, we summarize the overall contributions of the thesis in the next section.

1.5 Contributions and Organization

This thesis begins with the definition and characterization of performance met-

rics of multi-tier heterogeneous networks (HetNets) with multi-RAT mm-wave

small cells. First, we consider a homogeneous deployment of the BSs and study

the coverage performance of the users in the network. We propose cell range

expansion algorithms for enhancing coverage performance or to facilitate effi-

cient load-balancing in multi-RAT HetNets. Then, we consider a more realistic
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deployment geometry in the context of urban scenarios, where the multi-RAT

small-cells are deployed along the roads of a city. We perform coverage analysis

of the users in this network and propose cell range expansion algorithms primar-

ily aimed at service differentiation in the context of 5G. Finally, for this urban

scenario with on-road deployment of small cells, we characterize a network de-

ployed to support simultaneous positioning and communication services.

The thesis is broadly organized into two parts. The first part (Chapters 2-4)

deals with the modeling and performance analysis of multi-tier and multi-RAT

networks with mm-wave small cells.

In Chapter 2, we characterize a two tier heterogeneous network, consisting

of classical sub-6GHz macro cells, and multi RAT small cells able to operate in

sub-6GHz and mm-wave bands. For optimizing coverage and to balance loads,

we propose a two-step mechanism based on two biases for tuning the tier and

RAT selection, where the sub-6GHz band is used to speed-up the initial access

procedure in the mm-wave RAT. First, we investigate the effect of the biases in

terms of SINR distribution, cell load, and user throughput. More specifically,

we obtain the optimal biases that maximize either the SINR coverage or the

user downlink throughput. Then, we present one of the first studies of dynamic

traffic of a cellular network using stochastic geometry, and characterize the

network load. Using this result, we derive upper bounds on the overloading

probabilities of each tier. Finally, for a given traffic density, we provide the

small cell density required to satisfy system constraints in terms of overloading

and outage probabilities. Our analysis highlights the importance of using multi-

RAT technology in particular when small cells are sparsely deployed or in case

of heavy traffic.

In Chapter 3, in order to realistically characterize the user performance,

we model the position of the mm-wave multi-RAT small cells along roads. A

BS located sufficiently close, but on a different street than that of a UE may

not provide sufficient downlink power to the UE due to blockages by buildings,

which is not straightforward to capture using single or multiple LOS ball models.

First, we provide tractable, yet realistic models to characterize the mm-wave

interference and the effect of vehicular blockages on the mm-wave signals. Then,

we introduce an association policy where a user selects the serving tier using

the powers measured on the sub-6GHz band, and then, using the biased power

of the mm-wave band selects the RAT. Based on this, we derive the SINR

coverage probabilities of pedestrian users. We investigate the effect of the the
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vehicular density on the user performance and optimize the RAT selection bias

with respect to vehicular blockage, SINR coverage probability, and rate coverage

probability. Our analysis highlights that the operator should implement a varied

range of RAT selection biases to support the diverse applications of the 5G

mobile systems. Accordingly, we provide a slice-aware RAT selection strategy

to support three types of services characterized by different requirements in

terms of reliability, coverage, and data rates.

Part II (Chapters 4 and 5) deals with the joint characterization of posi-

tioning and communication performance of users using mm-wave communi-

cations. Particularly, in Chapter 5, we revisit our millimeter wave network

deployed along the streets of a city, and characterize the user performance in

terms of positioning and downlink data-rate performance, respectively. First,

we present a transmission scheme where the BS provide jointly positioning

and data-communication functionalities. Accordingly, we study the trade-off

between the localization and the data rate performance based on theoretical

bounds. Then, we obtain an upper bound on the probability of beam misalign-

ment based on the derived localization error bound. Finally, we prescribe the

network operator a scheme to select the beamwidth and the splitting factor be-

tween the localization and communication resources to address different service

requirements, while limiting cellular outage.

In Chapter 5, we propose an optimal beamwidth selection policy maximiz-

ing the rate coverage for a localization assisted mm-wave network. We for-

mulate the localization performance in terms of delay and AoA and down-link

rate performance (in terms of rate coverage probability) of a mm-wave network

deployed along the streets of an urban environment. We study the trade-off

between localization and communication performance with respect to the re-

sources allotted to these functionalities, and accordingly, we characterize the

optimal beamwidth selection strategy based on this trade-off. With more en-

ergy allocated for precise localization, we have a lower beam selection error,

although it reduces the energy available for communications and hence the rate

performance. Conversely, we obtain better rate performance with more energy

allocation to communication while increasing the chance of beam selection error

due to less precise localization.
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Chapter 2

Coverage Analysis and Load

Balancing in HetNets with

mm-wave Multi-RAT Small

Cells

2.1 Introduction

Future cellular networks will require a tremendous increase in data rates. This

multi-fold enhancement cannot be achieved through incremental improvements

on existing schemes [2]. For this, two techniques are particularly attractive:

network densification using small cells [65] and mm-wave wave communica-

tions [23]. Densification of cellular networks consists of massive deployments

of small cells, overlaying the existing macro cell architecture. Traditionally,

small cells are deployed in sub-6GHz frequencies with the aim of offloading

macro-cells. This calls for Inter-Cell Interference Coordination [66, 67] and

load balancing [68]. To further increase the data rates, mm-wave small cells,

providing a very high bandwidth, are gaining popularity. Apart from the large

bandwidths, mm-wave communication comes with highly directional antennas,

which greatly reduces the co-channel interference [40]. Transmissions using

higher frequencies suffer from larger attenuation and high sensitivity to block-

ages [36, 37]. The attenuation in mm-wave can be efficiently mitigated using

beamforming techniques, with large number of antennas. As the wavelength is

shorter, antennas are also smaller than in sub-6 GHz bands, so that deploying

many more antennas becomes feasible. The highly directional antenna patterns

pose in turn new issues in terms of coverage and user tracking. Moreover, pro-

viding initial access to standalone mm-wave base stations using beamtraining
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with thin beams presents a difficult challenge [41]. In this regard, the sub-6GHz

band can be used to aid the initial access mechanism [43]. Specifically, given

suitable signal processing mechanisms, the position and orientation of the users

relative to a sub-6GHz BS can be determined (see e.g., [44]). If sub-6GHz and

mm-wave BS are co-located, or their position and orientation relative to one

another are known, the coarse-grained angle information for beamtraining of

the mm-wave RF front-end can be derived easily, which significantly speeds up

the initial access procedure. As a result, it is unrealistic to assume ubiquitous

coverage with only mm-wave small cells, and it is envisioned that multiple RAT

will co-exist in future cellular networks [46] [47].

In this chapter, we analyze the SINR distribution, the cell load, and the

downlink user throughput in a heterogeneous network with multi-RAT small

cells using stochastic geometry. In order to optimize the user’s SINR or to

balance loads between tiers and RATs, we propose a cell association scheme

based on two biases. In addition, we show the interest of deploying multi-RAT

small cells to improve users’ QoS.

2.1.1 Related Work

Elsawy et al., have presented a comprehensive survey on stochastic geometry

to model multi-tier cellular networks [53]. The SINR and physical data rate

distributions have been derived in the literature by Bai et al. [69] for single-tier

mm-wave networks, by Singh et al. [70] for multi-tier sub-6GHz and by Di Renzo

for mm-wave networks [71]. In case of small cells operating in the same band of

the macro cell, Singh et al. [70], have shown that, without advanced interference

management techniques, the SINR decreases with increasing offloading bias.

On the contrary, in this chapter, we investigate how employing mm-wave in

conjunction with sub-6GHz in small cells affects the system performance, and

we show that optimizing the offloading biases can increase the user’s SINR.

In the context of random networks, Yao et al. [72], similar to Di Renzo [71]

have characterized the SINR coverage probability and the physical data rate

in a multi-tier mm-wave network. However, the authors have not studied how

traffic dynamics in a multi-user scenario impacts the network performance and

the average user throughput. On the other hand, Elshaer et al. [73] have an-

alyzed a multi-tier network with sub-6GHz macro cells and mm-wave small

cells. They have derived the SINR coverage probability as a function of the tier

association bias, and they have shown only by simulations that a non-trivial
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optimal tier selection bias may exist. They have also investigated the relation

between the association bias and throughput but without considering dynamic

traffic. Moreover, they have characterized the load by using the average number

of associated users in a cell; although, for a more realistic characterization, a

dynamic traffic model should be considered. Furthermore, they have not opti-

mized the user throughput while considering SINR outage constraints as well

as overloading constraints.

In this perspective, Bonald and Proutiere [74] have studied the relations

between the traffic arrival rate and the cell load for a single cell scenario. In the

case of single-tier cellular network, Blaszczyszyn and Karray [57] have approx-

imated the cell load by a mean-cell approach to calculate the number of active

users in a cell and the average user throughput. We leverage on these studies

to design the optimal load balancing in multi-RAT heterogeneous networks and

to derive bounds on overloading probabilities.

2.1.2 Contributions and Organization

The contributions of this chapter can be summarized as follows:

• SINR Coverage in a multi-RAT Heterogeneous Network: By using stochas-

tic geometry, we derive the association probabilities and the SINR distri-

bution of a typical user in a multi-RAT heterogeneous network with small

cells operating in sub-6GHz and millimeter wave bands. In the literature,

SINR coverage and throughput analyses have not been performed so far

for such a system model.

• Association Scheme for Tier and RAT Selection: We introduce a mech-

anism based on two biases, QT and QR, for tuning the tier and RAT

selection, respectively. The principle of using biased received power for

association has been used so far for tier offloading, whereas in this chapter,

we introduce a second bias to distribute the users between the available

RATs in the small cells. Using these biases, we propose a two-step associ-

ation scheme, in which initial access is performed in the sub-6GHz band.

We compare our association mechanism with a more natural and exhaus-

tive one-step association procedure in terms of sub-optimality of biased

received power and downlink throughput. We show that this two-step

association scheme fares better than cell association with beamtraining
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in mm-wave in terms of downlink throughput, specially in case of higher

access delays.

• Bias Optimization for SINR Coverage: Contrary to single-RAT heteroge-

neous networks, biasing the received power can lead to an improved SINR

in a multi-RAT system. However, bias optimization is difficult in general.

In the general case, QT and QR can be obtained by brute force if the range

of possible values is small. To limit the complexity of this approach, we

provide a strategy that sets QR based on the ratio of the approximated

mean SINR in sub-6GHz band and mm-wave. Thereafter, QT is obtained

using a random-restart hill-climbing algorithm with adaptive step-size.

We show that this strategy achieves near-optimal SINR coverage probabil-

ity. We also highlight through simulations that sparse deployments require

sub-6GHz band service for guaranteeing SINR requirements, whereas, in

case of dense deployments, mm-wave may provide good SINR coverage,

but with limited macrocell offloading. However, we show that, with large

macrocell offloading, users at the edge of small cells, even in relatively

dense deployments, need sub-6GHz band service to receive appreciable

SINR coverage.

• Cell Load Characterization and Load Balancing: Next, we analyze the ef-

fect of traffic density on the downlink user throughput by using a M/G/1/PS

queue model. The existing literature in stochastic geometry defines the

cell load as the average number of associated full buffer users, uniformly

distributed over the cell area, see e.g., [53, 75]. This approach is static in

nature and ignores the effect of dynamic traffic on the user distribution:

users with low data rate tend indeed to stay longer in the system so that

the user distribution becomes inhomogeneous in space. To account for

this effect, we rely on results from queuing theory [74] and characterize

the load of each cell by the mean cell approximation [57]. We solve a

fixed point equation for the load to take the load of the interfering base

stations into account. Accordingly, we derive upper bounds on the prob-

ability for a cell in each tier and RAT to become overloaded. Based on

the derived bounds, we provide values of minimum necessary deployment

densities required for a given traffic density so as to limit overloading and

outage. We then derive and optimize the downlink user throughput with

respect to tier and RAT biases under these constraints. We analyze the

fundamental trade-off between user throughput, overloading and outage
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Table 2.1: Notations and System Parameters

Notation Parameter Value

φM , λM MBS process and density λM = 5 per sq. km.
φS , λS SBS process and density λS = 5-200 per sq. km.
PM , PS MBS/SBS power 46 dBm, 30 dBm

αtLr , αtNr Approximated LOS/non line-of-sight (NLOS) path-loss exponents 2, 4
G0 Maximum directivity gain with mm-wave antenna 36 dB
N0 Noise power density -174 dBm/Hz

Bµ, Bmm Sub-6GHz/mm-wave bandwidth 20 MHz, 1 GHz

σ2
N,mm, σ2

N,µ Noise power N0Bmm, N0Bµ

dM , dS MBS/SBS LOS ball radius 200 m, 20 m
θ Beamwidth 15 degrees

probabilities. We finally highlight that the capability of the small cells

to operate also in the sub-6GHz band plays a key role to restrict outage,

thereby justifying our system model.

The rest of the chapter is organized as follows. In Section 2.2, we introduce

our two-tier heterogeneous network model. In Section 2.3.2, we describe the

proposed tier and RAT selection procedure and we derive the related associa-

tion probabilities. Then, in Section 2.4, we compute and optimize the network

downlink SINR distribution in terms of the tier and RAT selection biases. In

Section 2.5, we characterize the load of the network and the downlink user

throughput under a dynamic traffic model, and, hence, we design the load bal-

ancing such that the user performance is maximized. Simulation results are

provided in Section 2.6. Finally, the chapter concludes in Section 4.5. Main

notations used in this chapter are shown in Table 2.1.

2.2 System Model

2.2.1 Two-Tier Network Model

Consider a two-tier network consisting of macro BSs referred to as MBSs, and

small cell BSs referred to as SBSs. MBSs are deployed to guarantee continuous

coverage to the users. On the contrary, multi-RAT SBSs locally provide high

data rate by jointly exploiting sub-6GHz and mm-wave bands. We also assume

that the same sub-6GHz band is shared by MBSs and SBSs. Therefore, users re-

ceiving services on this band experience both co-tier and cross-tier interference.

MBS and SBS locations are modeled as independent Poisson point processes

(PPP), φM and φS, with intensities λM and λS, respectively. Let the transmit

power of MBS be given by PM ; the small cell transmit power, in both the bands,

is assumed to be equal to PS. End users are assumed to be distributed accord-

ing to a PPP φU , independent of both φM and φS. Due to the independence of
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the PPPs and Slivnyak’s theorem [53], without loss of generality, we carry out

our downlink analysis considering a typical user located at the origin.

2.2.2 Blockage Processes

Cellular networks generally suffer from link blockages due to buildings, vehicles,

etc. We assume a blockage process independent of the BS processes. Let the

probability of a MBS and SBS to be in LOS with respect to the typical user

at a distance r, be denoted by pM(r) and pS(r), respectively. For a given

SBS, the LOS probability in sub-6GHz is assumed to be the same as that in

mm-wave. This is because, the probability of a signal to be blocked mainly

depends on the blockage process, which is independent of the carrier frequency

[76]. Due to the blockages, MBSs and SBSs can be categorized into either LOS

or NLOS processes: φML, φMN , φSL, and φSN , respectively. The intensity of

these modified processes are given by pM(r)λM , (1 − pM(r))λM , pS(r)λS, and

(1 − pS(r))λS, respectively. In our work, we use the LOS ball approximation

introduced in [69]. Accordingly, let dM be the MBS LOS ball radius. The

probability of the typical user to be in LOS from a MBS at a distance r is

pM(r) = 1, if r < dM , and pM(r) = 0, otherwise.1 We assume a similar LOS

ball for the SBS process with a different radius dS.

2.2.3 Directional Beamforming in mm-wave

In case of mm-wave operations, the received powers take advantage of the di-

rectional antenna gain of the transmitter and the receiver. The user and the

serving BS are assumed to be aligned, whereas the interfering BSs are randomly

oriented with respect to the typical user. Here, we assume a tractable model,

where the product of the transmitter and receiver antenna gains, G, takes on

the values ak with probabilities bk as given in Table 1 of [69]. Let the maximum

value of G be G0.

1Note that the ball-based LOS probability model is not used in the literature for sub-6GHz
frequencies. Instead, a model with LOS probability equal to 1 until a certain distance and then
decreasing exponentially is preferred, see e.g., [77]. For simplicity and tractability reasons, we
use here a step probability model following criterion 1 in [69] to make the connection between
the two approaches.
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2.2.4 Path-loss Processes

We assume a distance based path-loss model where the path-loss at a distance

dtvr from a transmitter is given by: ltvr(d) = Ktvrd
−αtvr
tvr for a BS of type tvr, i.e.,

characterized by tier t (MBS or SBS), visibility state v (LOS or NLOS), and

RAT r (sub-6GHz or mm-wave). Parameters Ktvr and αtvr are derived from

3GPP UMa model for sub-6GHz MBSs, Umi model for sub-6GHz SBSs [78],

and Umi model for mm-wave data transmission in SBSs [36]. By assuming a

fast fading that is Rayleigh distributed with variance equal to one, the average

received power is thus given by Ptvr = PtKtvrd
−αtvr
tvr , where Pt is the transmit

power of a BS of tier t.

With our values (see Table 2.1) of transmit powers, path-loss exponents, and

LOS ball radii, we have
d
αSLµ
S

KSLµPS
≤ d

αMLµ
M

KMLµPM
≤ d

αSNµ
S

KSNµPS
≤ d

αMNµ
M

KMNµPM
. The analysis

in this chapter is done considering that this ordering does not change even when

powers are biased2. This assumption is reasonable considering that if a LOS BS

exists and the tier bias is moderate, its biased received power is very likely to be

greater than that of any NLOS BS. Accordingly, we analyze the performance of

the network with tier-selection bias (QT ) in the range: 1 ≤ QT ≤ d
αSNµ
S KMLµPM

d
αMLµ
M KSNµPS

= Qmax
T .

2.2.5 Dynamic Traffic Model

We consider a model in which users arrive in the system, download a file, and

leave the system. Any new download by the same user is considered as a

new user. The arrival process of the new users is Poisson distributed with

an intensity λ [users ·s−1·m−2] and these new users are uniformly distributed

over the network area A. The average file size is σ [bits/user]. When there

are n users simultaneously served by a base station, the available resources are

equally shared between them in a Round Robin fashion. Accordingly, we define

the traffic density w in the network as w = λ ·σ [bits·s−1·m−2]. Note that, while

the user arrivals are uniform in space, as the space-time process evolves, users

farther from the serving base stations which are characterized by lower data

rates stay longer in the system, resulting in an inhomogeneous distribution of

active users in the network.

2This assumption of ordering is considered only for the sake of simplicity and practicality.
Considering higher bias values marginally alters the theoretical developments by modifying
integral bounds in association probabilities. From an engineering point of view, very high
bias values also lead to unacceptable outage probabilities and thus are of little interest.
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2.3 Cell Association Procedure

In this section, we propose a cell association scheme based on tier and RAT

selection biases and we derive the corresponding association probabilities. We

start below by a preliminary result.

2.3.1 Distribution of the Path-loss Process

To analyze the cell association, path-loss processes are reformulated as one

dimensional processes, φ′
tvr = {ξtvr,i : ξtvr,i = ||xi||αtvr

KtvrPt
, xi ∈ φtv}, t ∈ {M,S}, v ∈

{L,N}, r ∈ {µ,m}. The processes φ′
tvr are non-homogeneous with intensities

calculated as below.

Lemma 2. The intensity measures of the LOS and NLOS path-loss processes,

φ′
tLr and φ

′
tNr are:

Λ′
tLr(0, x) =







πλt(KtvrPt)
2

αtLr x
2

αtLr , x <
d
αtLr
t

KtvrPt

πλtd
2
t , x >

d
αtLr
t

KtvrPt

,

Λ′
tNr(0, x) =







0, x <
d
αtNr
t

KtvrPt

πλt((KtvrPtx)
2

αtNr − d2t ), x >
d
αtNr
t

KtvrPt

. (2.1)

Proof. The derivation of the intensity measure is similar to that in [79].

The related intensities are obtained by differentiating the intensity measures,

and are given by:

λ′tLr(x) =







2πλt(KtvrPt)
2

αtLr

αtLr
x

2
αtLr

−1
, x <

d
αtLr
M

KtvrPt

0, x >
d
αtLr
t

KtvrPt

λ′tNr(x) =







0, x <
d
αtNr
M

KtvrPt

2πλt(KtvrPt)
2

αtNr

αtNr
x

2
αtNr

−1
, x >

d
αtNr
t

KtvrPt
.

(2.2)

Lemma 3. The probability density function (PDF) of the first point of φ′
tvµ,

which corresponds to strongest sub-6GHz BS, is:

fξtvµ1(r) = e−Λ′
tvµ(0,r)λ′tvµ(r).
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Proof. The pdf of the first point in φ′
tvµ is computed as

fξtvµ1(r) =
d

dr

[

P(φ′
tvµ ∩ (0, r) = 0)

]

=
d

dr

[

e−Λ′
tvµ(0,r)

]

= e−Λ′
tvµ(0,r)λ′tvµ(r),

where Λ′
tvµ and λ′tvµ are given by Eq. (2.1) and Eq. (2.2), respectively.

2.3.2 Tier and RAT Selection Scheme

For the cell association mechanism, we assume that BSs send their control

signals in the sub-6GHz band. This is due to the fact that sub-6GHz commu-

nication benefits from a higher reliability and better coverage than mm-wave

signals [80]. Our scheme is based on two biases QT and QR for selecting the

tier and the RAT respectively, to which the user will be associated. Parameter

QT is the classical cell range expansion parameter [70]: a user compares the

strongest MBS signal with the strongest biased SBS signal. By varying QT , we

are able to offload users from MBSs to SBSs. Once associated to a SBS, in

our approach, a user compares the sub-6GHz received signal with the mm-wave

signal strength biased with a second parameter QR. By varying QR, users can

be distributed between RATs of the same SBS3. The association policy, sum-

marized in Algorithm 1, consists of two steps: tier selection and RAT selection.

2.3.3 Tier Selection

The tier selection is based on the transmitted signal on the sub-6GHz band. As

a result, a user can be served either by: 1. an MBS in LOS (ML), 2. an MBS

in NLOS (MN), 3. an SBS in LOS (SL), or 4. an SBS in NLOS (SN). Each of

these tiers form separate PPPs. The biased received powers in sub-6GHz from

the strongest LOS MBS, NLOS MBS, LOS SBS, and NLOS SBS are denoted

as PMLµ1, PMNµ1, QTPSLµ1, and QTPSNµ1, respectively. User association is only

based on measured biased received power. With the ordering assumption of

Section 2.2.4, however, a user associates with an NLOS BS only in absence of

an LOS BS. It must be noted that the user does not know the visibility state of

3An alternative association scheme could be realized through the control of the SBS power
in the different bands. However, as the transmit powers of SBSs are generally limited, we do
not take this into consideration. Moreover, our approach can be easily adapted to study this
alternative scheme.



34 Chapter 2. Coverage Analysis and Load Balancing

Algorithm 1: Tier and RAT Selection

1: Measure downlink sub-6GHz received powers from all MBS, SBS.
2: Let PMvµ1 and PSvµ1 be the strongest powers received from an MBS and an SBS,

respectively.
3: if PMvµ1 ≥ QTPSvµ1 then

4: Associate to the strongest MBS
5: else

6: Associate to the strongest SBS
7: Measure the mm-wave received power from the SBS (PSvm1).
8: if PSvµ1 ≥ QRPSvm1 then

9: Start service from SBS in sub-6GHz band.
10: else

11: Start service from SBS in mm-wave band.
12: end if

13: end if

the base stations and associates only according to the biased received powers.

The result that the user associates with an NLOS BS only in the absence of a

LOS BS follows from the ordering described in Section 2.2.4, which in turn, is a

result of the values of the transmit powers and LOS ball radii. As a consequence,

for a LOS BS, the association probability of a typical user with tier t can be

calculated as:

PtL = E [1(tL)] · E[1(t′L)] · P(Q̃TPtLµ1 > Q̃T ′Pt′Lµ1)+

E [1(tL)] · (1− E[1(t′L)]), (2.3)

where t, t′ ∈ {M,S}, t 6= t′, and 1(.) is an indicator function: 1(tL) = 1 if and

only if a point of tier t with visibility state L exists. The value of Q̃T is equal

to 1 if t = M , else it is equal to QT . The first term of Eq. (2.3) is the product

of the probabilities of 1) the existence of a LOS SBS and 2) the existence of

a LOS MBS and 3) that the received power from the serving tier is greater

than the one from the non-serving tier. The second term is the product of the

probabilities of the existence of at least one LOS BS of the serving tier and the

absence of a LOS BS of the non-serving tier. In the same way, for the NLOS

BSs, we have:

PtN = (1− E[1(tML)]) · (1− E[1(tSL)]) · P(Q̃TPtNµ1 > Q̃TPt′Nµ1). (2.4)

From these observations, we can deduce the tier selection probabilities as fol-

lows.
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Lemma 4. The tier selection probabilities are:

PML = exp(−πλMd2M) · exp(−πλSd2S) ·W1 + exp(−πλMd2M) ·
(

1− exp(−πλSd2S)
)

,

PMN =
(

1− exp(−πλMd2M)
)

·
(

1− exp(−πλSd2S)
)

·W2,

PSL = exp(−πλMd2M) · exp(−πλSd2S) · (1−W1) + exp(−πλSd2S)·
(

1− exp(−πλMd2M)
)

,

PSN =
(

1− exp(−πλMd2M)
)

·
(

1− exp(−πλSd2S)
)

· (1−W2),

where,

W1 =
(1− e−(K1+1)t1)

1 +K1

+ exp(−πλSd2S)·
[

exp

(

−Λ′
MLµ

(

0,
d
αSLµ

S

QTKSLµPS

))

− exp(−πλMd2M)

]

,

W2 = exp(−πλSd2S)
e−(K2+1)t2

1 +K2

,

K1 = πλS(
KSLµPSQT

KMLµPM
)

2
αSLµ (πλM)

−αMLµ
αSLµ ,

t1 = πλM(KMLµPM)
2

αMLµ

(

d
αSLµ
S

QTKSLµPS

) 2
αMLµ

,

K2 = πλS(
KSNµPSQT

KMNµPM
)

2
αSNµ (πλM)

−αMNµ
αSNµ , and t2 = πλMd

2
M(KMNµPM)

2
αMNµ

−1
.

Proof. See Appendix A.1.

Lemma 5. Given that a user is associated to a tier t of visibility state v, the

pdf of the point in the 1D process of the serving BS is given by:

f̂ξtvµ1(x) =
fξtvµ1(x)

Ptv

∏

∀(t′v′ 6=tv)
P(φ′

t′v′ ∩ (0, x) = 0), (2.5)

where fξtvµ1(x) is given by Lemma 3.

Proof. The proof follows from Lemma 3 above and Lemma 3 of [69].

2.3.4 RAT Selection in SBS

A dual-band user, associated with an SBS, is served using mm-wave if and only

if the biased estimated power in the mm-wave band is larger than the power

received in the sub-6GHz band.
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Lemma 6. Given that a user is associated with a SBS of visibility state v, the

sub-6GHz and mm-wave RAT selection probabilities are respectively given by:

Pvµ = exp

(

−πλS
(

KSvmG0QR

KSvµ

) 2
αSvm−αSvµ

)

(2.6)

Pvm = 1− Pvµ. (2.7)

Proof. See Appendix A.2.

We denote Ptvr , PtvPvr as the association probability to a BS of type tvr

with the convention that when t = M , Pvµ = 1− Pvm = 1.

2.3.5 Comparison to a One-Step Association Strategy

It must be noted that our proposed two-step association scheme is different from

a more natural and exhaustive scheme (e.g., [73]), which directly compares the

biased received powers from all the tiers and RATs (i.e., one-step procedure). In

this regard, our two-step association procedure suffers from some sub-optimality

with respect to the biased received power. However, access delay is lower with

our strategy because the users position and orientation can be acquired in the

sub-6GHz band before performing beamtraining.

First, we show that both the one-step strategy and our approach result in

the same RAT selection, given that the user associates with the small cell tier.

Then, our strategy differs from the one-step strategy when a user associates to

an MBS while the biased power received from an SBS in mm-wave is higher

than the biased power received from the MBS. We characterize hereafter the

probability of this event.

Proposition 1. If the typical user receives a higher sub-6GHz received power

from an SBS S1 as compared to an SBS S2, then it also receives higher mm-wave

power from S1 than from S2. Moreover, the tier selection and RAT selections

biases QT and QR, do not impact this ordering of received powers.

Proof. See Appendix A.4.

From Proposition 1, we conclude that it is not possible for the typical user to

have a higher received power in sub-6GHz band from SBS S1 as compared to S2

and lower mm-wave power from the same. Thus, the two schemes result in the

same RAT selection, in case the user associates with the SBS tier. Therefore,

the only difference in association arises when the biased received power from the
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strongest SBS (denoted S1) in sub-6GHz band is less than that received from

the strongest MBS (denoted by M1), while simultaneously, the biased received

power from S1 in mm-wave is higher than the biased received power from M1.

Let us call these events E1 and E2, respectively. This results in sub-optimal

association of some users in the sense that these users are not associated to the

tier-RAT pair providing the highest biased power. We have the following result

to model this sub-optimal association.

Lemma 7. The probability of suboptimal association in case of an association

with LOS MBS instead of mm-wave LOS SBS is given as:

PSO = 2πλM
1− exp (−π (λSζ2 − 2λSζ1 + λM) d2M)

2ζ2
, (2.8)

where ζ1 = PSQT

PM
and ζ2 = KmPSQRQT

KµPM

Proof. See Appendix A.5.

In Section 2.6, we provide numerical results to show that the sub-optimality

is limited, and this loss can be compensated by a faster access procedure, which

may increase the network throughput.

2.3.6 A Simple Strategy to Prioritize mm-wave RAT

Depending on the network load and the active services, the mobile operator

may want to prioritize one RAT over the other. For instance, the utilization

of mm-wave frequencies for latency sensitive applications, can be an attractive

strategy to offload the sub-6GHz band, which can mainly be dedicated to com-

munications requiring reliability and continuous service. In the following, we

propose a strategy to achieve this goal. For that, we introduce the following

definition:

Definition 1. The critical distance with respect to the typical user is the dis-

tance of the SBS from which the typical user receives equal mm-wave and sub-

6GHz power.

For our system model, the critical distance for the LOS SBS tier can be

expressed as:

dCL =

(

KSLm

KSLµ

G0

) 1
αSLm−αSLµ

(2.9)
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Proposition 2. If there exists exactly one point of the LOS SBS process within

the critical distance, the typical user always selects mm-wave as serving RAT.

Moreover, in this scenario, this is the optimal strategy in terms of SINR for the

typical user.

Proof. In the case where this condition holds, the useful signal received in

mm-wave is greater than that received in sub-6GHz (as per definition of dCL).

Thus, the typical user always selects the mm-wave RAT from the serving SBS.

Moreover, as all interfering LOS SBS are outside dCL, the sub-6GHz interference

has state-wise dominance with respect to the mm-wave interference. Hence, the

mm-wave SINR is always larger than the sub-6GHz SINR.

From Eq. (2.9), we see that, for given path-loss exponent values of each user,

the critical distance can be controlled by varying the product of the transmitter

and receiver antenna gain G0. This enables the users served by LOS SBSs

to adjust their antenna gain in order to select mm-wave communications, and

ensure that this choice is optimal from the SINR perspective. In addition,

given a fixed antenna gain G0, we have the following corollary, which provides

the deployment density of SBSs that maximizes the probability of occurrence

of a single LOS SBS within the critical distance.

Corollary 1. The maximum probability of occurrence of exactly one point of

LOS SBS within the critical distance is 1/e, and this occurs at:

λS =
1

π

(

KSvm

KSvµ

G0

) 2
αSLµ−αSLm

.

Proof. The probability of existence of only one point within the critical distance

is calculated as:

P (φ′
SL ∩ b(0, dCL) = 1) = πλSd

2
CL exp(−πλSd2CL), where b(0, dCL) is the ball

of radius dCL centered at the origin. The maximum value of this probability

occurs at πλSd
2
CL = 1, then substituting the value of dCL from Eq. (2.9)

completes the proof.

2.4 Downlink SINR Distribution

In this section, we first derive the downlink SINR coverage probability for the

maximum biased received power association policy and then optimize the biases

with respect to the cell coverage.
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2.4.1 SINR Coverage Probability

The SINR coverage probability at a threshold γ, can be expressed as PC(γ) =

P(SINR > γ). Following the theorem of total probabilities, we have:

PC(γ) =
∑

t∈{M,S}, v∈{L,N}, r∈{µ,m}
P(SINRt,v,r > γ|t, v, r)Ptvr, (2.10)

We divide the problem of finding the overall coverage probability into two

parts: the one related to the sub-6GHz service and the one associated with

the mm-wave service, and we compute the coverage probability by relying on

1D processes φ′
tvr.

Lemma 8. The conditional SINR coverage probability, given that the user is

associated with a sub-6GHz BS of tier t and visibility state v, is given by:

PCtvµ(γ) =

∫ ∞

0

exp

(

−γ · σ2
N,µ · x−

∑

t′,v′

At′v′(γ, x)

)

f̂ξtvµ1(x)dx, (2.11)

where,

At′v′ =

∞
∫

lt′

γx

y + γx
Λ′
t′v′µ(dy), ∀ t′ ∈ {M,S}, v′ ∈ {L,N}.

Additionally, lt′ = x if t′ = t, lt′ = QT · x, when t = M and t′ = S, and

lt′ = x/QT , when t = S and t′ = M .

Proof. See Appendix A.3.

Lemma 9. The conditional SINR coverage probability, given that the user is

associated with a SBS in mm-wave of visibility state v, is given by:

PCSvm(γ) =

∫ ∞

0

exp

(

−γ · x · σ
2
N,mm

G0

− B1(γ, x)− B2(γ, x)

)

f̂ξSvm1(x)dx,

(2.12)

with B1(γ, x) =
4
∑

k=1



−bk
∞
∫

x

(

akγx

y + akγx
Λ′
Svm(dy)

)



 ,

and, B2(γ, x) =
4
∑

k=1



−bk
∞
∫

x

(

akγx

y + akγx
Λ′
Sv′m(dy)

)



 .

Proof. The proof follows in a similar way to that of Lemma 7.
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2.4.2 A Near-Optimal Strategy for Bias Selection

On the one hand, obtaining optimal biases with respect to the SINR cover-

age probability is difficult because of the complex expressions. On the other

hand, using brute force to search through all the possible pairs of tier and RAT

selection biases can have a very high time-complexity which limits practical im-

plementation. Accordingly, in this section, we propose a strategy to select the

tier and RAT selection biases with the aim of maximizing the SINR coverage.

Specifically, the proposed strategy is based in two parts: 1) computing the

RAT selection bias, QR and 2) obtaining the tier selection bias QT based on a

random-restart hill-climbing algorithm.

Heuristic for Selection of QR

The heuristic to set the RAT selection bias QR consists of computing the ratio

of the mean signal to interference and noise perceived by the typical user on

the sub-6GHz and mm-wave bands. That is:

QR =
E

[

Smm

Imm+σ2
N,mm

]

E

[

Sµ

Iµ+σ2
N,µ

] , (2.13)

where Iµ and Imm, respectively, are the sum of the interference from all the (LOS

and NLOS) BSs in sub-6GHz and mm-wave, respectively. It must be noted

that evaluating the above expression without the knowledge of the coverage

probability is not possible. However, with a relaxation of independence of the

useful signal and the interference for each of the RATs, the expected values can

be approximated using the results of [81]. Once QR is computed, QT can be

obtained by the following step

Random-Restart Hill-Climbing Algorithm for Selection of QT

We start with a random value of QT , i.e., Q0
T and calculate the gradient of PC

at Q0
T . In case the gradient is non-negative, we increase the value of QT by a

step size of k. If the gradient is negative, we decrease the value of QT by the

same step size k. We continue this procedure with the updated value of QT

until the variation in QT is sufficiently small. In the case where the product

of two consecutive values of the gradient is non-positive, and as a result we

cross a stationary point, we reduce the step size by a factor β and continue the

algorithm.
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In our algorithm, Qmax
T is the maximum value of the bias in the moderate

range. If the coverage probability is monotonic, quasi-convex or quasi-concave,

this procedure provides the optimal value of QT . In the general case, the pro-

cedure stops at a local maximum in the range 1 ≤ QT ≤ Qmax
T . This local

maximum can be improved by repeatedly starting the same algorithm with

random starting points. This procedure to obtain QT is summarized in Algo-

rithm 2. In Section VI, we compare the performance of this proposed scheme

with the optimal case.

Algorithm 2: Random-restart hill-climbing algorithm with Adaptive Step-Size

1: Set t = 1, k > 0, ǫ > 0 and β > 1.
2: Set QT (0) = Q0

T .
3: while |QT (t)−QT (t− 1)| > ǫ do
4: if

dPC

dQT
(QT (t)) > 0 then

5: QT (t) = min{QT (t− 1) + k,Qmax
T }.

6: else

7: QT (t) = max{QT (t− 1)− k, 1}.
8: end if

9: if
dPC

QT
(QT (t)) · dPC

QT
(QT (t− 1)) < 0 then

10: k ← k
β .

11: end if

12: t← t+ 1
13: end while

2.5 Cell Load, User Throughput, and Load Bal-

ancing

In the previous section we have focused only on coverage aspects, we now take

into account cell loads to show how tier and RAT selection biases can improve

the user average throughput. For this, we consider a multi-user system where

the users share the available radio resources according to a round robin policy.

2.5.1 Cell Load Characterization

According to our model of the traffic arrival process, the traffic density is given

as w = λ · σ [bits/s/m2]. For a single cell scenario, Bonald et al. [74] have

modeled the load of the cell of area A as ρ =
∫

A
w
R(s)

ds [74], where R(s) is the

physical data rate of a user located at s. In case of Poisson-Voronoi cells, the

average load is generally difficult to evaluate because of the randomness in the
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shape and sizes of the cells. Furthermore, in a multi-cell scenario, the load of a

cell depends on the SINR characteristics of the cell, which in turn, depends on

the load of the other cells in the network.

We know from the ergodicity of the PPP, that the fraction of the BS of

type tvr that are idle is equal to the fractional idle time of the typical BS of

same type. Accordingly, assuming that the load of the typical BS of type tvr is

given by ρ̄tvr, then, the fraction of idle BS of type tvr is given by 1− ρ̄tvr. We

substitute this value ∀ t, v, r in the calculation of the load as:

ρ̄tvr =

∫

γ

wAtvr
Br log2(1 + γ)

ptvr(ρ̄, γ)dγ, (2.14)

where the pdf of the SINR ptvr(ρ̄tvr, γ) is a function of the average idle fraction

of the BS and ρ̄ is a vector of the fraction of idle BSs of all BS types, i.e.,

ρ̄ = [ρtvr] ∀ t, v, r. This fixed point equation is then solved in an iterative

manner to obtain the actual load of the BS of all the tiers (starting from zero

load). Then, the SINR coverage probability with 1 − ρ̄ fraction of BSs idle,

given that the user is associated with a sub-6GHz BS of tier t and visibility

state v, is given by:

PCtvµ(ρ̄, γ) =

∫ ∞

0

exp

(

−γ · σ2
N,µ · x−

∑

t′,v′

At′v′(γ, x, ρt′v′µ)

)

f̂ξtvµ1(x)dx,

(2.15)

where,

At′v′(γ, x, ρt′v′µ) =

∞
∫

lt′

γx

y + γx
Λ′
t′v′µ(dy, ρt′v′µ), ∀ t′ ∈ {M,S}, v′ ∈ {L,N}.

Additionally, lt′ = x if t′ = t, lt′ = QT · x, when t = M and t′ = S, and

lt′ = x/QT , when t = S and t′ = M . The intensity measures Λtvr are obtained

by modifying λt to λtρtvr for each BS type. The calculation for the mm-wave

BS follows in the same way.

It should be noted that in case of a Poisson distributed network, there exists

a non-zero fraction of unstable cells (ρ ≥ 1), which cannot handle their load.
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Lemma 10. The probability of a typical cell of type tvr to be unstable is bounded

as:

P (ρtvr ≥ 1) ≤ min

{

σ2
tvr

(1− ρ̄tvr)2
, ρ̄tvr

}

, (2.16)

where σ2
tvr = E[ρ2tvr]− ρ̄2tvr, is the variance of the load, which can also be calcu-

lated, similar to ρ̄tvr by using the SINR coverage probability of the typical user.

Proof. We have for every k > 0,

P [(ρtvr − ρ̄tvr ≥ kσtvr)] ≤ P [|ρtvr − ρ̄tvr| ≥ kσtvr]
(a)

≤ 1

k2
,

where, (a) is from Chebyshev inequality. Substituting k · σtvr = 1 − ρ̄tvr, we

obtain the first term of the right hand side in (2.16). The second term is a

direct result of Markov inequality.

2.5.2 Average User Throughput

The average downlink throughput that a user receives from a BS of type tvr is

Ttvr
∆
= wAtvr

Ntvr
, where Ntvr is the average number of active users in a cell, which

can be approximated by using the mean cell approach [57]. The mean cell is

defined as a hypothetical cell that has the same average load as that of a typical

cell.

Lemma 11. The downlink average user’s throughput in a non-overloaded mean

cell of type tvr is:

Ttvr = λ · σ1− ρ̄tvr
ρ̄tvr

Atvr.

Proof. The proof is similar to that presented in [74].

The average user throughput is then given by theorem of total probability as:

T =
∑

tvr PtvrTtvr. Due to the different operating bandwidths, the bias values

which provide the optimal user throughput may lead to weak SINR, which in

turn increases the outage. Thus, to guarantee the communication reliability,

it is necessary to consider an SINR constraint on the selection of the optimal

biases. We define the outage probability with respect to a SINR threshold γmin

as:

Po,tvr(γmin) = 1− PCtvr(γmin). (2.17)
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Therefore, we introduce the notion of effective throughput, which measures the

throughput of the users, which are not in outage, as: Teff (γmin) =
∑

tvr Ptvr ·
Ttvr ·PCtvr(γmin). In Section 2.6, we optimize QT and QR so as to maximize the

average effective user throughput Teff (γmin) under the constraint of a maximum

outage probability Po,tvr(γmin) ≤ P̄o for every BS type tvr.

2.5.3 Delay-Throughput Trade-off of the One-Step As-

sociation Scheme.

It must be noted that the sub-optimality in biased received power does not

always deteriorate the downlink user throughput, specially for larger access

delays. To illustrate this, let us assume that the initial access using mm-wave

suffers from a delay given by ∆. In this regard, the throughput for the users

associated to the SBSs in mm-wave RAT is given by:

TSvm =
σ

NSvm

Λ
+ ∆

, (2.18)

where Λ = λ ·ASvm is the traffic arrival rate in terms of users per second in the

mm-wave cell of visibility state v of coverage area ASvm = PSvm

λS
, NSvm = ρ̄Svm

1−ρ̄Svm

is the number of active users in the cell, and NSvm

Λ
is the transmission time

according to Little’s theorem [82]. In Section VI, we provide some numerical

results to show that in case of realistic access delay with the mm-wave RAT,

our scheme performs better in terms of the downlink throughput.

2.6 Simulation Results

In this section, we first validate our path-loss exponent approximation with

respect to 3GPP values. Then, we study the effects of biases on SINR and user

throughput. Finally, we discuss the selection of optimal biases.

2.6.1 Validation of the Path-loss Exponent Approxima-

tion

Fig. 2.1 shows the comparison of our analytical results using the approximated

path-loss exponents from Table I with Monte-Carlo simulations with actual

path-loss exponents from the 3GPP recommendations [78, 36] in terms of SINR
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Figure 2.1: Validation of the approximated path-loss expo-
nents with 3GPP parameters.
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Figure 2.2: Tier selection probability

coverage probability for various tier, RAT selection biases, and density val-

ues. Our results indicate that the analytical expressions based on approximated

path-loss exponents provide good approximations to the simulated results with

3GPP values of exponents. Hence, this approximation can be used for analyzing

the system performance.

2.6.2 Trends in Cell Association Probabilities

Fig. 2.2 shows the tier selection probabilities with respect to the ratio of the

MBS and SBS densities λS/λM with QT = 10 dB and with QT = 0 dB. As

expected, the association to MBSs decreases as λS/λM increases or when QT

increases. However, the association to LOS BSs does not change appreciably

when increasing QT from 0 to 10 dB. Only cell edge users, which are more likely

to be in NLOS visibility, are indeed affected by moderate values of QT .
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30 dB and the red curves correspond to G0 = 36 dB;

The conditional probability of mm-wave service, given that the user has as-

sociated with a SBS, is plotted in Fig. 2.3, by varying QR for two different

antenna gains and deployment density ratios. As expected, this probability

increases with QR. However, it is interesting to note that the maximum direc-

tional antenna gain has a large effect on the RAT selection regardless of the

SBS density. For example, increasing by only 3 dB the antenna gains of trans-

mitter and receiver each has much more impact on the mm-wave association

than deploying four times more SBSs.



2.6. Simulation Results 47

0 2 4 6 8 10
mm-Wave Access Delay ( ) [ms]

200

300

400

500

600

U
se

r 
T

h
ro

u
g
h
p
u
t 
[M

b
p
s]

 = 50 Mb, one-step access

 = 50 Mb, two-step access

 = 20 Mb, one-step access

 = 20 Mb, two-step access

Figure 2.5: Delay-throughput trade-off with mm-wave initial
access; G0 = 36 dB, QT = 10 dB, QR = 5 dB, λ = 100 [user ·

km−2 s−1].

2.6.3 Comparison with the One-Step Association Strat-

egy:

We plot the probability of sub-optimal association (2.8) in the Figure 2.4, for

various tier and RAT selection biases and two antenna gains. We note that the

probability of sub-optimal association is low (≤ 12%). Moreover, the proba-

bility becomes negligible with low tier selection bias (≤ 1%). This is because

with lower QT , the biased received power of the mm-wave transmission in SBS

are lower, thereby reducing the probability of sub-optimality. Similarly, with

lower antenna gain (G0), the biased mm-wave power is lower, resulting in low

sub-optimality. Furthermore, we observe that the probability of sub-optimal

association increases with increasing network densification, since denser net-

works correspond to higher mm-wave powers. However, for G0 = 30 dB, the

probability of sub-optimal association does not exceed 8% even for very dense

deployments.

In Figure 2.5, we compare the throughput perceived by the typical user with

the two approaches (2.18). We plot the downlink user throughput vs the initial

access delay ∆, for two different file sizes (σ). We see that with increasing

∆, the throughput with the one-step association scheme decreases, and goes

below the throughput achieved by using our two-step solution. In practical

systems, the initial access delay in mm-wave can be of the order of several

milliseconds [41]. As a result, our two step association is more efficient in terms

of the user throughput as compared to the case where association is performed

in one-step.
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a threshold of γ = −10 dB for QR = −∞ dB;

2.6.4 Trends in SINR Coverage Probabilities

In Fig. 2.6 and 2.7, we plot the SINR coverage probability of the typical user,

with respect to QT and various ratios of SBS to MBS densities. In the case

where the SBSs operate only in sub-6GHz band, i.e., QR = −∞ dB (Fig.

2.6), increasing the tier selection bias decreases the SINR coverage probability

because some users are forced to associate with BSs providing less signal power.

For dM = 200 m and dS = 20 m, Fig. 2.7 shows that the same effect can be

observed when SBSs transmit data only in mm-wave, i.e., QR =∞, regardless

of the deployment densities.

However, in the latter case, when varying the blockage characteristics, we

observe two different behaviors for the SINR coverage probability. In Fig. 2.8,

we see that depending on the LOS ball radii, the SINR may increase with the

tier selection bias. Indeed, the SINR may improve by associating macro cell

users to SBSs transmitting data only in mm-wave, even though this SBS offers

less power in sub-6GHz band, because the received power in mm-wave may

be higher due to antenna gain. Additionally, the interference in mm-wave is

generally lower than the one in the sub-6GHz band. However, increasing the

bias further forces the users closer to the MBS to associate with a SBS that

provide very limited received power, which leads to lower SINR.

Assuming maximum power tier selection (QT = 0 dB), Fig. 2.9 shows that

increasing QR has contrasting effects on the SINR depending on the ratio of SBS

to MBS densities. Increasing the SBS density increases co-channel interference

more in sub-6GHz than in mm-wave. Moreover, as the user-SBS distance de-

creases, the useful signal power increases more in mm-wave than in sub-6GHz.
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Both effects are due to the difference in the path-loss models. As a consequence,

as the SBS density increases (λS/λM = 200), it is more and more attractive for

a user to be served by mm-wave band, which is realized by higher values of QR.

On the contrary, in case of sparser SBS deployments (λS/λM = 15, 50, 100),

increasing QR forces users to be served from distant SBSs in mm-wave, and the

gain due to the reduced interference cannot compensate the signal strength loss.

Note that this contrasting effect cannot be observed with single RAT networks.

We now study the joint effect of QT and QR for dense (λS/λM = 200) and

sparse (λS/λM = 50) deployments in Fig. 2.10 and 2.11, respectively. For sparse

SBS deployments, the conclusions drawn so far hold: high SINR regions occur

at low QT and QR. The optimum biases as marked in the figure are QT = 0

dB and QR = 0 dB. For dense deployments, however, we can observe that, for

a high QT (here for QT > 8 dB), SINR coverage probability generally decreases
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with increasing QR, which is in contrast to the case when QT is small. This is

because, for users far away from their serving SBS, it is now preferable to get

associated with sub-6GHz than with mm-wave. The optimal biases in this case

are QT = 0 dB and QR = 5 dB.

2.6.5 Performance of the Near-Optimal Strategy to Se-

lect Tier and RAT Biases

In Section 2.4.2, we have proposed a near-optimal strategy to fix the RAT and

tier-selection bias, to reduce the complexity of the brute force search. In this

strategy, first QR is selected according to (2.13). Then, for the fixed QR, a

QT is selected according a random-restart hill-climbing algorithm as described
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in Algorithm 2. We show the convergence of the algorithm in Fig. 2.12 for

λS/λM = 200 and for two pairs of LOS radii. With k = 0.5 and β = 2, the

proposed algorithm converges at QT = 3.19 dB for dS = 20 m and dM = 150 m,

and at QT = 7.16 dB for dS = 15 m and dM = 100 m. Fig. 2.13 compares various

bias selection strategies. We observe that our proposed strategy performs at

least as good as the classical strategy based on the maximum received power.

In particular, for sparse deployment of SBSs, the proposed strategy and the

maximum power association perform equal to the optimal association. However,

with increasing SBS density, the performance of the maximum power association

decreases due to the increasing interference in the sub-6GHz RAT. On the

contrary, since our strategy takes interference into account, it achieves near

optimal SINR.
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2.6.6 Analysis of the Bound on Overloading Probabili-

ties

In this section, we investigate the relation between the cell overloading proba-

bilities and the traffic density, based on the analytical bound derived in Lemma

10. We see in Fig. 2.14 for λS/λM = 5 that the proposed bound is relatively

loose but it provides the operator the guarantee that the overload probability

will not exceed this value. Based on this bound and a constraint on the overall

outage probability, a conservative network sizing can be derived. In Fig. 2.15,

we show the minimum deployment density required such that feasible biases

exist to meet both theses constraints. The more stringent the constraints are,

the more SBSs the operator should deploy. When the traffic density is low, the

outage probability is the limiting constraint and accordingly, the minimum de-

ployment density is the one required to maintain coverage. However, as traffic

density increases, overloading probability is determining.

2.6.7 Rate Optimal Choice of Tier and RAT Selection

Biases

In this section, we optimize tier and RAT selection biases with respect to the

average effective throughput. To guarantee a good coverage, we impose a con-

straint on the outage probability (from 7.5 to 12.5%4). The MBS association

probability corresponding to the optimal QT as a function of the traffic density

4Note that generally, PPP based modeling of cellular networks provide a pessimistic view
of the network. Previous studies showed that an outage of 1% in hexagonal model corresponds
to 10% outage in a PPP based modeling for the same network parameters [83].
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Figure 2.16: Throughput optimal MBS association probabili-
ties.

is shown in Fig. 2.16. Depending on the ratio of densities λS/λM , users are

offloaded from MBS to SBS (for low SBS densities) or vice-versa (for high SBS

densities).

In Fig. 2.17, we show the optimal effective downlink throughput as a func-

tion of the traffic density for various deployment densities and outage con-

straints. We observe that more stringent outage constraints result in lower

downlink throughput in the network. This is because biases are mainly op-

timized to guarantee coverage also for cell edge users. We also observe that

increasing the SBS density not only results in higher throughput, but also in-

creases the range of traffic densities that the network can serve, i.e., the network

capacity. In this evaluation, we have obtained the downlink throughput by con-

sidering that the users in overloaded base stations receive zero throughput.

Therefore, even though the network as a whole can serve traffic densities up

to 1 Gbps/m2, the MBS tier gets overloaded for much lower traffic densities.

Accordingly, the network is no longer well-dimensioned for the region of traffic

densities beyond the MBS overloading points. Furthermore, in Fig. 2.18, we

plot the optimum association probabilities as a function of outage probability

with λS/λM = 50 and traffic density of 200 bits·s−1m−2. We see that for more

stringent outage constraints, sub-6GHz service in SBSs becomes necessary, in

addition to mm-wave service, to satisfy the QoS constraints of outage and over-

loading simultaneously, thus justifying the interest of deploying dual band SBSs.

As a conclusion, in dense SBS deployments (see Fig. 2.20), the users do not

suffer from outage even in the case of high tier biases. In this case, QR should
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be high enough to maximize the mm-wave association probability. In case of

λS/λM = 200, this results in a maximum throughput of around 30 Gbps at

QT = 10 dB and QR = 6 dB. In sparse SBS deployments ( Fig. 2.19), high

values of QT are desirable to offload traffic from overloaded MBSs. However, as

the SBS ranges increase, mm-wave becomes unattractive for users at the SBS

cell edges. We can observe that increasing QR beyond a certain limit pushes the

SBS users in outage thereby decreasing the effective throughput. The maximum

average throughput in this scenario, considering the regime of biases where the

MBS tier is not overloaded, is 10 Mbps at QT = 6 dB and QR = 3 dB.

2.7 Chapter Conclusion

In this chapter, we characterize a two tier network, consisting of classical sub-

6GHz macro cells, and Multi RAT small cells, able to operate in sub-6GHz and

mm-wave bands. First, we propose a two-step tier and RAT selection strategy

where the sub-6GHz band is used to speed-up the initial access procedure in the

mm-wave RAT, and then we investigate the effect of tier and RAT offloading

in terms of SINR, cell load, and throughput. Our study highlights the funda-

mental trade-offs between outage probability, user throughput, and overloading

probability, and, thereby, underscores the necessity of the dual band small cells

to maintain outage below a certain threshold, specially in sparse deployments.

In our system model, we have proposed effective approaches to optimize the user

association. However, obtaining closed form solutions for the optimal biases and

the maximum traffic density that the network can handle are open challenges.
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Moreover, the dual band nature of the base stations calls for advanced radio

resource management, which is an interesting topic to be investigated.
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Chapter 3

Small Cell Deployment Along

Roads: Coverage Analysis and

Slice-Aware RAT Selection

3.1 Introduction

Future wireless applications anticipate an explosion in the plethora of use-cases,

which cannot be sustained by incremental improvements on the existing commu-

nication schemes [2]. To address this, exploiting mm-wave spectrum for broad-

band services is gaining popularity. Additionally, mm-wave communications

employ directional antennas, which reduces co-channel interference, thereby

improving the performance at the UE [40]. However, mm-wave transmissions

suffer from detrimental path-losses and high sensitivity to blockages [23]. For

example, a vehicle located between a BS and a pedestrian UE may block the

signal and induce a temporary service outage. To mitigate the path-loss, beam-

forming techniques should be adopted, which poses issues in terms of coverage

and initial access [41]. One solution to this problem consists of enabling the

UEs to simultaneously receive signals in the mm-wave and in the sub-6GHz

band, and to use the sub-6GHz to support the initial access on the mm-wave

band [45].

Thus, it is unrealistic to assume ubiquitous coverage with only mm-wave

SBSs, and it is envisioned that multiple RAT will co-exist in future [45]. The

ad-hoc deployments of SBSs using multiple RAT will lead to a complex hetero-

geneous architecture. For example, in an urban scenario, the mm-wave SBSs

can be deployed along the urban infrastructure, e.g., on top of lamp-posts [15].

Accordingly, it is important to characterize such a multi-tier multi-RAT net-

work, and derive algorithms to optimize the UE and network performance, and
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fully exploit the potential gains from mm-wave SBS deployment. In this chap-

ter, we model a multi-tier network operating in sub-6GHz and mm-wave bands,

where the SBSs are deployed along the roads. We characterize the UE per-

formance in terms of SINR coverage probability, rate coverage probability, and

vehicular blockages.

In the fourth generation (4G) networks, tier selection biasing is used mainly

for load balancing. Offloading the UEs from the MBS to the SBSs is facili-

tated by a network-wide bias to expand the range of SBSs. On the contrary,

we propose to use various RAT selection biases to distribute services among

the available RATs in order to satisfy their quality of service (QoS) require-

ments. To sustain the diverse use cases of 5G, a mobile operator will be able

to define service-based logical partitions of its network over a common physical

infrastructure. Network slicing facilitates the creation and management of such

network instantiations (the network slices), each one composed by functions

and parameters (e.g., the RAT bias in our work) tailored to address specific

requirements [84].

3.1.1 Related Work

In heterogeneous networks, the UE performance is analyzed using stochastic

geometry by calculating the SINR coverage probability and rate coverage prob-

ability [85]. These metrics have been derived to investigate single-tier [69] and

multi-tier mm-wave networks [71], as well as multi-RAT networks with mm-wave

SBSs [73]. In literature, multi-tier networks are modeled using homogeneous

two dimensional PPP [73, 71] or using repulsive processes [86]. These models,

although tractable, are not able to capture the urban deployment of SBSs along

the metropolitan infrastructure, e.g., along the roads and on lamp posts. For

example, traditional models of such networks either consider only the proximity

of the BS for UE association [73], or characterize UE association by modeling

mm-wave link blockages using distance-based LOS ball models [71]. However,

a BS located sufficiently close, but on a different street than that of a UE may

not provide sufficient downlink power to the UE due to blockages by buildings,

which is not straightforward to capture using single or multiple LOS ball mod-

els. In our work we address this issue by studying the performance of on-road

deployment of mm-wave SBSs in a dense blocking environment.

In this regard, Gloaguen et al. [87] have modeled roads using either a Poisson
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line tessellation (PLT), Poisson-Voronoi tessellation, or a Poisson-Delaunay tes-

sellation. Specifically, using the PLT model, they have analyzed a two-tier wired

network with respect to the mean shortest path length and the mean subscriber

line length. The PLT was used by Morlot [88] to model the location of UEs

and by Choi and Baccelli [89] to model vehicular BSs and UEs. In our previous

work [90], we have characterized a multi-RAT network using SBS deployments

based on a PLT and performed a first coverage analysis for pedestrian UEs.

Furthermore, the effect of the blockages due to vehicular traffic on the pedes-

trian UE performance is generally ignored. This inhibits a realistic study of the

mm-wave cellular networks, since vehicular blockage is an integral part of a

metropolitan scenario. Recently, Tassi et al. [91] have investigated a highway

scenario with moving vehicles modeled as rectangles on the lanes. In our work,

we model vehicles as cuboids, and analyze the effect of vehicular blockages on

the pedestrian UE performance. Accordingly, we have revealed unique features

of the network, especially related to how the UEs are distributed across various

RATs to satisfy the associated slice requirements for varying degrees of link

blockage due to the vehicles. Measurement campaigns affirm that in a street

light based SBS deployment, the physical structures like buildings, vehicles etc.

will be critical for performance evaluation [92]. Therefore, our model that takes

into account blockages due to buildings and moving vehicles presents a very

realistic characterization of such a network.

Finally, Foukas et al. [84] have provided a survey of the challenges in 5G

network slicing. They have identified that the multiplexing of different RATs

is the main challenge for resource virtualization. In this chapter, we provide a

first study in this direction, in the context of multi-RAT multi-tier networks,

by proposing a RAT selection mechanism to support applications on different

network slices. The major contributions of this work are enumerated below.

3.1.2 Contributions and Organization

• We use the Poisson line process (PLP) to model the roads of an urban

scenario on which multi-RAT SBSs, operating in both sub-6GHz and

mm-wave bands are deployed to serve pedestrian UEs. Although this

scenario is widely envisioned for future networks architectures, the inves-

tigation of such multi-tier, multi-RAT network has not yet been performed

in the literature to the best of our knowledge. Thus, our analysis provides
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more reliable results in terms of association probabilities and SINR cov-

erage probabilities as compared to the traditional models.

• We propose a mm-wave interference model for SBS deployment along

roads. For that, we derive the worst-case probability of the interference

perceived at a UE from the n-th neighboring SBS. Then, we show that

the accurate characterization of the mm-wave interference in presence of

vehicular blockages is analytically difficult. We thus introduce a tractable

dominant-interferer based interference model. We show that our model

is more accurate in characterizing the SINR coverage as compared to a

noise-limited approach, which is adopted for simple design of resource al-

location and interference management mechanisms in mm-wave networks,

see e.g. [93].

• We consider the effect of the vehicles that cause a temporary blockage

in the LOS link between an outdoor UE and the SBSs. We exploit the

properties of the PLCP to characterize the average vehicular blockage

probability of a pedestrian UE from its serving SBS. This enables the

operators to properly dimension the network so as to cater to the needs

of reliability constrained applications. Although vehicular blockages are

considered in studying vehicular communications [91], our model is the

first tractable approach to analyze the UE performance in a multi-tier

multi-RAT networks.

• We propose a two-step association policy where the UEs are connected to

a tier based on the maximum received power in the sub-6GHz band. In

case the UE associates to an SBS, it requests service from the RAT that

provides the maximum biased instantaneous downlink received power. We

compare this association scheme with an approach that uses an averaged

power measured over a longer duration. We highlight that the first scheme

suffers from an upper bound on the mm-wave selection probability, due to

the vehicular blockages, and thus hampers aggressive mm-wave offloading.

Using the derived results of the PLCP and the association probabilities

with various tiers and RATs, we derive the SINR coverage probabilities

for the UEs.

• Our results show that for a given density of the SBSs and vehicles, the

optimal RAT selection bias should vary for addressing different service
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requirements, e.g., vehicular blockage, coverage, and data rate. Accord-

ingly, we consider different classes of services, namely URLLC, mMTC,

and eMBB [94], and provide to the operator an algorithm to tune the

RAT selection bias, in order to support their requirements.

The rest of the chapter is organized as follows. In Section 3.2, we present

some preliminary results on the PLCP. In Section D.2, we introduce our system

model. In Section 3.4, we characterize the vehicular blockage and mm-wave

interference. The association probabilities and the SINR coverage probabilities

are derived in Section 3.5 and Section 3.6, respectively. In Section 3.7 we

present our slice-aware RAT selection strategy. Simulation results are provided

in Section 3.8. Finally, the chapter concludes in Section 3.9.

3.2 Preliminary Results on PLCP

In this section, we present the construction and some salient properties of the

PLCP. For that, we first describe the formation of a PLP, which will act as the

domain of the PLCP.

3.2.1 PLCP Definition

A line process P ⊂ R
2 is a collection of random lines {L1, L2, . . .} in the Eu-

clidean plane. Any line that belongs to P is uniquely characterized by the

distance d between the origin O and its projection P on the line, and by the

angle ψ between ~OP and the x-axis on the other hand. Let the domain of the

pair of parameters (ψ, d) be the half cylinder C := [0, 2π) × R
+. We will call C

as the generating set of P , and a point xi ∈ C, corresponding to a line Li ∈ P ,

the generating point of Li. Accordingly, there is a bijective mapping f : P → C
between any random point xi ∈ C and a corresponding line Li ∈ P . We can

now define a PLP.

Definition 2. A line process P , {Li} in R
2 is a PLP, if and only if the set

of corresponding generating points {xi = f(Li)} is a PPP in C.

On every line Li ∈ P , we define a one-dimensional PPP (φi), with intensity

λS. The collection of all such points on all the lines of P is a PLCP, denoted

φS. Thus, the resulting point process is doubly stochastic, with the density

concentrated along the lines. Naturally, φS = ∪i∈P φi.
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Definition 3. A PLCP based on a PLP P, is a process driven by a measure

λS given by: λS(B) = Nℓ1 (P ∩ B) , for a Borel set B, where N is a positive

constant and ℓ1 is the total length of all the lines of P in B.

Definition 4. Two points x and x′ are neighbors to each other, if and only if

∃i: x, x′ ∈ φi. Thus, from the perspective of one point x, all the neighbors on

either side of it can be enumerated as n-th neighbors, where n ∈ N\{0}.

3.2.2 Palm Perspective of the PLCP

Let us study the PLCP from the perspective of a point of the process itself,

using Palm calculus1. Thanks to the Slivnyak’s theorem [52] for a PPP (φ),

conditioning on the event that a point of φ is located at the origin (o) (in other

words o ∈ φ), is equivalent to add a point at o to the PPP φ. Mathematically,

P(φ ∈ Y |o) = P(φ ∪ {o} ∈ Y ), where Y is any point process property. On

similar lines, we state the following Lemma for a PLCP [88].

Lemma 12. For a PLCP P, we have P(φS ∈ Y |o) = P(φS ∪ φ0 ∪ {o} ∈ Y ),

where φ0 is a realization of φi which passes through the origin.

In other words, Palm distribution i.e., conditioning on a point of φS to be at

the origin, is equivalent to add (i) an independent Poisson process of intensity

λS on a line through the origin with uniform independent angle and (ii) an

atom at the origin to the PLCP. The implication of this result is observed in

several results that we derive in this work. As an example, assume the SBSs

are distributed as a PLCP. Then, if a UE is associated with an SBS located

at x, then we have to condition the SBS process based on the fact that there

exists a point of the SBS process located at x. This directly implies that the

corresponding Palm process must include a line (road) containing SBSs passing

through x.

3.2.3 Probability Generating Functionals of the PLCP

Here, we introduce the notion of the PGF of the point processes. The PGF of

a point process φ evaluated for a function ν is defined mathematically as the

Laplace functional of − log ν, and is calculated as: Gφ(ν) = E

[

∏

xi∈φ ν(xi)
]

,

where the expectation is with respect to φ. In our study, the PGF is used for

1In point process theory, the Palm probability refers to the probability of an event condi-
tioned on a point of the process being located at a given position.
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deriving the SINR coverage probability at the typical UE. For this, we derive

the PGF of φS and φi:

Lemma 13. The PGF of the stationary, isotropic PLCP φS is given by:

GφS(ν) = exp

(

−2πλR

(∫ ∞

0

1− exp

(

−2λS

∫ ∞

0

1− ν
(√

r2 + t2
)

dt

))

dr

)

.

(3.1)

The PGF of the PPP φi, on a randomly oriented line, at a fixed distance d

from the origin is:

Gφi,d(ν) =
1

π

∫ π

0

exp

(

−2λS

∫ ∞

0

(

1− ν
(

(

d2 + t2 + 2td cos θ
) 1

2

))

dt

)

dθ.

(3.2)

Proof. See Appendix A.

Let us denote by Gx
φ(ν), the conditional PGF of ν with respect to a point

process φ given that there are no points of the process within a distance x from

the origin. This is calculated by changing the lower limit of the outer integral in

(3.1) and the inner integral in (3.2) from 0 to x. Finally, we note that as the UE

compares the powers from the BSs of each tier, it is important to characterize

the distance distributions of the nearest points of the PLCP.

Lemma 14. Let the distance of the nearest point of the PLCP from the origin

be given by d1. Then, the CDF, Fd1, and the PDF of d1, fd1, are given by:

Fd1(x) = exp

(

−2πλR

(

x−
∫ x

0

exp
(

−2λS
√
x2 − r2

)

dr

))

,

fd1(x) = 2πλRFd1(x)

[

2λSx

∫ x

0

exp(−2λS
√
x2 − r2)√

x2 − r2
dr

]

. (3.3)

Proof. See Appendix B.2.

3.3 System Model

Consider an urban scenario with a dense blocking environment (see Fig. 3.1 for

an illustration). In this scenario, we study the downlink characteristics of a
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Figure 3.1: System model showing on-road deployment of
SBSs with pedestrian UEs.

cellular network consisting of MBS and SBSs. The MBSs operate in the sub-

6GHz band, whereas, the multi-RAT SBSs, deployed along the roads (e.g., on

the lamp posts [15]), provide high data rate and ad-hoc coverage by jointly

exploiting sub-6GHz and mm-wave bands. We assume that the sub-6GHz band

is shared by MBSs and SBSs, so that UEs experience both co-tier and cross-tier

interference in this band. We study the performance of the pedestrian UEs

located on the sidewalks.

3.3.1 Network Geometry

The MBS locations are modeled as points of a homogeneous PPP φM with

intensity λM defined on R
2. The roads are modeled as realizations of a PLP

with intensity λR defined on [0, 2π) × R
+. Each road is assumed to contain one

sidewalk for pedestrians. The SBSs are deployed on the PLT of the roads and

their locations are modeled as the points of a PPP φi with intensity λS ∈ R
+,

where i is the index of the road. We denote by φS the overall SBS process.

Furthermore, we consider pedestrian UEs on the sidewalks, whose locations are

modeled as an independent stationary PPP φU along the PLT of roads, with

an intensity λU ∈ R
+. Thus, both the SBSs and UEs are modeled by PLCPs

driven by the PLP [52].

3.3.2 Static Urban Blockage

For sub-6GHz transmissions from MBSs blockage is generally a secondary ef-

fect [95]; moreover, the path-loss exponent calculated from propagation mea-

surements takes the blocking effects into account [78]. Mm-wave transmissions,

on the other hand, suffer heavily from blockages and communication becomes
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infeasible in case the link is blocked. Accordingly, we assume that the power

received from a mm-wave SBS whose signal is blocked by a building is null [37].

Due to random blockages, MBSs can be categorized into either LOS or

NLOS processes: φML and φMN , respectively. The intensities of these modified

processes are given by pM(r)λM , and (1− pM(r))λM , respectively, where pM(r)

is the probability of an MBS located at a distance r from the UE to be in LOS.

In our work, we use the LOS ball approximation [69]. Accordingly, let DM be

the MBS LOS ball radius. The probability of the typical UE to be in LOS from

a MBS at a distance r is pM(r) = 1, if r < DM , and pM(r) = 0, otherwise.2

Furthermore, due to the blockage by buildings, all SBSs in other streets as that

of a UE are considered to be in NLOS with respect to that UE (e.g., UE 3

and SBS A in the figure) and are denoted by a process φSN ; all SBSs in the

same street are denoted by a process φSL and are in LOS (e.g., UE 1 and SBS

C) except if vehicles block the signal at cross-roads between the transmitter

and the receiver (e.g., UE 2 and SBS B). In our analysis, we use the subscript

notation t, v, r, where t ∈ {M,S} denotes the tier (MBS or SBS), v ∈ {L,N}
denotes the visibility state, i.e., LOS and NLOS, and r ∈ {µ,m} denotes the

RAT (sub-6GHz or mm-wave). We use the subscript “1” when referring to the

closest BS of each type. The distance distributions of the nearest BSs of each

type and visibility state is given in the following lemma:

Lemma 15. The distribution of the distance from a UE to the nearest NLOS

SBS (dSN1) is given by (3.3). Whereas, the distributions of the distances from a

UE to the closest LOS SBS (dSL1), LOS MBS (dML1), and NLOS MBS (dMN1)

are given by:

fdSL1
(x) = 2λS exp (−2λSx) , fdML1

(x) = 2πλMx exp
(

−πλMx2
)

; x < DM ,

fdMN1
(x) = 2πλMx exp

(

−πλM
(

x2 −D2
M

))

; x ≥ DM , (3.4)

3.3.3 Blockage due to Moving Vehicles

We assume that vehicles located on the roads may cause blockage to the mm-wave

links. Due to our assumption that the UEs are on the sidewalks, vehicular block-

age is caused by vehicles present at crossings of the roads between the UEs and

the SBS (see Fig. 1). Let the vehicles be of length LV and relative height hV

with respect to the UE, and located equidistant from each other. Accordingly,

2We convert the semi-graded LOS probability model recommended by 3GPP [77] to a step
probability model, following criterion 1 in [76].
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if the density of the vehicles is λV , the fraction of the roads occupied by the

vehicles is λ′V = LV · λV . Due to the high penetration losses of mm-wave trans-

missions, we assume that the mm-wave signals are completely lost in case the

path between the SBS and the UE is obstructed by a vehicle [37].3 Although

mm-waves can provide very high throughputs, the blockage due to vehicles can

be detrimental for services requiring a high reliability. Note that although sec-

ondary paths may exist for mm-wave propagation due to specular reflections,

we assume that reflected signals contribute insignificantly to the received power.

As a consequence, a mm-wave signal blocked by a vehicle is received with zero

power.

3.3.4 Path Gain

The path-gain at a distance dtvr from a transmitter is given by hrKrd
−αtvr
tvr , where

Kr and αtvr are the path-loss coefficient and exponent, respectively. For sub-

6GHz communications, we assume a Rayleigh fast fading hµ, with unit variance.

Whereas, due to the low local scattering, we consider a Nakagami fading hm

with shape factor n0 for mm-wave communications [95]. In our work, we assume

a sectored model for the transmission pattern of the mm-wave antennas [69],

consisting of a main-lobe of beamwidth θ, and a side-lobe. Let G0 be the

directivity gain product of the main-lobe transmitting and receiving antenna4;

then, the received power at a distance dtvr is given by Ptvµ = PthµKµd
−αtvµ

tvµ for

sub-6GHz and Ptvm = G0PthmKmd
−αtvm
tvm for mm-wave transmissions, where Pt

is the transmit power of a BS of tier t. Following our observations on mm-wave

blockage for NLOS SBS, we have, PSNm = 0.

3.3.5 Tier and RAT Selection Procedure

We assume that the UEs are uniformly distributed along the roads, and asso-

ciate to the BS providing the maximum downlink received power. For this, the

BSs send their control signals in the sub-6GHz band, which is more reliable as

compared to the mm-wave band. A UE may select mm-waves RAT when the

strongest BS is an SBS. In this case, it compares the power in sub-6GHz band

(i.e., PShµKµd
−αSvµ

Svµ ) with that in the mm-wave band biased by a multiplicative

3Thanks to multi-path propagation and larger beam-widths, which result in larger angular
spread for the signal, we assume that the vehicular blockages do not affect the sub-6GHz band
communications significantly.

4For highly directional antennas, the side-lobe gain is negligible; thus, for simplicity, we
assume it to be zero.
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Figure 3.2: Model for calculating the blockage due to moving
vehicles.

factor QR (i.e., QRG0PthmKmd
−αSvm
tvm ). The parameter QR is called the RAT

selection bias and will be used to differentiate the network slices.

The power in each band can be either measured instantaneously, or aver-

aged over a time window. In the instantaneous power RAT selection case, the

UE simultaneously measures the mm-wave power received in different control

channels and averages out the effect of fast fading. The instantaneous vehicular

blockage condition may however inhibit a proper RAT selection. When aver-

aged power RAT selection is performed, the UE measures the mm-wave power

for a longer duration of time attempting to average out the effect of the vehic-

ular blockages as well, which gives a more accurate idea of the radio scene. In

our analysis we will compare the mm-wave selection probability of both these

schemes.

Finally, the way the parameter QR should be optimized is highly dependent

on the QoS requirements of each slice. We thus assume that the UEs are

connected to a slice characterized by QoS triplets T ∗ = (B∗,P∗
C ,P∗

R), where

B∗ is the tolerable vehicular blockage probability, P∗
C is the minimum SINR

coverage probability, and P∗
R is the target rate coverage.

3.4 Vehicular Blockage and mm-wave Interfer-

ence

In this section, we derive the vehicular blockage probability, and we propose an

interference model for system-level evaluations of mm-wave networks.

3.4.1 Characterization of the Vehicular Blockage Prob-

ability

We study the blockages of the link between the SBSs and the UEs due to

the vehicles (see Fig. 3.2), and use this result to derive the mm-wave selection
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probability and the overall SINR.

Proposition 3. The probability that a link between an SBS and a UE at a

distance d is not blocked by a vehicle is given by: L(d) = exp
(

−λ′V λR hVhB d
)

,

where hB is the relative height of the SBS with respect to the UE. Thus, the

vehicular blockage probability B(QR), i.e., the probability given QR that a UE

served in the mm-wave RAT is blocked by a vehicle is given by:

B(QR) =

∫ H

0

(

1− exp

(

−λRλ′V
hV
hB

x

))

fdSL1
(x)dx, (3.5)

where the upper limit in the integral is given by H =
(

KmG0QR

Kµ

) 1
αSLm−αSLµ .

Proof. See Appendix B.3.

3.4.2 Interference Characterization in mm-wave

Interference models traditionally used in the stochastic geometry literature are

planar and thus ignore the elevation of the antenna pattern. In this section, we

propose a model to overcome this limitation in a tractable way for accurately

analyzing a scenario where the SBSs are deployed along a road. For this, we

first characterize the interference caused by an SBS to a UE served by its n-th

neighboring SBS of the same street. Observe that the SBS to which a UE U

is associated (SBS 1 in Fig. 3.3a), causes interference to UEs located in the

n-th neighboring SBS if its beam reaches (at location X on the figure) the n-th

cell. As a worst case interference scenario, assume 1) that U is located at cell

boundary (at distance da
2

from the SBS, where da is the distance between SBSs 1

and 2) and 2) that this interfering signal is not obstructed by any vehicle.

Lemma 16. In the worst case scenario, the probability that an SBS causes

interference in mm-wave transmissions in the coverage area of its n-th neighbor

is given by:

Pn,WC = Edn−1,dn

[

exp

(

−2λShB
dn + dn−1 − 2hB tan θ

2

2hB + (dn + dn−1) tan θ
2

)]

, (3.6)

where dn and dn−1 are the distances between the serving SBS and the n-th and

(n-1)-th neighboring SBS, respectively, and θ is the beamwidth. The expecta-

tion is with respect to the joint distribution of dn and dn−1, which is given by

fdn−1,dn(x, y) =
λ2S exp(−λSy)

(n−2)!
(λSx)n−2, for y ≥ x.
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Figure 3.3: (a) Interference to the n-th SBS from the typical
SBS, and (b) Simplified interference model for LOS mm-wave

SBS.

Proof. See Appendix B.4.

In the general case, the accurate characterization of the actual interference

is relatively difficult, precisely due to two reasons: 1) the position distributions

of the served UEs for each SBS up to the n-th SBS should be taken into ac-

count, and 2) in the presence of vehicular blockages, the number of neighboring

blocked SBSs that do not contribute to the interference, is a random variable.

Moreover, our results in Section 3.8 suggest that the dominant-interferer con-

tributes to almost all the interference. Our model is thus based on the following

assumption.

Assumption 1. The closest SBS on the opposite side than that of the serving

SBS, i.e., the dominant-interferer, is the only SBS that creates substantial in-

terference to the UEs in mm-wave. Accordingly, if the dominant-interferer is

blocked, the mm-wave transmission is noise-limited.

Based on this assumption, we compute the probability p̄G that the dominant-

interferer creates interference to the typical UE, in case it is not blocked by a

vehicle. As shown in Fig. 3.3b, the dominant-interferer B2 causes interference

if its beam partly overlaps the coverage of SBS B1.

Lemma 17. For an arbitrary small beamwidth θ, the typical UE experiences

mm-wave interference from its closest neighboring SBS with a probability (p̄G)

given by (3.7), where x0 = 2hB tan
(

θ
2

)

, x1 = hB tan
(

arctan x
2hB
− θ

2

)

, x2 =
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p̄G =

∫ ∞

x0

∫ x2

x1

exp

(

−λS
(

x− hB tan

(

θ

2
+ arctan

y

hB

)))

(

1− exp
(

λU

(x

2
− x1

)))

+

fyx(y, x)dydx

∫ ∞

x0

∫ x
2

x2

(

1− exp
(

λU

(x

2
− x1

)))

fyx(y, x)dydx.

(3.7)

hB tan
(

arctan
(

x
hB

)

− θ
2

)

, and fxy(x, y) = λSλU exp(−λSx) exp
(

−λU
(

x
2
− y
))

.

Proof. See Appendix B.5.

The condition on the beamwidth comes from the simplifying assumption

that the spillover created by the SBS B2 by serving a UE U2 in its neighboring

cell B1 does not go beyond B1
5.

This model has the advantage of being tractable for system level evalua-

tions. It also provides more accurate results than a noise-limited approach (see

Section 3.8).

3.5 Association Probabilities

In this section, we derive the BS tier selection probabilities and the RAT selec-

tion probabilities for mm-wave and sub-6GHz bands.

3.5.1 Tier Selection for a UE

For each UE, there are four cases for the serving BS: MBS in LOS (ML), MBS

in NLOS (MN), SBS in LOS (SL), and SBS in NLOS (SN). Let Etv denote

the event that the serving BS is of tier t ∈ {M,S} and in visibility state

v ∈ {L,N}. In what follows, we describe the association probabilities for the

case where {tv} = {ML}. Note that for EML, we only have to consider the

joint event {PML1 > PSL1} ∩ {PML1 > PSN1} as in our model we always have

PML1 > PMN1. This event can occur in two ways: (i) PML1 > PSL1 > PSN1, or

(ii) PML1 > PSN1 > PSL1. For the first event (i):

PML1 > PSL1 > PSN1 ⇐⇒
(

PS
PM

d
αMLµ

ML1

) 1
αSLµ

< dSL1 < d

αSNµ
αSLµ

SN1 .

5For a given θ, this occurs with a probability exp( hB

2 tan( θ
2
)

√

1− tan2( θ2 )), which tends to 1

as θ → 0. In deterministic deployments, an operator can set θ ≤ 2 arctan( hBda

2h2
B
+d2

a
) to ensure

that this condition always holds.
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PML = W1





∫

∞

0

∫

∞

x
exp



−2λS



y

αSNµ
αSLµ −

(

PS

PM

x
αMLµ

) 1
αSLµ







 T1(x)fdSN1
(y)fdML1

(x)dydx+

∫

∞

0
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FdSN1



x
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(

PS

PM

y
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 .

PMN = (1 − W1)





∫

∞

0

∫

x

0

exp



−2λS



y

αSNµ
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(

PS

PM

x
αMNµ

) 1
αSLµ
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∞

0
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(

PS
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(y)fdSL1
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PSL = W1





∫

∞

0

∫

∞

x
exp



−πλM





(

PM

PS

y
αSNµ

) 1
αMLµ −

(

PM

PS

x
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∫

∞
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∫

∞

0

∫

∞

x
exp



−πλM





(

PM

PS

y
αSNµ

) 1
αMNµ −

(

PM

PS
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∞

0
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x

0



FdSN1





(

PS

PM

x
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) 1
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− FdSN1
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(
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) 1
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 .

(3.8)

Using the CDF of dSL1 (see Lemma 15), for given instances of dML1 and dSN1,

we have:

P

(

(

PS
PM

d
αMLµ

ML1

) 1
αSLµ

< dSL1 < d

αSNµ
αSLµ

SN1 | dML1, dSN1

)

=

exp

(

−2λS

(

d

αSNµ
αSLµ

SN1 −
(

PS
PM

d
αMLµ

ML1

) 1
αSLµ

))

· exp

(

−2λS

(

(

PS
PM

xαMLµ

) 1
αSLµ

))

.

Then, taking the expectations with respect to dML1 and dSN1 (see Lemmas 14

and 15), we evaluate the probability of (i). Similarly, we can evaluate the prob-

ability of the event (ii), where in the first step, we use the CDF of the variable

dSN1, and then we take expectations with respect to dML1 and dSL1. Finally,

to compute the overall ML association probability, the sum of the probabilities

of (i) and (ii) is multiplied with the probability that there exists a LOS MBS,

i.e., W1 = 1 − exp (−πλD2
M). In a similar manner, all the other probabilities

are calculated.

Proposition 4. The probabilities of association of a UE with a LOS and NLOS

MBS and LOS SBS are given by (3.8), where:

W1 = 1− exp (−πλMD2
M), T1(x) = exp

(

−2λS

(

(

PS

PM
xαMLµ

) 1
αSLµ

))

,

T2(x) = exp

(

−2λS

(

PS

PM
xαMNµ

) 1
αSLµ

)

,

and T3(x) = exp

(

−πλM
(

(

PM

PS
xαSLµ

) 1
αMNµ

))

.
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FdSN1
(x) refers to the CDF of the first NLOS SBS, as given by Lemma 14. The

association probability of the typical UE with an NLOS SBS is then given by:

PSN = 1− PML − PMN − PSL.

Proof. See Appendix B.6.

We now derive the distribution of the distance between a UE and its asso-

ciated serving BS.

Lemma 18. Given that a UE is associated to a BS of a tier t with visibility

state v, the PDF of its distance from the serving BS is given by:

f̂dtv1(x) =
fdtv1(x)

Ptv
∏

∀(t′v′ 6=tv)
P(φt′v′ ∩ (0, x) = 0), (3.9)

where fdtv1(x) is the PDF of the distance of the nearest BS of type tv, t ∈ {M,S}
and v ∈ {L,N}, as derived in (3.4).

3.5.2 RAT Selection for Pedestrian UE

After having selected an SBS as the serving BS, a UE shall select the serving

RAT. We thus derive and analyze the mm-wave selection probabilities for 1)

the instantaneous power RAT selection scheme and 2) the averaged power RAT

selection scheme.

Proposition 5. The conditional mm-wave selection probability, given that the

UE is associated with an LOS SBS and use instantaneous power RAT selection

is given by:

Pm =
2hBλS

λ′V hV λR + 2hBλS

[

1− exp

(

−2λS

(

KmG0QR

Kµ

) 1
αSLm−αSLµ

)]

. (3.10)

In case the UE selects the RAT by adopting the averaged power RAT selection

scheme, the mm-wave selection probability is given by:

P̄m = exp

(

−2λShB (αSLm − αSLµ)

λ′V λShV
W
(

λ′V λShv
hB (αSLm − αSLµ)

(

KmG0QR

Kµ

) 1
αSLm−αSLµ

))

.

(3.11)

where W is the Lambert W-Function.

Proof. See Appendix B.7.
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From this lemma, some immediate observations follow as given below.

Remark 1. From (3.10), we observe that the mm-wave selection probabil-

ity in case of instantaneous power RAT selection is upper bounded by P∗
m =

2hBλS
λ′V hV λR+2hBλS

, regardless of G0 or QR. From (3.11), we observe that with av-

eraged power scheme, it is possible to have a greater degree of RAT tunability

(because P̄m → 1 as QR →∞ or G0 →∞).

The overall association probability of the typical UE is given by Ptvr =

PtvPr. When the serving BS is not a LOS SBS, as we have exclusively sub-

6GHz operation (r = µ), it follows that Pm = P̄m = 0 ∀{t, v} 6= {S, L}.

3.6 SINR Coverage Probabilities

In this section, we derive the downlink SINR coverage probability of the typical

UE, which is mathematically defined as PC(γ) = P(SINR > γ). Following the

theorem of total probabilities:

PC(γ) =
∑

t∈{M,S}, v∈{L,N}, r∈{µ,m}
P(SINRtvr > γ|t, v, r)Ptvr. (3.12)

In case of mm-wave association, we provide a lower bound of the SINR coverage

probability, which we show to be tight in Section 3.8.1.

Theorem 1. The conditional SINR coverage probability, given that the typical

UE is associated to a BS of type ’tv’ in sub-6GHz is given by:

P (SINRtvµ ≥ γ) = Edtv1









exp

(

− γσ2
µ

PSKµd
−αSLµ

tv1

)

∏

{t′v′}
6={tv}

Gd̃tv
φt′v′

(

Pt′x
αt′v′

Pt′xαt′v′ + γPtd
αtv

tv1

)

·

Gd̃tv
φi,dSN1

(

γd
αSNµ

S1

xαSNµ + γd
αSNµ

S1

)

Gdtv1
φtv\{tv1}

(

xαtv

xαtv + γdαtv

tv1

)]

.

(3.13)

For NLOS SBS association, i.e., t = S and v = N , the term Gd̃tv
φi,dSN1

(·) is

replaced by Gd̃tv
φi,dS1

\{SN1}(·). The PGFs of the NLOS SBS process are given in

Lemma 13. For the PGF of the MBS and LOS SBS processes, see [52]. The

conditional SINR coverage probability, given that the typical UE is associated to
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a SBS in mm-wave is lower bounded by:

P (SINRSLm ≥ γ)

≥
n0
∑

n=1

(−1)n+1

(

n0

n

)

EdSL1,dSL2

[

exp
(

−nγ0d−αSLm

SL1 exp (K0dSL1)
)

exp (−K0dSL1) d
−2
SL1

exp (−K0dSL1) d
−2
SL1 + nγpG exp (−K0dSL2) d

−2
SL2

]

, (3.14)

where K0 = λRλ
′
V
hV
hB

, d̃tv =
(

Pt′
Pt
dαtv1
tv1

) 1
α
t′v′1 , and the expectation is taken with re-

spect to the joint distribution of dSL1 and dSL2: fdSL2,dSL1
(x, y) = 2λ2S exp(−λS(x+

y)).

Proof. See Appendix B.8.

Once the SINR coverage probability is obtained, the rate coverage probabil-

ity for each tier and RAT is computed as: PRtvr(r0) = P

(

SINRtvr ≥ 2
r0
B − 1

)

=

PCtvr

(

2
r0
Br − 1

)

. Consequently, the overall rate coverage probability follows

from the theorem of total probabilities:

PR(r0) =
∑

t∈{M,S}, v∈{L,N}, r∈{µ,m}
P(SINRtvr > 2

r0
Br − 1|t, v, r)Ptvr. (3.15)

3.7 A Slice-Aware RAT Selection Mechanism

3.7.1 Effect of RAT Selection Bias on Blockage, SINR,

and Rate

We analyze the RAT selection from the perspective of three services [94]: i)

URLLC characterized by tight link blockage requirement and high SINR cover-

age constraint, ii) mMTC characterized by continuous and ubiquitous coverage

requirement and less stringent blockage constraints, and iii) eMBB character-

ized by high data rate requirement, under coverage constraints. In this section,

we highlight the impact of the RAT selection probability on the blockage, SINR,

and data rate. We then propose a slice-aware RAT selection strategy for the

three services.

Effect of Bias on Blockage

For blockage-sensitive UEs, QR should be such that the vehicular blockage prob-

ability given that a UE is served in mm-wave band (3.5) is limited.
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Remark 2. From (3.5), we observe that B(QR) increases with QR, and thus,

for a given λS, there exists a maximum value of QR, beyond which the vehicular

blockages become unacceptable. As QR →∞, the vehicular blockage probability,

B(QR), attains a value 1 − P∗
m, where P∗

m is the maximum mm-wave selection

probability given in Remark 1.

Corollary 2. Leveraging on Remark 2, the minimum SBS deployment density

that guarantees the vehicular blockage probability to be less than B∗, regardless

of the RAT biasing is:

λ∗S =
(1− B∗)

2B∗ λRλ
′
V

hV
hB

. (3.16)

This enables the operator to properly dimension the cellular network, in

terms of the minimum deployment density of SBS, so as to ensure reliable

mm-wave service.

Effect of Bias on SINR and Data Rate

As we will show in Section 3.8-C, for a given λS, the SINR and rate coverage

probability can either decrease or increase, depending on λV . In some cases,

a non-trivial optimal RAT selection bias exists. This optimal RAT bias val-

ues (distinct for SINR and rate) can be obtained using a random-restart hill

climbing algorithm [45].

3.7.2 Protocol for Slice-Aware RAT Selection

In our system model, the service requirements are characterized by a maximum

tolerable vehicular blockage probability, a minimum SINR coverage probability,

and a target rate coverage probability. As observed in Remark 2, QR can take

values between 0 dB and a maximum value (say QB), which depends on λV .

On the other hand, let the range of bias values that satisfy the SINR coverage

probability constraint be given by (QC1, QC2). Similarly, let the bias range that

satisfies a target rate coverage probability be given by (QR1, QR2).

We assume that for the QoS requirements of different slices, the network

calculates the slice specific bias ranges (1, QB), (QC1, QC2), and (QR1, QR2).

For a given slice, and the associated bias range, the network computes and

broadcasts the optimal bias value (Q∗
R), which in case of URLLC and mMTC

services maximizes the SINR coverage, and in case of eMBB maximizes the

data rate. Q∗
R is obtained using a random restart hill-climbing algorithm [45]
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Algorithm 1 Network-Side Pseudo-
code

Obtain the data about expected vehicular
density in the service area. each slice of QoS
triplet (B,PC ,PR) ∈ T Identify the set of biases
(0, QB) that satisfy B, using (3.5). Identify the
set of biases (QC1, QC2) that satisfy PC , using
(3.12). Identify the set of biases (QR1, QR2) that
satisfy PR, using (3.15). Obtain Q∗

R ∈ (1, QB)∩
(QC1, QC2)∩ (QR1, QR2) for maximizing PC in
(3.12) if URLLC/mMTC slice, or for maximizing
PR in (3.15) if eMBB slice, using random restart
hill climbing. Broadcast Q∗

R within the slice.

Algorithm 2 UE-Side Pseudo-code

1: Measure downlink sub-6GHz received powers,
Ptvµ, from all BSs. PMvµ1 ≥ PSvµ1

2: Request to be associated to the strongest MBS.
3: Request to be associated to the strongest

SBS and measure the mm-wave power from it
(PSvm1). Obtain the RAT bias Q∗

R for the as-
sociated slice. PSvµ1 ≥ Q∗

RPSvm1

4: Request to be served from SBS in sub-6GHz
band.

5: Request to be served from SBS in mm-wave
band.

such that Q∗
R ∈ (1, QB)∩ (QC1, QC2)∩ (QR1, QR2). When a UE associates to an

SBS, it receives the bias value depending on its slice and uses it for the RAT

selection procedure. In the next section, we will show how the mm-wave asso-

ciation probability varies for the three types of slice. In Algorithms 1 and 2, we

summarize our RAT selection strategies at network and UE sides, respectively.

3.8 Numerical Results

In this section, we provide some numerical results to reveal the salient char-

acteristics of the network. We assume a MBS deployment density of λM = 5

km−2, and transmit powers PS = 30 dBm and PM = 45 dBm. N0 is assumed

to be -174 dBm/Hz and the operating frequencies are 2.3 GHz and 60 GHz for

sub-6GHz band and the mm-wave band, respectively, with the corresponding

bandwidths being 20 MHz and 1 GHz. The Nakagami parameter is assumed to

be n0 = 3, the antenna beamwidth is assumed to be θ = 10◦, and the relative

height of the SBSs is assumed to be hB = 10 m. The path-loss parameters are

derived from 3GPP reports [78, 36]. Finally, regarding the vehicles, we assume

C-segment medium sized cars, with hV = 4.5 m and LV = 1.5 m [96].

3.8.1 Validation of the mm-Wave Interference and SINR

Model

In Fig. 3.4, we compare the SINR coverage probability obtained with our analyt-

ical framework (see Theorem 1) with Monte Carlo simulations6. We observe that

6The final integral of (3.3) does not have a closed form. We simplify the evaluation by
expanding the exponential term in the numerator, i.e., exp(−2λS

√
x2 − r2), with a power

series, and evaluating each of the resulting integral terms separately.
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Figure 3.4: Validation of the model for users’ SINR coverage
probability with λS = 100 km−1.

the analytical results agree with the simulations. Specifically, for G0 = 35 dBi,

we see that the lower bound of Theorem 1 is very tight. In Fig. 3.5a, we use

Monte Carlo simulations to compare the SINR coverage with only noise, only

the dominant interferer (see Assumption 1), or the whole interference. We see

that our dominant interferer model the statement is vague; try to be more pre-

cise, talking about low, medium, and high SINR or giving maximum gaps is

sufficiently accurate to represent interference in mm-wave and that the noise

limited model is unacceptable.

3.8.2 Association and RAT Selection Probabilities

In Fig. 3.5b, we plot the association probabilities for pedestrian users (see

Proposition 4). As expected, as λS increases for a given λR, the LOS SBS as-

sociation probability increases and the MBS association probability decreases.

However, with increasing λS, the NLOS SBS association is fairly negligible ex-

cept for very high road densities (e.g., λR = 15 km−1). In Fig. 3.6a, we plot

the mm-wave selection probability with the instantaneous power RAT selec-

tion with respect to QR, given that the typical user has selected an LOS SBS

(Proposition 5). Increasing either or both QR and G0 facilitates an increase in

mm-wave RAT selection. More interestingly, G0 has a more pronounced effect

on mm-wave selection than increasing the deployment density. For example,

with G0 = 10 dBi and QR = 24 dB, doubling λS from 5 to 10 km−1 increases

the mm-wave selection from 50% to 70%, whereas, setting G0 = 20 dBi en-

sures 100% mm-wave RAT selection. Thus, an operator requiring aggressive

mm-wave selection may prefer to invest in more efficient antennas rather than
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Figure 3.5: (a) Validation of the model for users’ SINR cov-
erage probability with λS = 100 km−1, (b) Validation of the
dominant interference model, G0 = 35 dBi, λS = 100 km−1

and (c) Association probabilities of the users with varying SBS
density (solid lines correspond to λR = 15 km−1, dashed lines

correspond to λR = 5 km−1).

increasing λS. Following Remark 1, we observe that with the instantaneous

power RAT selection, in the presence of vehicles, Pm saturates to a value less

than 1. On the contrary, the averaged power RAT selection (see Lemma 5) has

a greater RAT tunability (as shown in Fig. 3.6b), and enables to increase the

mm-wave selection probability. However, increased measurement duration may

lead to higher access delay, which is a tradeoff we aim to study in future works.

In the following, we perform our analysis using the instantaneous power RAT

selection.
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Figure 3.6: (a) Conditional mm-wave selection probability
with RAT selection bias, (b) Comparison of different schemes

of RAT selection, G0 = 20 dBi and λS = 10 km−1.

3.8.3 SINR Coverage Probabilities

In Fig. 3.7a, we plot the SINR coverage probability (Theorem 1). With G0 =

10 dBi and QR = 0 dB, in case of LOS SBS association, the user always selects

sub-6GHz RAT, and. Moreover, we observe that increasing λR slightly decreases

the SINR performance because the sub-6GHz interference increases. In the same

way, the SINR enhancement in the sub-6GHz band achieved by increasing λS

is fairly limited. In Fig. 3.7b, we plot the SINR coverage probability with

respect to λS with fixed G0 and QR to accurately observe this trend. For

users operating only in sub-6GHz band, it may not be possible to maintain a

desired SINR coverage in cities with dense roads by simply increasing λS. This

is because a user perceives higher LOS interference, especially from the SBSs.

Thus, it is necessary to offload users to the less interference-prone mm-wave



82 Chapter 3. Slice-Aware RAT Selection

-40 -20 0 20 40

SINR Threshold,  [dB]

0

0.2

0.4

0.6

0.8

1

S
IN

R
 C

o
ve

ra
g
e
 P

ro
b
a
b
ili

ty
S
 = 10 km-1, 

R
 = 5 km-1, G

0
 = 10 dBi

S
 = 10 km-1, 

R
 = 15 km-1, G

0
 = 10 dBi

S
 = 100 km-1, 

R
 = 5 km-1, G

0
 = 10 dBi

S
 = 100 km-1, 

R
 = 5 km-1, G

0
 = 35 dBi

(a)

10 100 500

SBS Deployment Density, 
S
  [km

-1
]

0.86

0.87

0.88

0.89

0.9

0.91

S
IN

R
 C

o
ve

ra
g
e
 P

ro
b
a
b
ili

ty

(
 =

-1
0
 d

B
)

R
 = 5 km

-1

R
 = 10 km

-1

R
 = 15 km

-1

(b)

Figure 3.7: (a) SINR coverage probability of the users for
different SBS deployment densities and road densities, (b) SINR
coverage probability for the users at γ = −10 dB with respect
to the SBS deployment density (G0 = 10 dBi, QR = 0 dB).

RAT to enhance the SINR in cities with dense roads. Clearly, increasing the

mm-wave selection probability (with G0 = 30 dBi) enhances the SINR (see

Fig. 3.7a). However, in the following section we will see that, in presence of

vehicular blockages and for sparse SBS deployments, the SINR in mm-wave

band can be worse than the one perceived in the sub-6GHz band.

3.8.4 Slice-Aware RAT Selection

In this section, first, we discuss the effect of QR on the network performance,

and accordingly, reveal the intuition behind the choice of the slice-aware RAT

biasing.
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Figure 3.8: SINR coverage probabilities for the users with
varying RAT selection bias with G0 = 10 dBi for different ve-
hicular blockage densities, (a) λS = 50 km−1 and (b) λS = 10
km−1. (c) Vehicular blockage probability with respect to RAT
selection bias given that the user is served with mm-wave RAT.
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Figure 3.9: (a) Rate coverage probability for the user for dif-
ferent vehicular blockage densities, λS = 10 km−1 and (b) Slice-
aware RAT selection probabilities for different use-cases, solid
lines denote the sub-6GHz association probabilities and the dot-
ted lines denote the mm-wave association probabilities respec-

tively.

SINR Coverage

In Fig. 3.8, we plot the SINR coverage probability of the users at γ = −10

dB with varying QR for different vehicular blockage densities. We see that in

the case where the roads are devoid of vehicles, the SINR coverage probability

increases with QR for both dense (Fig. 3.8a) and sparse (Fig. 3.8b) deployment

of SBSs, precisely due to the combined effects of LOS mm-wave signals and

minimal interference in the mm-wave band.

As the λV increases (from 75 to 200 km−1), aggressive mm-wave policy

deteriorates the SINR coverage. As a result, for a given vehicular density in

an urban area, there exists an optimal RAT selection bias that maximizes the
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SINR coverage. More interestingly, in Fig. 3.8b, we observe that in case of

sparse deployments (λS = 10 km−1), with very dense vehicular traffic (λV = 200

km−1), higher biases decreases the system coverage. Thus, corresponding to a

required threshold P∗
C , the operator should select the RAT bias value from a

range (QC1, QC2).

Vehicular Blockage

In Fig. 3.8c, we plot the vehicular blockage probability with varying QR. We ob-

serve that as QR increases, the blockage increases, due to the increased number

of users served in the mm-wave band, which is prone to the vehicular blockage.

Thus, users running URLLC applications will necessarily need to operate below

a bias threshold (say QB) governed by the current λV .

Rate Coverage

From Fig. 3.9a, we see that the rate coverage increases with QR even in the

case of high λV (even though the SINR coverage decreases, see Fig. 3.8a). This

is due to the large bandwidth in the mm-wave band that compensates for the

loss in SINR. However, operating at biases that result in very low SINR would

result in service outage. As a result, it is necessary to optimize QR with respect

to the data rate while satisfying the SINR constraints.

Slice-Aware RAT Selection

To give a better insight to the bias selection scheme, we illustrate our RAT

selection protocol with three examples: 1) A slice for a URLLC service with

T ∗ = (0.001, 0.85, 0), 2) A slice for an mMTC service with T ∗ = (0.1, 0.9, 0), and

3) A slice for an eMBB service with T ∗ = (0, 0.85, 0.7). We assume a network

with λS = 10 km−1, λR = 15 km−1, and G0 = 15 dBi.

For example 1, B∗ is 0.1%, which results in Q∗
R = 19.7 dB. This leads in a

lower mm-wave selection probability (see Fig. 3.9b) as compared to the other

applications. As the vehicular density increases, the maximum allowable QR

to satisfy the vehicular blockage constraint gradually decreases, thereby further

decreasing the mm-wave selection probability.

For example 2, the B∗ is less stringent (10%), whereas P∗
C is tighter (outage

constraint equal to 10%). In case of low λV (e.g., 50 km−1), the optimized bias

is Q∗
R = 25 dB, which achieves an SINR coverage of more than 91%, with a

mm-wave selection of over 80%. This is considerably higher than the URLLC
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applications. However, for λV ≥ 150 km−1, no feasible bias exists to satisfy

the outage constraint, and the application cannot be supported with current

network dimensioning. The vehicular density value after which the network is

not able to sustain outage below 10% is shown in Fig. 3.9b.

Finally, for example 3, the eMBB service does not have any vehicular block-

age constraints. Thus, the operating bias for eMBB applications aims to maxi-

mize the rate coverage probability while satisfying the outage constraint (here

15%). For λV = 50 km−1, the optimized operating bias (Q∗
R = 26.21 dB)

results in a slightly higher mm-wave selection probability than the mMTC ap-

plication. As the vehicular traffic increases, the optimal bias value decreases

(see Fig. 3.9b). However, as the outage constraint is not as stringent as the

mMTC application of example 2, the user can be served even under very high

vehicular densities (e.g., λV = 200 km −1).

3.8.5 System Design Insights

Finally, we outline the system design and dimensioning insights based on our

results:

• In case the operator needs to prioritize mm-wave association for high-

data rate services so as to free the sub-6GHz RAT for reliability specific

applications, it needs to deploy more SBSs per road in a city with more

roads. However, excessive deployment of SBSs degrades the SINR per-

formance of the users. Thus, proper care must be taken of this tradeoff

while dimensioning the cellular network.

• For aggressively offloading the users to mm-wave, increasing the direc-

tivity gain of the antenna is a more efficient mechanism than deploying

more SBSs due to the deployment costs. However, in case of presence of

vehicles, the mm-wave association saturates. This effect can be reduced

by adopting an averaged power RAT selection instead of a more instan-

taneous power RAT selection at the cost of an increased access delay.

• Having a network-wide RAT selection bias will not be able to support

a diverse plethora of applications. Hence, slice-aware RAT selection be-

comes necessary. For URLLC services, there exists a threshold of bias

beyond which the blockage of the service becomes intolerable. For appli-

cations that require high SINR on the contrary, e.g., mMTC, there exist

non-trivial biases that maximize the SINR.
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• The bias values that maximize the downlink data rate may lead to exces-

sive outage, and hence, we provided optimal bias values for rate coverage

under outage constraints. If the operator wants to increase the rate cov-

erage even further, e.g., for eMBB applications, it is important to develop

efficient interference management mechanisms as increasing the deploy-

ment density simply degrades the SINR performance.

3.9 Chapter Conclusions

In this chapter, we have characterized a multi-tier network operating in multi-

ple radio bands. We have provided realistic characterizations of the mm-wave

interference and effect of vehicular blockage on the mm-wave RAT. First, from

the perspective of the pedestrian users, we have analyzed the effect of the RAT

selection bias on the mm-wave blockage, SINR coverage, and rate coverage

probability under different vehicular densities. Accordingly, we have provided

a slice-aware RAT selection strategy to jointly support URLLC, mMTC, and

eMBB applications in future mm-wave sliced 5G networks. Finally, we have

highlighted several key system design insights for an operator that aims to op-

timally serve a diverse variety of services.
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Chapter 4

Positioning Data-Rate Trade-off

in mm-wave Small Cells and

Service Differentiation for 5G

Networks

4.1 Introduction

To address the multi-fold increase in the demand for data rates, exploitation

of higher frequency spectrum in the mm-wave range is gaining popularity [23].

However, mm-wave communication is characterized by high path loss and sen-

sitivity to blockages. To solve these problems, beam-forming techniques are

utilized with the help of highly directional antennas, which result in new issues

in terms of coverage and initial access [41]. Moreover, beam-alignment errors

between the BSs and the UEs degrade the communication performance. One so-

lution to this problem consists of enabling UEs to simultaneously receive signals

in the mm-wave and in the sub-6GHz band, and to use the latter to support the

initial access on the mm-wave band [45]. Another approach exploits position-

ing algorithms to support the UE cell discovery and access to mm-wave BSs.

On the one hand, with fine-tuned positioning, the beam-alignment procedure

is quickened, and beamforming and user tracking are improved [97]. On the

other hand, improved mm-wave beam-forming can be used for more accurate

localization and orientation of nodes [24].

In addition to the high speed data rates, the 5G cellular networks anticipate

an explosion of new services, characterized by heterogeneous requirements. We
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investigate a mm-wave network deployed for supporting positioning and broad-

band functionalities simultaneously, e.g., in vehicle-to-infrastructure communi-

cation. Specifically, we study the trade-off between positioning efficiency and

downlink data rates and accordingly, we prescribe the operator an algorithm to

tune the mm-wave BS transmit power so as to meet specific QoS requirements

of different services.

4.1.1 Related Work

In the context of sub-6GHz systems, Jeong et al. [98] have studied a distributed

antenna system providing both data communication and positioning function-

alities. The authors assumed that the UEs know the positions of the BSs and

attempt to estimate their own positions based on the received signals. Lemic et

al. [99] have shown that localization using mm-wave frequencies is efficient in

terms of accuracy, even in the presence of a limited number of anchor nodes. In

fact, mm-wave beam-forming allows for accurate localization and orientation of

UEs with respect to the BSs [24]. Garcia et al. [97] have studied a location-aided

initial access strategy for mm-wave networks, in which the information of UE

locations enables to speed up the channel estimation and beam-forming pro-

cedures. Destino et al. [24] have studied the trade-off between communication

rate and positioning quality in a single user mm-wave link. Similarly Koirala

et al. [58] have studied the beamforming optimization and spectral power allo-

cation based on theoretical localization bounds.

The downlink communication performance in random wireless networks is

typically characterized by SINR coverage probability and rate coverage prob-

ability, using stochastic geometry [69]. For this, the positions of the BSs are

modeled using homogeneous PPP [73] or using repulsive point processes [86].

Recently, Ghatak et. al. [100] investigated a more realistic scenario, where

mm-wave BSs are deployed along the roads of a city. We use this model in this

chapter, and accordingly we study a one dimensional setting where the BSs and

the served users are assumed to be on the same street.

Specifically, leveraging on the tools of stochastic geometry, we present an

average characterization of the localization and communication performance

of this network, by exploiting the a-priori knowledge about the distribution

of the distances of the users from the BSs. We analyze the positioning and

data communication trade-off, and provide the operator with a power control
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scheme designed to satisfy distinct QoS requirements of the positioning and the

communication functions.

4.1.2 Contributions and Organization

The main contributions of this chapter are:

• We characterize a noise-limited mm-wave system designed to support po-

sitioning and broadband services simultaneously by partitioning the BS

transmit power. First, we obtain the CRLB for the estimation of the dis-

tance of a typical UE from its serving BS. Subsequently, we obtain the

signal to noise ratio (SNR) and rate coverage probability of the typical

user, as a function of the power splitting factor.

• Leveraging on the derived CRLB for the estimation of the distance, we

obtain an upper bound on the probability of beam-selection error. Based

on this, we compute the minimum antenna beamwidth that limits the

beam-selection error.

• Finally, we analyze the trade-off between the positioning and the data

rate performance of the typical user. Accordingly, we prescribe the oper-

ator with a scheme to select the proper power splitting factor to support

different QoS requirements. Specifically, we study our mm-wave system

under different operating beamwidths, and analyze the distribution of the

total transmit power for maximizing either the positioning efficiency or

the UE data-rate.

The rest of the chapter is organized as follows. In Section D.2, we introduce

our system model and outline the performance objectives. In Section D.3,

we derive our main results on the positioning error, the rate coverage, and

the beam-selection error. We provide some numerical results in Section 4.4,

and accordingly present our power partitioning scheme. Finally, the chapter

concludes in Section 4.5.

4.2 System Model

We consider an urban scenario, with multi-storied buildings that result in a

dense blocking environment. In this scenario we analyze a mm-wave network

consisting of BSs deployed along the streets of the city.
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4.2.1 Network Geometry

The positions of the BSs in each street are modeled as points of a one-dimensional

Poisson point process (PPP) φ, with intensity λ [m−1]. Each BS is assumed to

be of known height hB and equipped with directional antennas with beamwidth

θ. Let the corresponding product of the directivity gains of the transmitting

and receiving antennas be G0. The transmit power of the BSs is assumed to be

P . Without loss of generality we perform our analysis from the perspective of

a typical user located at origin, which associates with the BS that provides the

highest downlink power. Accordingly, the distribution of the distance d of the

typical user from the serving BS is given by [52]:

fd(x) = 2λ exp(−2λx) (4.1)

Furthermore, we assume that the network is equipped with efficient interference

management capabilities (e.g., spatio-temporal frequency reuse), so that the

performance of the users is noise-limited1.

4.2.2 Path-loss

Due to the low local scattering, we consider a Nakagami fading for mm-wave

communications [102] with parameter n0 and variance equal to 1. Furthermore,

we assume a path loss model where the power at the origin received from a BS

located at a distance d is given by Pr = K · P · g · G0 · (d2 + h2B)
−α
2 , where K

is the path loss coefficient, g represents the fast-fading, and α is the path loss

exponent. Thus, the average SNR can be written as
K·P ·G0·(d2+h2B)

−α
2

N0·B . N0 and

B are the noise power density and the operating bandwidth, respectively.

4.2.3 Transmission Policy

We assume a communication scheme where the transmit power of the BSs is

divided into two parts: one associated with positioning and the other allot-

ted for data communication. The power allocated for localization determines

the number of control symbols used for this function, whereas the remaining

power is utilized for control and data symbols of the communication phase. We

acknowledge that it is possible to utilize the native communication signal for

1Although the assumption of the network being noise-limited simplifies the analysis, Singh
et al. [101] have shown the validity of this assumption in outdoor mm-wave mesh networks.
In a future work, we will extend the analysis by considering interfering BSs.
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positioning services. However, we use dedicated waveforms designed for better

localization performance (e.g., see [103] for a discussion on localization spe-

cific waveforms). Hence, splitting of the transmit power becomes necessary to

characterize and optimize the operating trade-off between communication and

localization functionalities. Accordingly, if the total transmit power is P , and

β is the fraction of power used for data services, the corresponding transmit

power for localization is PL = (1− β)P . Consequently, the transmit power for

data service is PD = βP . Let the SNR for the distance estimation and the data

communications phases be represented by SNR1 and SNR2, respectively.

4.3 Positioning Error, Data Rate Coverage and

beam-selection error

In this section, we first characterize the minimum variance of the error in the

estimation of the distance of the typical user from the serving BS. Then, we

derive the SNR coverage and the rate coverage probabilities.

4.3.1 Distance Estimation Analysis

To simplify our analysis, we only consider the effect of the distance on the power

of the received signal (for instance, we consider RSSI based ranging algorithms),

and ignore the effect of the distance on the phase [104]. Accordingly, the received

signal is:

y(t) =

√
KG0PL

(h2B + d2)
α
4

x (t) + n(t), (4.2)

where n(t) is a zero mean additive white Gaussian noise resulting in estimation

errors.

Lemma 19. The expected value of the Fisher information for the estimation of

the distance (d) is calculated as:

JD =
KG0PL2λf̄ 2

σ2
N

∫ ∞

1

e−2λx

(h2B + x2)
α
2

dx, (4.3)

where f̄ 2 = 1.25π2B2. Furthermore, the prior information is: Jp = log (2λ)−1.
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JD =
KG0PL2λf̄2

σ2
N

i(e−i2λhBEi(i2λhB)− ei2λhBEi(−i2λhB))
2h

+2λ log (2λ)−1 (4.6)

Proof. The Fisher information for a given d is [63]:

Jd =
KG0PL

(h2B + d2)
α
2 σ2

N

f̄ 2, (4.4)

where f̄ 2 =
∫∞
−∞(2πf)2|X(f)|2df
∫∞
−∞ |X(f)|2df is the effective bandwidth of the signal. In our case,

we assume that the signal has a flat spectrum [24], and accordingly, we have

f̄ 2 = 1.25π2B2. Now using the distribution of d from (5.1), the expectation of

the Fisher information is calculated as:

JD = Ed [Jd] =
KG0PL2λf̄ 2

σ2
N

∫ ∞

1

e−2λx

(h2B + x2)
α
2

dx. (4.5)

Finally, the prior information can be calculated as:

Jp = E [log(fd(x))] =

∫ ∞

0

log (fd(x)) fd(x)dx

=

∫ ∞

0

log (2λ exp (−2λx)) 2λ exp (−2λx) dx

= log (2λ)− 1

This completes the proof.

Corollary 3. For the special case of path loss exponent α = 2, JD evaluates

to (4.6), where Ei is the EI [105].

Finally, the Bayesian information can be obtained as JB = JD + JP . Con-

sequently, the BCRLB and Jeffrey’s prior corresponding to the Bayesian infor-

mation are calculated as 1
JB

and
√
JB, respectively.

Remark 3. Intuitively, higher the Jeffrey’s prior (or lower the BCRLB) is,

better the estimation efficiency will be. From (4.6), we see that a higher Jeffrey’s

prior is facilitated by a larger value of PL, i.e., a smaller β.
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PC(γ) =

n0
∑

n=1

(−1)
n+1

(

n0

n

)

2λ exp

(

2λ −
h2
Bnγσ2

N

PDKG0

)[√
π

2

(√

PDKG0

nγσ2
N

−
PDKG0

nγσ2
N

erf

(

h2
Bnγσ2

N

PDKG0

))]

(4.7)

4.3.2 Coverage and Rate Analysis

Based on the path-loss model of Section II-B, the SNR for the communication

phase at a distance d is:

SNR2 =
PDKgG0

σ2
N

(d2 + h2B)−
α
2 .

Accordingly, let us define the SNR coverage probability of the typical user at

a threshold γ, as the probability that the SNR is greater than γ. It represents

the fraction of the users under coverage in the network.

Lemma 20. The SNR coverage probability at a threshold of γ is calculated

as (4.7).

Proof. The SNR coverage probability is computed as follows (where d := x):

P (SNR2 ≥ γ) = P

(

PDgKG0

σ2
N

(
√

x2 + h2B)−α ≥ γ

)

= P

(

g ≥ γσ2
N

PDKG0(x2 + h2B)−
α
2

)

=

n0
∑

n=1

(−1)n+1

(

n0

n

)

E

[

exp

(

− nγσ2
N

PDKG0(x2 + h2B)−
α
2

)]

=

n0
∑

n=1

(−1)n+1

(

n0

n

)

2λ

∫ ∞

0

exp

(

−nγσ
2
N(x2 + h2B)

α
2

PDKG0

)

·

exp (−2λx) dx

Evaluating this integral completes the proof.

Similar to the SNR coverage probability, the rate coverage probability at

a threshold r0 is defined as the probability that the downlink data rate of the

typical user is greater than r0.

Corollary 4. The rate coverage probability can be computed as:

PR(r0) = P (R ≥ r0) = P

(

SNR2 ≥ 2
r0
B − 1

)

= PC

(

2
r0
B − 1

)

(4.8)
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θ
Estimated User Position

Actual User Position

Figure 4.1: Illustration of the beam-selection error.

4.3.3 Beam Selection Error

A BS with an antenna beamwith θ, serving a user located at distance d, covers

a region of length D0 on the ground (see Fig. 1). Using simple trigonometric

calculations, we have:

D0 =
2 tan

(

θ
2

)

[

1 + d2

h2B

]

1− d2

h2B
tan2 θ

2

.

Once the localization procedure and the corresponding exchange of user-BS

control signals is performed, beam-selection error can occur in the absence of

dynamic beam-alignment on both sides of the radio link. Assuming that the

user’s antenna is always oriented towards the BS, or equivalently in case the

user is operating with an omni-directional antenna, beam-selection error will

occur in case the distance of the user on the ground is more than D0

2
from the

estimated position.

Let us assume that the estimation error for the UE localization is symmetric

about its mean. Consequently, we bound the probability of the beam-selection

error as follows:

Lemma 21. The probability of beam-selection error for a user located at a

distance d from the serving BS is bounded as BCRLB

D0
.

Proof.

PMA(d) = P

(

|d− d̂| ≥ D0

2

)

(a)

≤ 2σ2

D0

(b)
=

2 · BCRLB

D0

, (4.9)

where d̂ is the estimated distance of the user. Here (a) follows from Markov’s

inequality assuming σ2 as the variance of the positioning error. The step (b)

occurs for an minimum-variance unbiased estimator (MVUE).
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Corollary 5. The mean beam-selection error is then bounded by taking the

expectation over d, i.e., P̄MA = Ed [PMA(d)] ≤ Ed

[

2·BCRLB

D0

]

.

In the next section, we prescribe guidelines for an operator to choose an

operating beamwidth for limiting this error.

4.4 Numerical Results and Discussion

In this section, we present some numerical results based on the analytical frame-

work presented in this chapter. First, we show how the SNR coverage proba-

bility changes with the power splitting factor (β). Subsequently, we study the

trade-off between localization and data rate as a function of β. Then, with

the help of two examples, we describe our power partitioning scheme. In the

following analysis, we assume G0 = 10 dB and n0 = 3.

4.4.1 SINR Coverage Probability

In Fig. 4.2 we plot the SNR coverage probability with respect to β at a threshold

of γ = −10 dB. As β increases, the SINR coverage probability increases due to

more power allocated to the data transmission phase. This provides a guideline

to select a minimum operating β for a given deployment density, such that the

outage is limited. As an example, to limit a service outage below 20%, with a

BS deployment of 1 km−1 and a power budget of P = 25 dBm, the minimum β

is 0.15, whereas with a power budget of P = 20 dBm, the minimum β is 0.5.

More interestingly, this analysis provides the operator dimensioning rules

in terms of the deployment density of the BSs for a given power budget. For

example, in order to support services with an outage tolerance of 10%, with a

power budget of 20 dBm, a deployment density of 1 km−1 does not suffice, and

the operator must necessarily deploy more BSs.

4.4.2 Beam-Selection Error

In Fig. 4.3 we plot the mean beam-selection error bound with respect to the

beamwidth of the transmit antenna of the BSs. As expected, the larger the

beamwidth and the higher the SNR, the lower the beam-selection error. For

example, for a tolerable beam-selection error of 0.02% with SNR = -15 dB and

λ = 5 km−1, the minimum antenna beamwidth should be 8 degrees.



100 Chapter 4. Positioning Data-Rate Trade-off

0 0.2 0.4 0.6 0.8 1

Power Partitioning Factor, 

0

0.2

0.4

0.6

0.8

1

S
N

R
 C

ov
er

ag
e 

P
ro

ba
bi

lit
y 

P = 20 dBm,  = 1 km
-1

P = 20 dBm,  = 5 km
-1

P = 25 dBm,  = 1 km
-1

Figure 4.2: SNR coverage probabilities for a threshold of γ =
−10 dB vs the fractional power split for different λ.

5 10 15 20 25

Beamwidth,  [degrees]

0

0.5

1

1.5

2

2.5

3

B
ou

nd
 o

n

P
ro

ba
bi

lit
y 

of
 M

is
al

ig
nm

en
t

10
-4

 = 1 km
-1

, SNR = -10 dB

 = 2 km
-1

, SNR = -10 dB

 = 2 km
-1

, SNR = -15 dB

Figure 4.3: Beam beam-selection error with respect to
beamwidth of the transmit antenna.



4.4. Numerical Results and Discussion 101

0 0.2 0.4 0.6 0.8 1

Rate Coverage Probability, r
0
 = 500 Mbps

0

1000

2000

3000

4000

5000

6000

7000

Je
ffr

ey
's

 P
rio

r 
fo

r 
D

is
ta

nc
e 

E
st

im
at

io
n

P = 20 dBm,  = 30
o
,  = 1 km

-1

P = 25 dBm,  = 30
o
,  = 1 km

-1

P = 20 dBm,  = 20
o
,  = 1 km

-1

P = 20 dBm,  = 30
o
,  = 2 km

-1
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4.4.3 Distance Estimation-Data Rate Trade-off

In Fig. 4.4 we plot the trade-off between the efficiency of the distance estimation

of the user, represented by its Jeffrey’s prior2 and the rate coverage probability

at a rate threshold of 500 Mbps. Each position in the plot for a given deploy-

ment parameter corresponds to a particular β. Thus for a given power budget,

deployment density, and operating beamwidth, the performance of the system

is determined by a particular operating characteristic, i.e., a trade-off between

the positioning efficiency and data rate performance. For a particular operat-

ing characteristic, as we increase β, we improve the rate coverage probability

at the cost of degrading the localization efficiency; whereas, decreasing β has

the opposite effect. Accordingly, there exists a trade-off between the distance

estimation and the data rate performance of the system. In the next subsection,

we propose a scheme for selecting β based on a given operating beamwidth.

4.4.4 QoS Aware Network Parameter Setting

We propose the following scheme for setting the network parameters. First,

for a given power budget, deployment density and operating beamwidth, the

corresponding operating characteristic (i.e., a trade-off curve from Fig. 4.4) is

selected. Next, for the chosen operating characteristic, the minimum βmin is

chosen to satisfy the required outage constraint. Then, for a given positioning

error constraint, the maximum value of β, i.e., βmax is selected. Finally, the

operating βmin ≤ β ≤ βmax is selected to address the specific QoS requirements.

2The estimation error is calculated as the inverse of the Jeffrey’s prior.
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Figure 4.5: Power allocation for the two services.

Accordingly, the beam-selection error varies for the chosen β and the operating

θ.

In what follows, we explain the total power distribution based on the QoS

requirements, for a varying degree of beam-selection error. We assume a network

with λ = 2 km−1 and a BS power budget of P = 20 dBm providing two services:

• Service 1 requires maximum positioning efficiency and a tolerable outage

of 10%.

• Service 2 requires maximum data-rate and a tolerable positioning error of

5e-4 m.

We study the power partitioning scheme under different operating beamwidths.

In practice, the operating beamwidth may be a system requirement for the first

generation mm-wave networks. Intuitively, for a less stringent beam-selection

error requirement, the operating beamwidth can be smaller. This can either

be exploited to improve the positioning or enhance the data-rate, as per the

required QoS.

For service 1, the operator should set β equal to the βmin corresponding to

the θ that satisfies the beam-selection error requirement. Then, if the oper-

ating θ can be decreased, more power can be allotted for positioning and the

one used for data communication Pβmin is reduced, accordingly. On the other

hand, the operator should set β equal to the βmax corresponding to the θ that

satisfies the beam-selection error requirement. Therefore, a thinner beamwidth

facilitates larger power allocation for data communication (PD increases). The

stark difference in the two examples lies in the fact that the advantage of op-

erating with a thinner beamwidth is exploited differently. With decreasing θ,
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for a positioning service, PL increases and PD decreases, whereas the opposite

is true for the high data-rate services (see Fig.. 4.5).

It is worth mentioning that the inter-dependence of β and θ for controlling

the positioning performance and the beam-selection error is not trivial. As

an example, for a required beam-selection error constraint or for a required

positioning error constraint, there exist non-unique (θ, β) pairs. Furthermore,

it may happen that for a given θ and P , no feasible β exists that satisfies

the positioning and beam-selection error constraints simultaneously, thereby

necessitating a higher BS power budget. This interesting trade-off and the

associated optimization problem will be treated in a future work.

4.5 Chapter Conclusion

In this chapter we characterized a mm-wave system deployed to support po-

sitioning and broadband services simultaneously. Specifically, we introduced a

power-partitioning based mechanism that enables the mm-wave BS to satisfy

different localization and data-rate requirements. In this context, we derived

dimensioning rules in terms of the density of BSs required to limit outage prob-

ability. Then, we provided the operator with a beamwidth selection guideline to

limit the beam-selection error probability. Finally, we studied the trade-off be-

tween the localization efficiency and the downlink data rate, and consequently,

presented a scheme for partitioning the transmit power depending on the service

requirements.
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Chapter 5

Throughput Characterization

and Beamwidth Selection for

Positioning-Assisted mm-wave

Service

5.1 Introduction

To fulfill the ever growing demand for low latency high data rates, the high fre-

quency mm-wave technology has been envisaged to be the backbone for the 5G

of wireless communication systems [23]. mm-wave has been touted to supple-

ment the aforementioned demands banking on the possibility of using unlicensed

channels at high frequency (30 to 300 GHz) and large available bandwidths.

However, operating at such a high frequency, mm-wave is inherently character-

ized by severe pathloss and higher susceptibility to blockages [106]. To overcome

these challenges, beamforming and beam steering, with directional antennas,

have been identified and adopted in the literature as a possible solution [107],

but beam-alignment issues within the highly directional beamforming context

further results into problems regarding coverage and initial access [41], [42].

To solve these issues, it is necessary to efficiently establish a good directional

link between the transmitter and the receiver with beamforming and to this, the

beamformer would benefit from the knowledge of the propagation channel and

the location of the user. Hence, precise localization of the user is not only an

add-on feature but a key requirement alongside communication in the context

of mm-wave [108]. Most of the works in mm-wave localization domain has been

dedicated to characterization of theoretical performance bounds. Typically, the

CRLB has been considered regarding estimated channel parameters such as
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delay, angle of departure (AoD), AoA and the channel coefficients so far [61],

[62], [24]. With the help of these bounds, [109] and [58] have formulated the

optimal beamforming problem assuming an apriori known user position.

Likewise, considering downlink communications, the earlier works in mm-wave

band focus on the characterization of the SINR coverage probability [69]. With

regards to the beam alignment, the authors in [41] investigate the exhaustive

beam search method for initial access concluding that the high search overhead

adversely affects the throughput performance. In [24], the authors investigate

the throughput in mm-wave network based on localization performance bounds

based beam alignment.

In this chapter, we consider a one-dimensional scenario with mm-wave BSs

and the users deployed along the roads of a city like in [90]. Specifically, in this

setting, we investigate the effect of beamwidth on the throughput of the user.

Although using a smaller beamwidth with high directivity would provide a high

throughput to the user, there is also a higher probability of no coverage at the

user. On the contrary, a larger beamwidth would increase the coverage proba-

bility at the cost of reduced throughput available at the user. We thus analyze

the tradeoff between the energy allocated for localization and communication

to provide the selection criteria for the optimal beamwidth.

5.2 System Model

In this chapter, we consider an urban scenario with dense BSs deployed along the

streets of a city with tall buildings contributing to a dense blocking environment.

5.2.1 Network Geometry and BS Characteristics

We assume that the distribution of BS positions in each street are modeled

as one-dimensional PPP φ with intensity λ [m−1]. We assume a LOS ball

model similar to [69] for the BS process with a radius ds. Without loss of

generality we perform our analysis from the perspective of a typical user located

at origin, which associates with the BS that provides the highest downlink

power. We assume that all the BSs have equal antenna gain, such that the

nearest BS provides the highest downlink power. Accordingly, the distribution

of the distance d of the typical user from the base of the the serving BS is given
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by [52]:

fd(x) = 2λ exp(−2λx). (5.1)

The typical user is assumed to have AoA ψ and AoD ξ but since we are

considering one-dimensional model, we can represent the AoD in terms of d.

Hence we represent the AoD as ξ(d). Each BS, with height hB, and user is

equipped with mm-wave uniform linear array (ULA) directional antenna both

with M antenna elements with BS antenna array response given as follows:

aBS(d) =
1√
M

[

1, ej
2πκ
λc

sin(ξ(d), · · · , ej(M−1) 2πκ
λc

sin(ξ(d)
]

, (5.2)

where, κ is the inter-element distance in the antennas and λc is the wavelength

corresponding the center frequency fc of the system. For the receive antenna

response aUE(ψ) at UE, simply replace ξ(d) with ψ in equation (5.2). Simi-

larly, let f ,w ∈ C
M represent the transmit and receive beamforming vectors

respectively.

For tractability, we simplify the above antenna model to a sectorized model [110].

The directivity gain of the transmit (GTX) and receive (GRX) antennas is dis-

cretized into the main-lobe directivity gain G2π
θ

and the side-lobe directivity

gain g 2π
2π−θ where θ is the beamwidth of the main-lobe. We assume the total

base station coverage area of da and a beam dictionary of size N where the N

beams provide total coverage at all the points in the area. Accordingly, every

unique N has a unique θ in order to provide this coverage. The transmit power

of the BSs is assumed to be a constant Pt.

5.2.2 Path-loss

We consider a Nakagami fading with parameter n0 and variance 1 to model

the low local scattering for communications [102]. At the receiver located at

the origin, the power received from a BS located at a distance d including the

pathloss is given by:

Pr =
|h|2KPtGTXGRX

(d2 + h2B)αL/2
, (5.3)

where K is the path loss coefficient, h represents the fast-fading, and α is the

path loss exponent.
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5.2.3 Received signal model

Let s(t) be the transmitted signal transmitted by the BS. The signal received

at the user can be written as:

y(t) =
√

Prs(t− τ) + n(t), (5.4)

where, τ = d/c with d being the true distance from BS to the user and c the

speed of light and n(t) is the zero mean Gaussian noise with variance σ2
mm.

We assume the transmit signal s(t) with duration Ts has flat spectrum with

|S(ω)|2 = Ts/(2πB) where B is the bandwidth of the system [24].

5.2.4 Transmission Policy

In our work, we assume a joint localization and communication framework fa-

cilitated by time split across the two phases. Of the constant total transmit

time Tt, we allocate a fraction β of the time for communication and the rest

(1 − β) to localization. Hence, time allocated for communications is Tc = βTt

and that for localization is TL = (1− β)Tt.

5.3 Localization Phase

In this section, we characterize the CRLB in terms of delay (estimated with

respect to the phase difference) and AoA. Consider the estimation variables

to be τ , ψ, hR and hI where hR and hI represent the real and imaginary part

of the channel. Similar to [24], since we have considered the symmetric power

spectral density of the transmitted signal, the Fisher Information Matrix (FIM)

for delay estimation decouples with the rest of the estimation parameters. FIM

J from [61] and [24] for the estimation of the mentioned variables are given

below.

J =













Jτ,τ 0 0 0

0 Jψ,ψ JhR,ψ JhI ,ψ

0 Jψ,hR JhR,hR 0

0 Jψ,hI 0 JhI ,hI













, (5.5)

where σ2
N is the variance of the estimation error and considering αL = 2

Jτ,τ =
KPtGRXGTX(1− β)Tt

(h2B + d2)σ2
N

|h|2αrαt
B2π2

3
, (5.6a)
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Jψ,ψ =
KPtGRXGTX(1− β)Ttcos

2(ψ)

(h2B + d2)σ2
N

|h|2αr,1αt, (5.6b)

JhR,ψ =
KPtGRXGTX(1− β)Ttcos(ψ)

(h2B + d2)σ2
N

αr,2αt, (5.6c)

JhI ,ψ =
KPtGRXGTX(1− β)Ttcos(ψ)

(h2B + d2)σ2
N

αr,3αt, (5.6d)

JhR,hR =
KPtGRXGTX(1− β)Tt

(h2B + d2)σ2
N

αrαt, (5.6e)

JhI ,hI =
KPtGRXGTX(1− β)Tt

(h2B + d2)σ2
N

αrαt, (5.6f)

and,

αt = |aHBS(ξ(d))f |2, (5.7a)

αr = |aHUE(ψ)w|2, (5.7b)

αr,1 =

∣

∣

∣

∣

−j 2πκ

λc
DHaHUE(ψ)w

∣

∣

∣

∣

2

, (5.7c)

αr,2 = R

{

j
2πκ

λc
haHUE(ψ)wwHDaUE(ψ)

}

, (5.7d)

αr,3 = I

{

j
2πκ

λc
haHUE(ψ)wwHDaUE(ψ)

}

, (5.7e)

where D = diag {0, 1, · · · ,M − 1}.
The CRLB for delay (by inverting the first element in the matrix) and

AoA estimation (from Schur’s decomposition similar to [97]) can be written as

follows.

σ2
τ =

(

KPtGRXGTXTt|h|2(1− β)

(h2B + d2)σ2
N

αrαt
B2π2

3

)−1

, (5.8)

σ2
ψ =

(

KPtGRXGTXTt|h|2(1− β)cos2(ψ)

(h2B + d2)σ2
N

αt

(

αr,1 −
αr,4
αr

))−1

, (5.9)

where αr,4 =
∣

∣

∣
j 2πκ
λc
cos(ψ)aHUE(ψ)wwHDaUE(ψ)

∣

∣

∣

2

. For the distance d = τc,

σ2
d = c2σ2

τ .

5.4 Beam-Selection Error

In this section, we characterize the beam-selection error as a consequence of the

estimation error in positioning.

The number of beams in the dictionary of a BS with coverage area da is N .

Accordingly, the coverage area of the i-th beam for the beam dictionary size of
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Figure 5.1: Beam selection error.
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Figure 5.2: Beam-misalignment.

N is given by Ci = dRi
− dLi

, where:

dRi
= hB tan

(

arctan

(

dL1

hB

)

+ iθ

)

, i = 1, 2, · · · , N, (5.10)

and dLi
= dRi−1

, ∀i = 2, · · · , N1, where the number of beams, N is defined as

N =

⌈

1

θ
arctan

(

da − dL1

hB

)

⌉

. (5.11)

Without loss of generality, assume that the typical user is estimated to be

located at x, and accordingly, it has been assigned the i-th beam. Due to

positioning errors, the actual position of the typical user is given by:

x̂ = N
(

x, σ2
d

)

(5.12)

Beam-selection error occurs for the typical user in case it lies outside Ci. Aver-

aging out on the possible beams that can be selected, and the relative positions

of the typical UE to BS, we have the following result.

Theorem 2. The average beam-selection error in case of a beam-dictionary of

size N is given by:

P̄BS =

∫ ∞

0





N(y)
∑

i=1

∫ dRi

dLi

(

1−Q
(

dLi
− x

σ2
d(x)

)

(5.13)

1dLi
is conventionally assigned to be 0 m.
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+Q
(

dRi
− x

σ2
d(x)

))

fd(x)dx

)

fda(y)dy.

Here, Q(·) is the Q-function.

Proof. See Appendix C.1.

An important step in the proof of Theorem 2 is the characterization of the

beam-selection error in case the i-th beam is selected. We will use this result in

the modeling the effect of beam-selection error on the downlink data rate, and

hence we state it formally below:

Corollary 6. The probability of beam-selection error in case the typical user is

estimated to be located at x, is computed as:

PBSi
(x) = P (x̂ < dLi

) + P (x̂ > dRi
)

= 1−Q
(

dLi
− x

σ2
d(x)

)

+Q
(

dRi
− x

σ2
d(x)

)

(5.14)

Corollary 7. In case of deterministic deployments, where the BSs are equi-

spaced, (5.14) becomes:

P̄BS =
N
∑

i=1

∫ dRi

dLi

(

1−Q
(

dLi
− x

σ2
d(x)

)

+Q
(

dRi
− x

σ2
d(x)

))

fd(x)dx (5.15)

where,

N =

⌈

1

θ
arctan

( 1
λ
− dL1

hB

)

⌉

5.5 Data Service Phase

In this section, first we characterize the SINR coverage probability of the typical

UE considering the beam-selection error into account. Based on that, we define

the effective downlink data rate of the typical UE.

5.5.1 Characterization of the Rate Coverage Probability

The SINR coverage probability is defined as the probability that the typical

UE receives an SINR over a given threshold. From the network perspective, it
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represents the fraction of total users that are under coverage. Mathematically,

it is characterized in the following theorem.

Theorem 3. The SINR coverage probability of the typical user is given by:

PC,i (T,N) =

∫ dRi

dLi

2λ [PBSi
(x)TBS(x, T ) (5.16)

+ (1− PBSi(x)) T0(x, T )] exp (−2λx) dx,

where,

T0(x, T ) = exp

(

− Tσ2
mm

PtKgx−αL
−AL0 (x, T )−AN0 (x, T )

)

, (5.17a)

TBS(x, T ) = exp

(

− Tσ2
mm

PtKGx−αL
−ALBS (x, T )−ANBS (x, T )

)

, (5.17b)

in which

AL0(x, T ) =

∫ dS

x

Tg2y−αL

G2x−αL + Tg2y−αL
2λydy (5.18a)

AN0(x, T ) =

∫ ∞

dS

Tg2y−αN

G2x−αL + Tg2y−αN
2λ(y − dS)dy (5.18b)

ALBS(x, T ) =

∫ dS

x

Ty−αL

x−αL + Ty−αL
2λydy (5.18c)

ANBS(x, T ) =

∫ ∞

dS

Ty−αN

x−αL + Ty−αN
2λ(y − dS)dy (5.18d)

Proof. See Appendix C.2.

Here the subscripts L0 and N0 refer to the case without beam-selection

error and the subscripts LBS and NBS refer to the cases with beam selection

error.

Corollary 8. The overall SINR coverage probability is then calculated as

PC(T,N) =
N
∑

i=1

PC,i (T,N) (5.19)
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5.5.2 Effective Rate Coverage Probability

Considering that the data service phase consists of β fraction of the total time of

the positioning-communication scheme, we can obtain the effective rate coverage

probability as below:

Corollary 9. For a given SINR coverage probability, the effective rate coverage

probability is given by:

PR(r0, β,N) = P (βB log2 (1 + SINR) ≥ r0) (5.20a)

= P

(

SINR ≥ 2
r0
βB − 1

)

(5.20b)

= PC
(

2
r0
βB − 1, N

)

(5.20c)

5.6 Optimal Selection of Beam-Dictionary

Finally, given our characterization of the effective rate coverage probability

based on the efficiency of estimation of the position and orientation of the UE

in terms of the corresponding estimation errors, we present a schematic for

selection of optimal beam-dictionary. The schematic is presented in the form of

a two-stage optimization problem as shown below:

N∗ = argmax
N





max
β

PR(r0, β, θ)

subject to
√

Eψ,d

[

σ2
ψ(β,N, d)

]

≤ ǫ



 (5.21)

In the first step, for a given N , we select the value of β that maximizes the

effective rate coverage probability subject to a constraint (ǫ) on the error in

estimation of the orientation of the UE. In positioning-assisted mm-wave com-

munication schemes, this constraint can be a system parameter which governs

the alignment capabilities of the BS-UE pair. In other words, if the orientation

of the UE is known up to a confidence of 1 − ǫ, the UE can be programed to

realign to the best possible direction.

5.7 Numerical Results and Discussions

In this section, we present the simulation results to evaluate the beamwidth

selection strategy for a mm-wave small cell network with λ = 10 km−1 and 50

km−1 and ds = 100 m operating at center frequency fc of 60 GHz with band-

width B of 1 GHz. Moreover, assume Pt = 1 W, the transmit and receive main
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and side lobe antenna gains G = 30 dB and g = −10 dB, σ2
mm = −174 dB/Hz.

The LOS and NLOS pathloss exponents αL = 2 and αL = 4 respectively. Sim-

ilarly, the coefficient K = 7.5× 10−7.

In Fig. 5.3 we present average beam selection error for different number

of beams. Wider beamwidth provides more coverage area for localizing the

user, hence reduces the error due to the user being within the main lobe of the

transmitted beam. Likewise, the figure also shows the effect of increasing the

intensity of the PPP. With lower number of BSs due to larger λ, the typical

user has more probability of being far from the BS causing σ2
d and hence the

uncertainty in estimation to increase. Hence for smaller beamwidths, this inac-

curacy in the knowledge of user position leads to higher average beam selection

error. However, for larger beamwidths, the larger coverage area compensates

for this inaccuracy and hence both the plots with λ 10 and 50km−1 converge
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towards each other.

Furthermore, in Fig. 5.4, we plot the SINR coverage probability as a function

of the number of beams for different β. It can be noticed that increasing the

time allocation for localization for a better localization performance increases

the SINR coverage probability as it decreases the probability of having beam

selection error. For a certain β, when the number of beam increases and hence

the beamwidths get thinner, there is a higher chance of misalignment, in which

case, the unwanted power received from interfering BSs decreases the SINR

coverage probability.

Likewise, in Fig. 5.5 we can see the rate coverage probability varying with

different Ns for β = 0.1 and 0.8. For lower β, the highly precise localization im-

proves the rate coverage probability even with beams with thinner beamwidths.

For larger β, the rate coverage probability increases and then decreases with
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thinner beamwidth due to worse positioning performance.

Similarly, in Fig. 5.6, we can clearly see the effect of favoring localization

over communication. The rate coverage probability increases while increasing

TL except after 96% when the TC is so low that the rate coverage degrades

very rapidly due to outage. Comparing the different number of beams, using

16 beams instead of 4 is beneficial with respect to the rate coverage only after

the user has been very accurately localized.

In Fig. 5.7, we can see average AoA estimation error plotted against the

fraction of time allocated for localization where we consider the AoA at the

user to be distributed uniformly between −30 to 30 degrees. As expected, the

error reduces as we decrease the β. However, when we set the maximum error

threshold for estimation error, using some Ns and βs, we can never achieve the

required threshold. In our canonical case, we must use at least 8 beams and

that with β ≤ 0.2 to achieve the threshold of 0.04 rad.

From the above figures, we can summarize that for a given λ, increasing

N increases the beam selection error and even though it increases the SINR

coverage probability initially, too thin beams decreases this probability due

to beam selection error and resulting interference from other BSs. Similarly,

allocating large portion of time for accurate localization of user is important in

achieving high rate and SINR coverage probability. Hence, from these analyses

it is essential to optimally allocate the parameters θ and β for improvement of

both localization and hence throughput performance at the user.

In selecting the optimal N (or equivalently the optimal beamwidth), from

equation (5.21), we first need to create a feasible set of β and N complying
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with the AoA error constraint. In our canonical example, for instance, the set

of all N and for each N , the corresponding βs which are below the threshold

in Fig. 5.7 lie in the feasible set. From these set of Ns and βs, we then choose

the parameters that maximize the rate coverage probability in as the optimal

N and the corresponding β. For instance, in Fig. 5.5, even though the curve

with N = 4 performs better in terms of rate coverage when (1−β) ≤ 0.98 since

for N = 4 the estimation error in AoA cannot fulfill the threshold requirement.

Similarly, in Fig. 5.5, for the curve when β = 0.8, we can only consider the rate

coverage probability for N > 32 to satisfy the constraint.

5.8 Chapter Conclusions

In this chapter, we have characterized and presented the throughput optimal

beamwidth selection criteria depending on the localization and communication

trade-off for a mm-wave system. We characterized the variance of estimation

through CRLB for localization with parameters delay and AoA. Then after

characterization of the uncertainty in position estimation, we formulate the

average beam selection error and subsequently the SINR and rate coverage

probabilities. Finally, with the help of these formulations, we propose a policy

for optimal beamwidth selection for maximizing the rate coverage probability

which depends on the time allocation scheme for localization and data rate

services also considering the error in estimating the AoA.
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Chapter 6

Conclusions and Future

Perspectives

6.1 Main Conclusions

In this thesis we modeled and investigated multi-tier multi-RAT networks con-

sisting of mm-wave small cells. First, we studied a homogeneous deployment

model of mm-wave multi-RAT SBS overlaid on top of the legacy macro archi-

tecture in Chapter 2. We showed that mm-wave communication is not only

capable of providing high downlink data-rates, but also that sufficiently dense

deployment of mm-wave base stations may result in a significant improvement

of the SINR of the users. This is precisely due to the fact that mm-wave signals

suffer from lower interference as compared to the sub-6GHz signals.

Then, by using elements of queuing theory, we characterized the load of

different tiers in the multi-RAT HetNets by considering dynamic traffic, which

paved the way for a more accurate modeling of user throughput. Our study

highlights the fundamental trade-offs between outage probability, user through-

put, and cell overloading, and, thereby, highlights the necessity of the dual band

small cells to maintain outage below a certain threshold, specially in sparse de-

ployments. In our system model, we proposed effective approaches to optimize

the user association for enhancing coverage or maximizing throughput.

In the context of dynamic cell load, in Chapter 3, we derived a simple ap-

proximation for the CDF of the cell load of the typical cell in a noise-limited

network, which is characterized by high SINR and low inter-cell interference.

Furthermore, we obtained a single approximation-based expression and a closed-

form expression for the average load of the network by using the distribution

of the area of the typical cell. Our derivations present a more realistic char-

acterization of the cell load, as compared to the recently introduced mean cell
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approach, since we consider the typical cell of the network rather than the zero

cell [57]. The analysis provides a tractable and accurate characterization for

the cell load, which can be utilized, e.g., for evaluating the user throughput and

dimensioning 5G networks. However, accurate characterization of the dynamic

network load in case of an interference prone network is not straightforward.

This will be addressed in a future work.

Then, in Chapter 4, we considered a more realistic deployment geometry

of the mm-wave multi-RAT SBSs in urban environments, by modeling their

positions along the roads of a city. We provided realistic characterizations of

the mm-wave interference and the effect of vehicular blockage on the mm-wave

RAT. First, from the perspective of the pedestrian users, we analyzed the ef-

fect of the RAT selection bias on the mm-wave blockage, SINR coverage, and

rate coverage probability under different vehicular densities. Accordingly, we

have provided a slice-aware RAT selection strategy to jointly support URLLC,

mMTC, and eMBB applications in future mm-wave sliced 5G networks. We

highlighted several key system design insights for an operator that aims to op-

timally serve a diverse variety of services. Specifically, in case the operator

needs to prioritize mm-wave association for high-data rate services so as to free

the sub-6GHz RAT for reliability specific applications, it needs to deploy more

SBSs per road in a city with more roads. However, excessive deployment of

SBSs degrades the SINR performance of the users. Thus, proper care must

be taken of this tradeoff while dimensioning the cellular network. Moreover,

having a network-wide RAT selection bias will not be able to support a diverse

plethora of applications. Hence, slice-aware RAT selection becomes necessary.

For URLLC services, there exists a threshold of bias beyond which the block-

age of the service becomes intolerable. For applications that require high SINR

coverage on the contrary, e.g., mMTC, there exist non-trivial biases that max-

imize the SINR. Moreover, the bias values that maximize the downlink data

rate may lead to excessive outage, and hence, we provided optimal bias values

for rate coverage under outage constraints. If the operator wants to increase

the rate coverage even further, e.g., for eMBB applications, it is important to

develop efficient interference management mechanisms as increasing the deploy-

ment density simply degrades the SINR performance.

In this urban deployment scenario, we characterized a mm-wave system de-

ployed to support positioning and broadband services simultaneously in Chap-

ter 5. Specifically, we introduced a power-partitioning based mechanism that
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enables the mm-wave BS to satisfy different localization and data-rate require-

ments. We characterized the statistical localization performance by deriving the

BCRLB of positioning based on the power allotted to the positioning functional-

ity. Then, based on the power allotted to the data-communication functionality,

we derived dimensioning rules in terms of the density of BSs required to limit

outage probability. Furthermore, we provided the operator with a beamwidth

selection guideline for positioning, to limit the misalignment probability between

the user and BS beams. Then, we studied the trade-off between the localization

efficiency and the downlink data rate, and consequently, presented a scheme for

partitioning the transmit power depending on the service requirements.

Finally, we characterized and studied the throughput optimal beamwidth

selection criteria in terms of the localization and communication trade-off in

Chapter 6. We derived the variance of the estimation error in positioning based

on the CRLB for localization and AoA. Then, we formulated the average beam

selection error and subsequently the SINR and rate coverage probabilities of

the typical user in this system. Based on these formulations, we proposed a

policy for optimal beamwidth selection and resource-partitioning scheme for

maximizing the rate coverage probability of the users in the network.

Thus, in this thesis, we have provided several guidelines and dimensioning

rules to the operator for the urban deployment of first-generation mm-wave

SBSs that will form an integral part of the 5G eco-system. We also defined

and derived several new performance metrics (e.g., effective throughput, beam-

selection error and vehicular blockage probability). This thesis paves the way

for several future directions of research, some of which are discussed in the next

section.

6.2 Future Work

6.2.1 Realistic Characterization of Performance metrics

In our work we have provided approximate expressions for the typical cell load

in a noise-limited network. However, using stochastic geometry, the accurate

characterization of the typical cell load in general is still an open challenge.

Integration of multiple RATs in the network, specially mm-wave small cells

complicates this challenge even further since the cell-boundaries become not

well-defined owing to the random LOS-NLOS transitions of signal states.
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Furthermore, accurate characterization of mm-wave signal blockages both

in outdoor and indoor contexts is also an open direction of research.

6.2.2 Reliable mm-wave Communications

The initial deployment of mm-wave BSs will definitely require the existing cel-

lular networks for reliable functioning. However, it is envisioned that as the

network needs, volume of users and use-cases grow, there will be a call for reli-

able mm-wave communications. In particular, seamless connectivity support for

unconstrained device mobility is needed for mission-critical applications. The

future internet-of-things devices will also need to offload their more demanding

computations to the proximate edge-computing infrastructure, for which high

data-rate, low latency, and extremely reliable links are required.

In this regard, an important future research direction of research is that

of enhancing mm-wave reliability, which would encompass multi-connectivity,

band-agility, and network densification. In particular, one interesting problem

involves developing sequential decision algorithms to switch BS connections

based on identifying the blockage statistics of several mm-wave links. in this

context, integrating efficient artificial intelligence algorithms to facilitate beam-

switching is also a possible direction of interest.

6.2.3 Multi Agent and Cooperative localization in 5G

In the future 5G network, localization will play an ever-increasing role, not only

for location-based services like autonomous vehicles, but also for location-aware

intelligent communication solutions such as proactive radio resource manage-

ment. It is widely believed that 5G architecture with ultra-densification, large

antenna arrays, and wide bandwidths will provide excellent resources for effi-

cient positioning and ranging. A research direction in this regard could be to

develop and study different algorithms for highly accurate and energy-efficient

positioning, that will be implemented in use-cases providing localization-as-a-

service.

6.2.4 Network Slicing and Orchestration

It has gradually become evident that in addition to the radio technology, sev-

eral disruptive changes in 5G will be in the core architecture. In fact, it is

the extreme architecture disruption that has made supporting a plethora of
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use-cases plausible. Future wireless networks will contain more service-based

architectures with a bigger role of the edge cloud and network slicing algo-

rithms. Generally speaking, network slicing will not only give QoS guarantee

on the radio, but will do so on an end-to-end perspective. The vitality of net-

work slicing and orchestration will become more evident with the increasing

number of services.

It is interesting to note that efficient allocation resources across network

slices has not been well studied in the literature, which we intend to investigate

in a systematic manner. One particular research problem in this direction is

in the purview of resource elasticity, to make efficient use of the computational

resources. Orchestration-driven flexible placement of network functions, and

cross-slice resource provisioning mechanisms.
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Appendix A

Proofs of Chapter 2

A.1 Tier Selection Probability

The probabilities that at least one LOS MBS and LOS SBS exist are, respec-

tively, E[1(tML)] = 1 − exp(−πλMd2M) and E[1(tSL)] = 1 − exp(−πλSd2S).

Then, the values of P(Q̃TPtvµ1 > Q̃TPt′vµ1) are derived as follows:

P(PMLµ1 > QT · PSLµ1)

=

∫ ∞

0

e−Λ′
SLµ(0,QT r)e−Λ′

MLµ(0,r)λ′MLµ(r)dr

=

∫

d
αSLµ
S

QT ·KSLµPS

0

e−Λ′
SLµ(0,QT r)e−Λ′

MLµ(0,r)λ′MLµ(r)dr+

∫

d
αMLµ
M

KSLµPM

d
αSLµ
S

QT ·KMLµPS

e
−Λ′

SLµ

(

0,
d
αSLµ
S

KSLµPS

)

e−Λ′
MLµ(0,r)λ′MLµ(r)dr

=
1

1 +K1

(1− e−(K1+1)t1) + e
−Λ′

SLµ

(

0,
d
αSLµ
S

KSLµPS

)

·
[

exp

(

−Λ′
MLµ

(

0,
d
αSLµ

S

QTKSLµPS

))

−

exp

(

−Λ′
MLµ

(

0,
d
αMLµ

M

KMLµPM

))]

,

where, K1 = πλS(
KSLµPSQT

PM
)

2
αSLµ (πλM)

−αMLµ
αSLµ and

t1 = πλM(KMLµPM)
2

αMLµ

(

d
αSLµ
S

QTKSLµPS

) 2
αMLµ

. Similarly,

P(PMNµ1 > QT · PSNµ1) = exp

(

−Λ′
SNµ

(

0,
d
αSNµ

S

KSNµPS

))

e−(K2+1)t2

1 +K2

,
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whereK2 = πλS(
KSNµPSQT

KMNµPM
)

2
αSNµ (πλM)

−αMNµ
αSNµ and t2 = πλMd

2
M(KMNµPM)

2
αMNµ

−1
.

Finally,

P(QT · PSLµ1 > PMLµ1) = 1− P(PMLµ1 > QT · PSLµ1);
P(QT · PSNµ1 > PMNµ1) = 1− P(PMNµ1 > QT · PSNµ1).

Using these expressions in Eq. (2.3) and Eq. (2.4) completes the proof.

A.2 RAT Selection Probability

The power received from strongest SBS of state v is PSvµ1 = (ξSvµ1)
−1 =

KSvµPS||xSv1||−αSvµ .

So, the estimate of the mm-wave power is: PSvm1 = G0KSLmPS||xSv1||−αSvm .

Therefore the probability of sub-6GHz service, given that the user is associated

with strongest SBS of visibility state v, is calculated as:

Pvµ = P(PSvµ1 > QR × PSvm1)

= P

(

||xSv1|| ≥
(

KSvmG0QR

KSvµ

) 1
αSvm−αSvµ

)

= exp

(

−πλS
(

KSvmG0QR

KSvµ

) 2
αvm−αvµ

)

(A.1)

The probability of mm-wave service is given by PSvm = 1−PSvµ. This completes

the proof.

A.3 Proof of Eq. (2.15)

We provide the derivation only for the LOS MBS association case. The other

cases follow similarly. When the user is associated with the strongest LOS MBS,

it experiences interference from the other LOS MBSs, the NLOS MBSs, and the

SBSs. Thus, the instantaneous SINR is:

SINRMLµ =
hξMLµ1

(ξMLµ1)
−1

IMLµ + IMNµ + ISLµ + ISNµ + σ2
N

,
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where I{.} denote the interference terms given as

IMLµ =
∑

ξMLµi∈φ′MLµ\{ξMLµ1}
hξMLµi

(ξMLµi)
−1;

IMNµ =
∑

ξMNµi∈φ′MN

hξMNµi
(ξMNµi)

−1;

ISLµ =
∑

ξSLµi∈φ′SLµ

hξSLµi
(ξSLµi)

−1;

ISNµ =
∑

ξSNµi∈φ′SNµ

hξSNµi
(ξSNµi)

−1.

Now,

PCMLµ = P(SINRMLµ > γ)

= P

(

hξMLµ1
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−1

IMLµ + IMNµ + ISLµ + ISNµ + σ2
N

> γ

)

= P

(
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where (a) comes from the pdf of hξMLµ1
. Now,
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.
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Similarly,

Eφ′tvµ

[

exp

(

− γ · Itvµ
(ξMLµ1)−1

)]

exp



−
∞
∫

ltv

(

1− y

y + γξMLµ1

Λ′
tvµ(dy)

)



 ,

for tv = MN,SL and SN , respectively, where the lower indexes are: lSL =

lSN = QT · ξMLµ1 and lMN = ξMLµ1. Substituting the above results in Eq.

(B.1), and taking the expectation with respect to ξMLµ1, completes the proof.

A.4 Proof of Proposition 1

Consider two LOS SBS S1 and S2
1. Let the power received by the typical user

from the SBS S1 in mm-wave and sub-6Ghz band be PS1m and PS1µ, respectively.

Let the corresponding values for S2 be PS2m and PS2µ, respectively. Now

PS1µ ≥ PS2µ ⇐⇒ KµPSd
αSvµ

1 ≥ KµPSd
αSvµ

2

⇐⇒ KmPSd
αSvm

1 ≥ KmPSd
αSvm

2

⇐⇒ PS1m ≥ PS2m

⇐⇒ QRPS1m ≥ QRPS2m (A.2)

A.5 Probability of Sub-Optimal Association

Recall that E1 and E2 denote the events the biased received power from the

strongest SBS (denoted S1) in sub-6GHz band is less than that received from

the strongest MBS (denoted by M1) and the biased received power from S1 in

mm-wave is higher than the received power from M1, respectively. We have:

P

[

E2 | E1

]

=
P [E2 ∩ E1]

P [E1]

=
1

P

[

PMd
−αMv′µ
M1 ≥ QTPSd

−αSvµ

S1

] ·
(

P

[

KmPSQRQTG0d
−αSvm

S1 ≥ KµPMd
−αMv′µ
M1 ∩

PMd
−αMv′µ
M1 ≥ QTPSd

−αSvµ

S1

])

1The analysis where there are NLOS SBS can be performed with similar reasoning.
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=
1

P

[

dS1 ≥
(

PSQT

PM
d
αMv′µ
M1

) 1
αSvµ

] · P
[

dS1 <

(

KmPSQRQTG0

KµPM
d
αMv′µ
M1

) 1
αSvm ∩

dS1 ≥
(

PSQT

PM
d
αMv′µ
M1

) 1
αSvµ

]

= EdM1





1

exp
(

−πλS (ζ1x
αMv′µ)

2
αSvµ

)

(

exp
(

−πλS
(

(ζ2x
αMv′µ)

2
αSvm − (ζ1x

αMv′µ)
2

αSvµ

)))





= 2πλM ·
∫ dM

0

exp
(

−πλS
(

(ζ2x
αMv′µ)

2
αSvm − (ζ1x

αMv′µ)
2

αSvµ

))

exp
(

−πλS (ζ1x
αMv′µ)

2
αSvµ

) x exp(−πλMx2)dx

Solving this integral with the approximated values of the path-loss exponents

completes the proof.
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Proofs of Chapter 4

B.1 Proof of Lemma 13

For the first part of the Lemma, let ν(x) be a positive measurable, radially

symmetric function with bounded support. Let first assume the support to be

a disk centered at origin with radius R. Now the function ν in our case is

the SINR coverage probability (thus, 0 ≤ ν ≤ 1), and accordingly, the PGF

is bounded below by 0 and decreases monotonically with R. The Lemma thus

follows from the monotone convergence theorem with R→∞. We have:

GφS(ν) = E

[

∏

x∈φS

ν(x)

]

=

∫

∏

x∈φS

ν(x)φS(dx),

a
=

∞
∑

n=0

exp (−2πRλR)

n!Rn
(2πRλR)n

∫ R

r1,r2,...,rn=0

(

n
∏

i=1

∫

R

∏

x∈φi

ν(x)φi(dx)

)

dr1, . . . , drn.

where (a) is obtained by conditioning on the number of roads (n) and on the

distances of the roads (r1, . . . , rn)1 The number of lines crossing a circle with

radius R is Poisson distributed with parameter 2πRλR. Now, for each of the

lines, we calculate the PGF as [52]:

∫

∏

x∈φi

ν(x)φi(dx) = exp

(

−2λS

∫

√
R2−r2

0

1− ν
(

√

r2i + t2
)

dt

)

.

As a result, we have:

GφS(ν) =
∞
∑

n=0

exp(−2πRλR) (2πλR)n

n!

(

∫ R

0

exp

(

−2λS

∫

√
R2−r2

0

1− ν
(√

r2 + t2
)

dt

)

dr

)n

.

1By convention, we assume the value inside the inner integral to be 1 when n = 0.
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= exp

(

−2πλR

∫ R

0

1− exp

(

−2λS

∫

√
R2−r2

0

1− ν
(√

r2 + t2
)

dt

)

dr

)

Using the series expansion of exp (·), completes the proof.

For the second part of the lemma, without loss of generality, assume that

the line passes through (d, 0). A point on the line at a distance t from (d, 0)

is at a distance r =
√

(d+ t cos θ)2 + (t sin θ)2 from the origin, where θ is the

orientation of the line. Taking the PGF along all such points completes the

proof.

B.2 Proof of Lemma 14

Assume that the nearest NLOS SBS is at a distance x from the typical user.

Then, the ball B(o, x) does not contain any NLOS SBS. A randomly orientated

line at a distance r from the origin, has a chord length of 2
√
x2 − r2, and a void

probability exp(−2λS
√
x2 − r2). As a result, the probability of no points falling

in this ball, averaged over the number of lines, is:

FdSN1
(x) =

∞
∑

n=0

(2πλRx)n exp (−2πλRx)

n! (xn)

[

∫ x

r1,r2,...,rn=0

n
∏

i=1

exp

(

−2λS

√

x2 − r2i
)

dri

]

=
∞
∑

n=0

(2πλRx)n exp (−2πλRx)

n! (xn)

[∫ x

0

exp
(

−2λS
√
x2 − r2

)

dr

]n

.

This is the CDF of the distance. The PDF is then obtained by differentiating

with respect to x.

For the remaining distributions, i.e., for {t, v} 6= {SN}, the expressions for

fdtv1 , can be obtained by differentiating the void probabilities of the correspond-

ing processes [52].

B.3 Proof of Proposition 3

In Fig. 3.2, the user at O at a distance d1 from its serving SBS AB is in NLOS

if a vehicle exists in between the user and AB within a distance d0. From the

similarity of triangles ABO and A′B′O, it follows that d0 = hV
hB
d1. The link

between O and AB is in LOS if none of the roads crossing B′O is occupied by

a vehicle. Now, the number of roads n passing through the region d0 is Poisson

distributed with intensity λRd0. Since the fraction of the roads occupied by the
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vehicles is λ′V = LV λV , the probability of blockage due to one road is 1 − λ′V .

We have:

L(d1) = En[(1−λ′V )n] =
∞
∑

n=0

(1−λ′V )n
(λRd0)

n exp(−λRd0)
n!

= exp

(

−λ′V λR
hV
hB

d1

)

.

B(QR) is then calculated as:

B(QR) = EdSL1
[(1− L(dSL1))|1m(dSL1, QR)]

=

∫ H

0

(

1− exp

(

−λRλ′V
hV
hB

x

))

fdSL1
(x)dx,

where 1m represents the indicator function for mm-wave operation.

B.4 Proof of Lemma 16

From the typical SBS, let the distance to its n-th neighbor be given by dn

(see Fig. 3.3a for notations). Thus, the distance of the typical SBS from the

center of (n − 1)-th and n-th neighboring SBS is given by d̄n = dn+dn−1

2
. Let

the depression angle from the top of the typical SBS to a user located at its

boundary be φ. Clearly, φ = arctan
(

da
2hB

)

− θ
2
. Let the distance of the point

where the serving beam reaches the ground from the typical SBS be denoted by

x = hB tan (φ+ θ). Thus, the probability of the typical SBS causing interference

in the n-th neighbor is given by:

P(x ≥ d̄n) = P

(

h tan

(

arctan

(

da
2hB

)

+
θ

2

)

≥ dn + dn−1

2

)

,

= P

(

da ≥ 2hB

[

tan

(

arctan

(

dn + dn−1

2h

)

− θ

2

)])

= Edn−1,dn

[

exp

(

−2λShB
dn + dn−1 − 2hB tan θ

2

2hB + (dn + dn−1) tan θ
2

)]

. (B.1)

Using the void probability and the expectation with respect to the joint dis-

tribution of dn and dn−1 completes the proof. The latter is derived as follows

(assuming dn = Y and dn−1 = X):

fY |X(y|x)fX(x) =
d

dy
[exp (λS (y − x))]

exp (−λSx) (λSx)n−2

(n− 2)!
=
λ2S exp (−λSy)

(n− 2)!
(λSx)n−2 .
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B.5 Proof of Lemma 17

Let the typical user U1 be located at a distance d1 from its serving BS B1 (the

BS on the right in Fig. 3.3b). We are interested in the probability that U1

experiences interference from the neighboring SBS B2 serving a user U2. We

define spillover as the region of interference that an SBS creates in a neighboring

cell while serving a user. Now, B2 causes spillover to the coverage area of B1

if the extremest point of its beam crosses the cell boundary, i.e., if the position

of U2 from B2 is greater than some value (say d′). The maximum distance

of U2 from B2 is da
2

. Thus, there is spillover, if the user U2 lies in the region

d′ ≤ d2 ≤ da
2

. The probability that at least one such user exists is obtained using

the void probability of the user PPP and is given by
(

1− exp
(

λU
(

da
2
− d′

)))

.

The extent of spillover (s) to the coverage area of B1, from B2 serving U2 is:

s = GC − da
2

= h tan

(

θ

2
+ φ

)

− da
2

= h tan

(

θ

2
+ arctan

(

d2
h

))

− da
2
,

(B.2)

where φ is the angle of depression from the top of B2 to U2 on the ground. Now,

d′ is then obtained from the condition s = 0, i.e., the location of U2, beyond

which the coverage area of B1 experiences spillover from B2. This results in:

d′ = h tan
(

arctan da
2h
− θ

2

)

. To keep our analysis tractable, we assume that B2

does not create a spillover in the coverage region of B1, when serving the users

on its left. For practical values, this conditions always holds. For example,

with hB = 10 m, and θ of 10 degrees, we have da ≥ 1.75 m. For the SBS

densities considered throughout this chapter (λS < 100 km−1), this holds with

a high probability (≥ 0.85). Thus we have: d′ ≥ 0 =⇒ da ≥ 2h tan
(

θ
2

)

. The

probability that U1 is located in the spillover region, given that the spillover is

s, is:

P (U1 ∈ s) =







P
(

d1 ≥ da
2
− s
)

= exp
(

−λS
(

da
2
− s
))

; s ≤ da
2

1; s ≥ da
2

, (B.3)

Now we substitute s from (B.2) in (B.3), and take the expectation with respect

to da and d2: fda,d2(x, y) = λUλS exp
(

−λU
(

x
2
− y
))

exp (−λSx) , y ≤ x
2
.
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B.6 Proof of Proposition 4

The user association probabilities with a LOS and NLOS MBS and LOS SBS

are:

PML = T P(PML1 ≥ PSL1, PML1 ≥ PSN1),

PMN = (1− T )P(PMN1 ≥ PSL1, PMN1 ≥ PSN1),

PSL = T P(PSL1 ≥ PML1, PSL1 ≥ PSN1) + (1− T )P(PSL1 ≥ PMN1, PSL1 ≥ PSN1),

where T = E[1(ML)] is the probability of the existence of at least one LOS

MBS. In our model, a signal from a LOS MBS will be received with higher power

than one from any NLOS MBS. In the following, we show how to calculate PML.

The other probabilities follow similarly.

PML = E [1(ML)]P (PML1 > PSL1, PML1 > PSN1)

= E [1(ML)] (P(PML1 > PSL1, PSL1 > PSN1) + P(PML1 > PSN1, PSN1 > PSL1))

= E [1(ML)]
(

P

(

KµPMd
−αMLµ

ML1 > KµPSd
−αSLµ

SL1 , KµPSd
−αSLµ

SL1 > KµPSd
−αSNµ

SN1

)

+

P

(

KµPMd
−αMLµ

ML1 > KµPSd
−αSNµ

SN1 , KµPSd
−αSNµ

SN1 > KµPSd
−αSLµ

SL1

))

= E [1(ML)]

(

EdML1,dSN1

[

exp

(

−2λS

(

d

αSNµ
αSLµ

SN1 −
(

PS
PM

d
αMLµ

ML1

) 1
αSLµ

))

T1(dML1)

]

+

EdML1,dSL1

[(

FdSN1

(

d

αSLµ
αSNµ

SL1

)

− FdSN1

(

(

PS
PM

d
αMLµ

ML1

) 1
αSNµ

)

FdSN1

(

x
αSLµ
αSNµ

)

)])

.

B.7 Proof of Proposition 5

The probability of mm-wave association based on instantaneous power RAT

selection is:

Pm = E [L(dSL1)]P(r = mm|t = SL) = E [L(dSL1)]P

(

dSL1 <

(

KmG0QR

Kµ

) 1
αSLm−αSLµ

)

=
2hBλS

λ′V hV λR + 2hBλS

[

1− exp

(

−2λS

(

KmG0QR

Kµ

) 1
αSLm−αSLµ

)]

, (B.4)

where E [L(dSL1)] refers to the average probability that the user experiences a

LOS path from the strongest SBS, which is calculated by taking the expectation

of L(dSL1) (see Proposition 3) with respect to the distance dSL1, i.e.,

E [L(dSL1)] = EdSL1

[

exp
(

−λ′V λR hVhB dSL1
)]

= 2hBλS
λ′V hV λR+2hBλS

.
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In case of association based on averaged power RAT selection, we have:

P̄m = P(QRKmG0PSd
−αSLm

SL1 PL(dSL1) > KµPSd
−αSLµ

SL1 ,

= P

(

dSL1 ≤
hB (αSLm − αSLµ)

λ′V λShV
W
(

λ′V λShv
hB(αSLm − αSLµ)

(

Kµ

KmG0QR

) 1
αSLµ−αSLm

))

.

B.8 Proof of Theorem 1

A user located at dSL1 from its serving SBS experiences mm-wave interference

from an interfering SBS located at dSL2 from it, when 1) the user lies in the

spillover region of the interfering SBS and 2) the interfering link is not blocked

by moving vehicles. Accordingly:

SINRSLm =
PSG0KmhmSL1d

−αSLm

SL1

σ2
mm + PSG0KmhmSL2d

−αSLm

SL2

pG(dSL1, dSL2)L(dSL1)L(dSL2)+

PSG0KmhSL1d
−αSLm

SL1

σ2
mm

L(dSL1) (1− pG(dSL1, dSL2)L(dSL2)) ,

where L(dSL1) and L(dSL2) are given by Proposition 3, and pG(dSL1, dSL2) is

the probability that the typical user experiences mm-wave interference. Al-

though pG depends on dSL1 and dSL2, the SINR coverage probability can be

approximated by using the expression of p̄G from (3.7) as:

P (SINRSLm ≥ γ)
(a)

≥ P

(

PSG0KmhmSL1d
−αSLm

SL1 L(dSL1)

σ2
mm + PSG0KmhmSL2d

−αSLm

SL2 pG(dSL1, dSL2)L(dSL2)
≥ γ

)

(b)

≥P
(

PSG0KmhmSL1d
−αSLm

SL1 L(dSL1)

σ2
mm + PSG0KmhmSL2d

−αSLm

SL2 p̄GL(dSL2)
≥ γ

)

=P

(

hmSL1 ≥
γ
(

σ2
mm + PSG0KmhmSL2d

−αSLm

SL2 p̄GL(dSL2)
)

PSG0Kmd
−αSLm

SL1 L(dSL1)

)

,

The steps (a) and (b) follow from Jensen’s inequality and the final expression fol-

lows by taking the PGF with respect to the channel power hmSL1. Subsequently,

taking the expectation with respect to the joint distribution of dSL1 = X and

dSL2 = Y , we complete the proof:

fX,Y (x, y) = fY |X(y|x)fX(x) =
−∂
∂y

P (Y < y|X = x)
−∂
∂x

P (X < x)

=
−∂
∂y

[exp (−λS(x+ y − 2x))]
−∂
∂x

[exp (−2λSx)] = 2λ2S exp(−λS(x+ y)).

The sub-6GHz association cases follow on similar lines as given in [45].
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Proofs of Chapter 6

C.1 Proof of Theorem 2

First note that all the terms dRi
and dLi

can be represented in terms of da and

dL1 , where da is the random variable representing the inter-SBS distance by the

equivalence: dRN
= da and hence, we have, for a given θ:

N =

⌈

1

θ
arctan

(

da − dL1

h

)

⌉

Beam-selection error occurs for the typical user in case it lies outside Ci. Thus,

the probability of beam-selection error in case the typical user is estimated to

be located at x, is computed as:

PBSi
(x) = P (x̂ < dLi

) + P (x̂ > dRi
)

= 1−Q
(

dLi
− x
σ2
d

)

+Q
(

dRi
− x
σ2
d

)

(C.1)

Accordingly, the average beam-selection error of any user for which the i-th

beam is selected for service is given by:

P̄BSi
=

∫ dRi

dLi

PBSi
(x)fd(x)dx; with dRN

= da. (C.2)

Subsequently, the total beam-selection error for the positioning based beam-

selection scheme with a beam-dictionary size of N is calculated as:

P̄BS =
N
∑

i=1

P̄BSi
(C.3)
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C.2 Proof of Theorem 3

The SINR Coverage probability at a threshold T in case of no beam-selection

error is calculated as:

P (SINR ≥ T )

= P





PtKGd
−αL

1 h1

σ2
mm + PtKg

(

∑

i∈φL\{d1} d
−αL

i hi +
∑

j∈φN d
−αN

j hj

) ≥ T





= P



h1 ≥
γσ2

mm + PtKg
(

∑

i∈φL\{d1} d
−αL

i hi +
∑

j∈φN d
−αN

j hj

)

PtKGd
−αL

1





.8= E
φL,φN ,hi,hj

[

exp

(

− Tσ2
mm

PtKGd1
−
Tg
∑

i∈φL\{d1} d
−αL

i hi

Gd−αL

1

− .8
Tg
∑

j∈φN d
−αN

j hj

Gd−αL

1

)]

= exp

(

− Tσ2
mm

PtKGd1

)

Ehi,φL\{d1}

[

exp

(

−
Tg
∑

i∈φL\{d1} d
−αL

i hi

Gd−αL

1

)]

Ehj ,φN

[

exp

(

−
Tg
∑

j∈φN d
−αN

j hj

Gd−αL

1

)]

(C.4)

Now the terms corresponding to the LOS and the NLOS case can be evaluated

separately as:

Ehi,φL\{d1}

[

exp

(

−
Tg
∑

i∈φL\{d1} d
−αL

i hi

Gd−αL

1

)]

= E





∏

i∈φL\{d1}
Ehi

[

exp

(

−
Tg
∑

i∈φL\{d1} d
−αL

i hi

Gd−αL

1

)]



 (C.5a)

= exp

(∫ dS

d1

1− Eh

[

exp

(

−Tgx
−αLh

Gd−αL

1

)]

2λxdx

)

(C.5b)

= exp

(

−
∫ dS

d1

Tgx−αL

Gd−αL

1 + Tgx−αL
2λxdx

)

(C.5c)

Similarly,

Ehj ,φN

[

exp

(

−
Tg
∑

j∈φN d
−αN

j hj

Gd−αL

1

)]

= exp

(

−
∫ ∞

dS

Tgx−αN

Gd−αL

1 + Tgx−αN
2λxdx

)

(C.6)
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In case of beam selection error, the expressions are modified by replacing G

with g. Conditioning on d1 lying between dLi and dRi
completes the proof.
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Appendix D

Accurate Characterization of

Dynamic Cell Load in

Noise-Limited Random Cellular

Networks

In this Appendix we present some extension on the topic of dynamic cell load

discussed in Chapter 2.

D.1 Introduction

Stochastic geometry has emerged as an important tool for modeling and an-

alyzing large scale wireless cellular networks [53], wherein the performance is

typically characterized by studying metrics such as SINR coverage probability

and user throughput. To effectively model the user throughput and to efficiently

dimension a cellular network from the operators’ perspective, the characteriza-

tion of the cell load is necessary. The existing literature in stochastic geometry

models the cell load by considering the average number of associated full buffer

users, uniformly distributed over the cell area, see e.g., [53, 113]. This is not

realistic since it ignores the effect of dynamic traffic on the user distribution:

users with low data rate tend to stay longer in the system, and as a result, the

user distribution becomes inhomogeneous in space.

However, studying dynamic traffic using elements of queuing theory in the

context of stochastic geometry based analyses is still an open problem [53]. In

this regard, Blaszczyszyn et al. [57], have introduced the mean cell approach

which avoids extensive simulations by approximating the spatial SINR distri-

bution of a cell with the SINR distribution of the typical user. Thus, in essence,
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the mean cell approach characterizes the load of the cell containing the typical

user, i.e., the zero cell [52]. Although this approach enables modeling the cell

load, it may lead to intractable expressions consisting of multiple integrals for

evaluation of the SINR coverage probability. Moreover, a characterization of the

load of the zero cell is not a reliable metric for evaluating the network wide load

distribution since the zero cell is statistically larger than a random cell drawn

from the population of cells, i.e., a typical cell. To understand this intuitively,

one can assume a random sample point and select the cell containing the point.

By stationarity, the distribution of this cell coincides with that of the zero cell.

Since the sample point tends to fall with greater probability into larger cells,

the zero cell tends to be larger than the typical cell. In this appendix, for the

case of noise-limited networks, we provide approximations for the network load

by characterizing the load of the typical cell. This provides a more realistic

characterization of the network load. This noise-limited assumption can be

applied to a variety of contexts. For example, in millimeter wave (mm-wave)

networks that utilize directional antennas and advanced interference manage-

ment mechanisms, the performance tends to be noise-limited. Singh et.al [101]

have shown the validity of the noise-limited network assumption in mm-wave

mesh networks. Furthermore, this noise-limited scenario enables us to visualize

our results in light of the seminal work of Bonald et al. [74] who derived the

cell load expressions for a single cell with dynamic traffic.

The contribution of this Appendix is as follows.

• We obtain a closed-form expression for the CDF of the load of the typical

cell in a noise-limited network by considering dynamic traffic. We use it

to obtain the fraction of stable cells for a given deployment density of

small cells.

• Then, we obtain a single integral-based approximation, and a closed-form

expression, for the average load of the typical cell. We show that the first

approximation models the cell load from a network perspective more accu-

rately than the mean cell approach. Whereas, the closed-form expression

provides a faster and more tractable alternative to calculate the network

load, since it does not require evaluation of integrals.

The rest of the Appendix is organized as follows. In Section D.2 we introduce

the single tier network and the associated parameters. In Section D.3, we

present our main results on the CDF and the average of the load of the typical
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cell of the network. In Section D.4, we present the results on the stable fraction

of the network and we show the accuracy of our derived approximations with

respect to Monte-Carlo simulations. Finally, the Appendix concludes in Section

D.5.

D.2 System Model

We consider a single-tier cellular network equipped with advanced interference

management algorithms, so that the user performance is noise-limited.

The positions of the BS are modeled as points of a PPP φ with intensity λ

[m−2]. The BSs operate with a transmit power Pt, and the product of the gains

of the antennas at the transmitter and the receiver is G0. We consider a fast

fading that is Rayleigh distributed with variance equal to one. Furthermore,

we assume a path loss model where the power at the origin received from a BS

located at a distance r is given by Pr = K · Pt · h · G0 · r−α, where K is the

path loss coefficient, h is the exponentially distributed fading power, and α is

the path loss exponent. Thus, the average SNR can be written as K·Pt·G0·r−α

N0·B =

ξr−α, where ξ = K·Pt·G0

N0·B is the average SNR at 1 m. N0 and B are the noise

power density and the operating bandwidth, respectively.

In this network, we assume that the users arrive in the system, download a

file, and leave the system. Any new download by the same user is considered

as a new user. The arrival process of the new users is Poisson distributed with

an intensity λU [users ·s−1·m−2] and these new users are uniformly distributed

over the network area A. The average file size is σ [bits/user]. When there

are n users simultaneously served by a BS, the available resources are equally

shared between them in a round robin fashion. Accordingly, we define the traffic

density w in the network as w = λU ·σ [bits·s−1·m−2]. Note that, while the user

arrivals are uniform in space, as the space-time process evolves, users farther

from the serving BSs, i.e., characterized by lower data rates, stay longer in

the system, resulting in an inhomogeneous distribution of active users in the

network.
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D.3 Characterization of the Network Load

D.3.1 Static vs Dynamic Load

Before proceeding to our main results, it is necessary to discuss the distinction

of dynamic cell-load characterization as compared to the approaches that model

the cell load as simply the average number of associated users to a BS [70]. For

this we compare the downlink user throughput using the two approaches to

study the difference. First, in our system model, we calculate the dynamic cell

load using the study of Bonald et.al. [74], say ρ̄. Then use it to calculate the

downlink user throughput Rdyn, which is given by [74]:

Rdyn = w
1− ρ̄
ρ̄
· A, (D.1)

where, the area of the typical cell A is approximated as A = 1
λ
, and the average

number of active users in the dynamic traffic model [57] is: N = ρ̄
1−ρ̄ . To compare

Rdyn with that obtained using the analyses in the existing literature [113, 70],

we assume that the users are located homogeneously in each cell of the network

following a PPP with an average of N users per cell. Using this assumption,

we carry out simulations to obtain the downlink user throughput TPPP as:

RPPP = En

[

B

n
log2 (1 + SINR)

]

, (D.2)

where the expectation is taken with respect to the number of users in each cell

(n), which is Poisson distributed with mean N , as well as the SINR of each user

in each cell. The difference between Rdyn and RPPP is highlighted in Fig. D.1.

Even though the average number of users in both cases are same, as the space-

time process with dynamic traffic evolves, the user distribution is no longer

homogeneous in space which is not taken into account in existing studies.

D.3.2 Preliminaries

In case of single-tier random cellular networks, the cell of a BS is given by the

Poisson-Voronoi (PV) partition of the space [52]. In the R2 plane, the PV region

of a BS located at x0 ∈ φ is: A = {y : ||y − x0|| < ||y − xi||; ∀xi ∈ φ\{x0}}.
The mosaic of the cells formed for all such x0 from a PPP is called a PV

network. To investigate the geometry-dependent characteristics of the cells

(e.g., the cell load), in a stationary random PV network, it is imperative to
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Figure D.1: Throughput comparison of mean cell approach
with PPP distributed users.

define the notion of the ‘average’ cell. Thus, we recall the following definitions

that provide a characterization of the average cell.

Definition 5. The zero cell or the Crofton cell of the PV network is defined as

the cell containing a given fixed point in its interior [52].

Definition 6. The typical cell of a PV network is defined as a cell selected at

random within a large region of the network with equal chances for each cell to

be picked [52]. Thereafter, the network is translated so that the center of the

typical cell becomes the origin.

The zero cell versus typical-cell approaches of modeling the network perfor-

mance corresponds to the evaluation from the perspectives of the user and the

network operator, respectively. Hence, for the case of analyzing the network

load, the zero cell perspective is not an accurate way of characterization. In

what follows, we first define the load of the typical-cell and then, discuss how

the load of the zero cell is generally obtained. Then we present our analysis to

characterize the load of the typical cell and hence the average network load.

Average Load of the Typical Cell

The load of the typical cell in the network can be calculated as:

ρ =

∫

A

w

C(s)
ds, (D.3)

where C(s) is the rate that a user located at s receives in the typical cell A,

calculated using the Shannon formula. The random variable ρ characterizes the

load of the cell centered at x0, and depends on the shape and size of A.
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The average load of the typical cell is then calculated by taking the expected

values of loads for different realizations of the PPP itself: ρ̄ = E[ρ],

Mean Cell Approximation

In case of PV cells, the average load of the typical cell is generally difficult to

evaluate because the shape and size of the typical cells is random. However, by

using the ergodicity of the PPP, the area of the typical cell can be approximated

as 1
λ

[70]. Then, by assuming the network to be noise-limited, the average load

can be approximated using the mean cell approach [57], as:

ρ̄MC =

∫

T

w

Bλ log2(1 + T )
p(T )dT, (D.4)

where the expectation is taken with respect to the SNR (T ) variations averaged

over the fast fading, and p(T ) = −dPC(T )
dT

is the PDF of the SNR of the typical

user obtained by differentiating the SNR coverage probability, PC(T ). Thus,

the cell load can be calculated numerically, given the SNR distribution.

However in the mean cell approach, as the expectation is taken with respect

to the SNR variations of the typical user, it calculates the expected load of

the zero cell which is statistically larger than the typical cell [52]. Thus, the

mean cell approach, always overestimates the load of the typical cell. In the

next sections, we propose a new approximation, which is both more accurate

and more tractable. First, we derive the CDF of the cell load of the typical cell

using the distribution of its area. Then, we obtain a single-integral-based and

a closed-form approximation for the average load of the typical cell.

D.3.3 Distribution of the Area of the Typical Cell

The reduced area of a PV cell is defined as [52] :

s = A/E[A], (D.5)

where A is the area of the typical cell, and E [·] is the expectation operator.

The PDF of the reduced area of the typical PV cell in two dimensions is given

by [114]:

fs(x) =
343

15

√

7

2π
x5/2 exp

(

−7

2
x

)

. (D.6)

Using this, we can obtain the CDF of the area as given below.
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Lemma 22. The CDF of the area of the typical PV cell for a PPP with intensity

λ is given by:

FA(x) =
343

15

√

7

2π

(

2

7

)7/2

γinc

(

7λx

2
,
7

2

)

, (D.7)

where γinc(·) is the lower incomplete gamma function given by: γinc(x, a) =
∫ x

0
ta−1 exp(−t)dt.

Proof. The CDF can be easily derived using the relation (D.5) and integrating

(D.6).

D.3.4 Distribution of the Load of the Typical Cell

For obtaining the CDF of the load of the typical cell, we assume that the

shape of PV cells is circular. Although in a real PV network, almost surely

no circular cells occur, our results show that the circular assumption does not

greatly deteriorate the derived approximation. Accordingly, the load of a typical

cell (D.3) with area A is approximated as [74]:

ρTC(A) ≈ ρAP (A) =

∫ 2π

0

∫

√
A
π

0

wr

Bλ log2 (1 + ξr−2)
drdθ.

Theorem 4. The distribution of the load of the typical cell, ρ is given by:

Fρ(l) = FA

(

π

(

1

ξ
exp

(

−α
2
Ei−1

(

− l

K ′

)))
−2
α

)

(D.8)

where K ′ = 4wπ ln(2)ξ
α2Bλ

ξ
2
α and the symbol Ei−1(x) is the inverse of the exponential

integral. For the special case of α = 2, it is approximated as:

Fρ(l) ≈ FA





ξπ
(

1 + exp
(

− l
K1

))

exp
(

− l
K1

)



 , (D.9)

where K1 = wπ ln(2)ξ
Bλ

.

Proof. According to our assumption of high SNR for dense networks, we can

approximate 1 + ξr−α as ξr−α. Substituting ln (ξr−α) = y, we have:

ρAP (A) = K ′
∫ ∞

ln(ξ(π/A)
α
2 )

exp(−y)

y
dy
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= K ′E1

(

2

α
ln

(

ξ
( π

A

)α
2

))

, (D.10)

where, K ′ = 4wπ ln(2)ξ
α2Bλ

ξ
2
α and E1(·) is the exponential integral function [115]. The

CDF is then simply obtained by some algebraic manipulations of the expression

P(ρAP (A) ≤ l). For the special case of α = 2, the CDF of the approximated

load of the typical cell ρAP (A) is derived as:

P(ρAP (A) ≤ l) = P

(

− ln
(

ξπA−1
)

≤ Ei−1

(

− l

K1

))

,

where, the symbol Ei−1(x) is given by Ei(x) = −E1(−x). Although an explicit

expression for Ei−1(.) does not exist, Pecina [116] provided piece-wise functions

to approximate Ei−1(x) for different ranges of x. The asymptotic approximation

for −1
K1
→ 0 is [116]:

Ei−1

(

− l

K1

)

≈
exp

(

− l
K1

)

1 + exp
(

− l
K1

) .

ρ̄′AP =

∫ ∞

0
λ
2π ln(2)ξ

B
F1(A)

343

15

√

7

2π
(Aλ)5/2 exp

(

−7

2
Aλ

)

dA (12)

where, F1(A) =



























exp(− ln( ξπ
A )) ln

(

G0

ln( ξπ
A )

+G0+(1−G0)β(ln( ξπ
A ))

)

G0+(1−G0) exp

(

− ln( ξπ
A )

1−G0

) ; A ≤ πξ
exp(1)

−γ − ln
(

− ln
(

ξπ
A

))

+
(

− ln
(

ξπ
A

))

− (− ln( ξπ
A ))

2

8 ; A > πξ
exp(1)

In our analysis, we assume Pt = 30 dBm, a noise density of -174 dBm/Hz,

and B = 1 GHz. The path loss coefficient K is derived from the Umi model for

data transmission [36]. As the load l varies from 0 ≤ l ≤ 1, for G0 = 20 dB, and

λ = 1e−5 m−2, we have 0 ≤ l
K1
≤ 1e−8. Thus, our asymptotic approximation

is valid. Using this approximation completes the proof.
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D.3.5 Proposed Approximations for the Average Load

of the Typical Cell

Using the distribution of (D.7) and (D.10) we obtain the following approxima-

tion of the average load:

ρ̄AP =

∫ ∞

0

K ′E1

(

2

α
ln

(

ξ
( π

A

)α
2

))

fA(A)dA, (D.11)

where fA(x) = dFA(x)
dx

. Since solving (D.11) is tedious, we provide two results to

approximate the average load of the typical cell for the special case of α = 21.

In Section D.4, we will highlight the advantage of each approximation.

EI based Approximation

Theorem 5. The average load of the typical cell can be approximated as (12).

Proof. We rely on an approximation of the exponential integral provided by

Barry et. al. [115]:

E1(x) =
exp(−x) ln

(

K2

x
+K2 + (1−K2)β(x)

)

K2 + (1−K2) exp
(

−x
1−K2

) , (D.13)

where, K2 = exp(−γ) = 0.56, β(x) = 1− 1
(h(x)+bx)2

,

h(x) =
1

1 + x
√
x

+
0.46x

√
31
26

1 + 0.43x
√

31
26

, b ≈ 1.04207,

and γ is the Euler’s constant. This interpolated version of the exponential

integral provides a good approximation for 1 ≤ x ≤ 50. This corresponds to

the range

πξ

exp(50)
≤ A ≤ πξ

exp(1)
. (D.14)

For the region of A greater than this range, we use the asymptotic expansion

of E1(x) as:

E1(x) = −γ − ln(x) + x− x2

8
+ ... (D.15)

1For dense deployments, the serving BS is generally in LOS which has a path-loss exponent
close to 2 for sub-6GHz [78] and mm-wave [36] transmissions.
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For practical ranges of cell sizes, the lower bound in (D.14) always holds (e.g.,

with G0 = 0 dB, the lower bound on the area is A ≥ 2e− 8). Now, substituting

(D.10) in (D.11) and using (D.13) and (D.15) to evaluate the integral, completes

the proof.

CF Approximation

Substituting ln
(

ξπ
A

)

= t, the approximated average load of the typical cell

(D.11) becomes:

ρ̄AP = χ2

∫ ∞

−∞
E1(t) exp

(

−7

2
t

)

F2(t)dt, (D.16)

where χ2 = wπ ln(2)ξ
λB

(ξπλ)3.5 and F2(t) = exp
(

−7λξπ
2

exp(−t)
)

.

Now, a closed-form solution to this integral does not exist. However, in what

follows, we derive an approximate closed-form solution for the average load of

the typical cell, which we show to be very accurate in Section D.4.

Theorem 6. The average load of the typical cell is approximated by the closed-

form expression:

ρ̄′′AP = χ2 (I1(t2)− I1(t1) + (y1 − 1)I2(t2)− y1I2(t1))

where,

I1(x) =
(

2
7

)2
(E1(4.5x)− (1 + 3.5x)e−3.5xE1(x)+

(

7
9

)

exp(−4.5x)
)

I2(x) = 2
7

[E1 (4.5x)− e−3.5xE1(x)], and, t1 = − ln
(

− 2
7λξπ

ln (0.1)
)

,

t2 = − ln
(

− 2
7λξπ

ln (0.9)
)

and, y1 = 0.9t1−0.1t2
t1−t2 .

Proof. We can approximate F2(t), with a piece-wise defined ramp and step

function as follows:

F̃2(t) =



















0; t ≤ t1,

0.8t
t2−t1 + y1; t1 < t ≤ t2,

1; t > t2

(D.17)

where t1 and t2 are the points corresponding to 10 and 90 percentile values

of F2(t), and y1 is the intercept. In the next section, we will show that this

approximation provides accurate results for the average cell load. With the
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approximation of (D.17) in (D.16), we have:

ρ̄AP = χ2

(∫ t2

t1

E1(x)e3.5x
(

0.8

t2 − t1
x+ y1

)

dx+

∫ ∞

t2

E1(x)e−3.5xdx

)

Geller and Ng [117] provided closed-form expressions for both of the above

integral types, which we employ to obtain the closed-form for the average cell

load.

D.4 Simulation Results

D.4.1 CDF of the Load and Stable Fraction of the Net-

work

To validate the approximation of the CDF of the cell load, we compute the stable

fraction of the network, which is defined as the fraction of non-overloaded cells.

Mathematically, this is the probability that the load of the typical cell is less

than 1. In Fig. D.2 we compare the stable fraction of the network for a file size

of σ = 100 Mb, and a user arrival rate of λU = 100 km−2, obtained with the

approximation of the CDF derived in Theorem 4 and the one computed from

Monte-Carlo simulations of the PPP. This provides dimensioning rules for the

operator in terms of the minimum deployment density of BSs required to achieve

a given stable fraction. For example, with a directive antenna gain of G0 = 20

dB and for a load target of 0.5, the operator must deploy at least 50 BSs km−2.

We also observe that the closed-form CDF provides a good approximation of the

numerical values, specially for a larger antenna gain (G0 = 20 dB). Accordingly,

the circular assumption of the cell shape is not detrimental for evaluating the

performance of the network.

D.4.2 Accuracy of the EI Approximation of the Network

Load

In Fig. D.3, we compare the average load of the typical cell, computed with

the EI approximation (Theorem 5), the CF expression (Theorem 6), and that

obtained using the mean cell approach with the network load calculated using

Monte-Carlo simulations. For the Monte-Carlo simulations, we find the average
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Figure D.2: Stable fraction of the network.

cell load in one realization of the PPP φ, for a given λ, λU , and σ and then we

perform the same calculations and average over 1000 PPP realizations. As seen

in the figure, the EI approximation provides a more accurate characterization of

the network load than the mean cell approach. The mean cell approach always

overestimates the actual load, because, the zero cell is, on average, larger than

the typical cell, resulting in higher load. Therefore, from the perspective of an

operator, we provide a more realistic, and hence reliable method to characterize

the network load and to dimension the network. As an example, for σ = 100

Mb, and λU = 0.01 users per second, the EI approximation accurately estimates

that the operator must deploy 10 BS less (120 as compared to 130) than that

prescribed by the mean cell approach.

D.4.3 Advantages of the CF Approximation of the Net-

work Load

As we see in Fig. D.3, the CF approximation provides the loosest approxima-

tion to the network load; however, it does not require numerical evaluation of

integrals. Moreover, we see that for higher file sizes (σ = 100 Mb) and denser

deployment of small cells (λ ≥ 1e−4 m−2), even the CF approximation provides

an excellent approximation of the network load.

From a practical perspective, it provides a fast method of accurately esti-

mating the network load without the need of running extensive simulations,

which can become infeasible. Particularly, recall that BS locations are Pois-

son distributed. For every realization of BS locations, SNR distribution should

be computed by drawing all required random variables. Moreover, a dynamic
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Figure D.3: Analytical approximation accuracy, G0 = 36 dB.

traffic of users arriving in the system, downloading a file, and leaving should

be simulated for a sufficient duration to reach the mixing time of the Markov

process. This procedure should be repeated for every set of possible parameters

if we want to characterize the network load. At last cell overloading may be

undetectable as any simulation has a finite duration. For all these reasons, the

analytical model presented in this analysis is necessary to provide very quick

results and interesting insights to the system.

D.5 Appendix Conclusion

The realistic assessment of the mobile network performance need to take dy-

namic traffic into account in order to characterize the network load, which is still

an open problem. Towards this end, we have derived a simple approximation

for the CDF of the cell load of the typical cell in a noise-limited network, which

is characterized by high SINR and low inter-cell interference. Furthermore, we

have obtained a single approximation-based expression and a closed-form ex-

pression for the average load of the network by using the distribution of the area

of the typical cell. Our derivations present a more realistic characterization of

the cell load, as compared to the recently introduced mean cell approach, since

we consider the typical cell of the network rather than the zero cell. The analy-

sis provides a tractable and accurate characterization for the cell load that can

be utilized, e.g., for evaluating the user throughput and dimensioning 5G net-

works. However, accurate characterization of the dynamic network load in case

of an interference prone network is not straightforward. This will be addressed

in a future work.
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