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ABSTRACT The acquisition of channel state information is crucial in millimeter wave (mmWave)

massive multiple-input multiple-output (MIMO) systems. However, the previous studies for mmWave

channel estimation only focus on the conventional static channel model without considering the Doppler

shifts in a time-varying scenario. Since the variations of angles are much shorter than that of path gains,

the mmWave time-varying channel has block-sparse and low-rank characteristics. In this paper, we show

that the block sparsity, along with the low-rank structure, can be utilized to extract the Doppler shifts and

other channel parameters. Specially, to effectively exploit the block-sparse and low-rank structures, a two-

stage method is proposed for mmWave time-varying channel estimation. In the first stage, we formulate

a block-sparse signal recovery problem for AoAs/AoDs estimation, and we develop a block orthogonal

matching pursuit (BOMP) algorithm to estimate the AoAs/AoDs. In the second stage, we formulate a

low-rank tensor due to the low-rank structure of time-varying channels, and based on the results of the

first stage, a CANDECOMP/PARAFAC (CP) decomposition-based algorithm is proposed to estimate the

Doppler shifts and path gains. In addition, in order to compare with conventional tensor decomposition-

based algorithms, two tensor decomposition-based time-varying channel estimation algorithms are proposed.

Simulation results demonstrate that the proposed channel estimation algorithm outperforms the conventional

compressed sensing-based algorithms and the tensor decomposition-based algorithms, and the proposed

algorithm remains close to the Cramér-Rao Lower Bound (CRLB) even in the low SNR region with the

priori knowledge of AoAs/AoDs.

INDEX TERMS Time-varying channel estimation, block-sparse, low-rank, compressed sensing, tensor

decomposition.

I. INTRODUCTION

Global mobile system capacity will increase dramatically

in the coming years, driven by ultra high definition videos,

smart vehicular communications, and virtual reality etc. The

demands for high data rate transmission will reach 1000

× over the next decade, as predicted in [1]. Millimeter-

wave (mmWave) (30-300GHz) techniques, which can eas-

ily deploy large-scale antenna arrays and potentially offer

The associate editor coordinating the review of this article and approving
it for publication was Vittorio Degli-Esposti.

Gbps transmission rate by exploiting the large communi-

cation bandwidth [2], have been considered as new radio

transmissions to meet the large data demand for future wire-

less communications [3]. For example, a maximum data rate

of 20Gbs is achievable under the ambit of the IEEE 802.11ay

standard for 60GHz indoor communications [4]. However,

the transmission in the mmWave frequency band may exhibit

the higher path loss compared to that in the lower frequency

bands [5]. Fortunately, large antenna arrays can be utilized to

provide beamforming gain to compensate the signal energy

attenuation [6].
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Massive multiple-input multiple output (MIMO) operat-

ing in mmWave leads to challenges of designing channel

estimation algorithms [7]. Recently, by leveraging the sparse

nature of mmWave channels, the channel estimation is for-

mulated as a line sparse recovery problem. To solve this

problem, compressed sensing (CS) has been widely used

to achieve substantial training overhead reduction [8]–[12].

In particular, the authors of [8] have developed an alternative

CS-based open-loop channel estimator for mmWave hybrid

MIMO systems. To reduce the complexity of the conven-

tional CSmethods, a two-stage CSmethod has been proposed

in [9]. Furthermore, although conventional CS-based meth-

ods assume that the estimated angles lie in the pre-

specified grid points in angle domain, the actual angle of

arrivals/departures (AoAs/AoDs) do not necessarily locate in

the grid. Thus, the assumption of on-grid angles results in a

grid mismatch problem, which leads to deteriorated perfor-

mance for channel estimation. To mitigate the performance

degradation, some super-resolution channel estimation algo-

rithms have been proposed in [10], [11]. In addition to

the sparse scattering nature, mmWave channels may exhibit

a low-rank structure. Specially, the received signal can

be expressed as a low-rank tensor. Moreover, some ten-

sor decomposition-based methods [13], [14] are recently

proposed to estimate all the channel parameters including

AoAs/AoDs, time delays, and path gains, and it has been

shown that thesemethods present distinguish advantages over

the conventional CS-based algorithms.

However, most of the existing studies [8]–[14] only focus

on the investigation of channel estimation algorithms in the

presence of static mmWave channel model, without consid-

ering the Doppler shifts in the time-varying channel model.

In fact, mmWave may play a important role in providing high

date transmission for the future high mobility scenarios, such

as the high speed wearable networks [5], the autonomous

vehicular communications [15], the unmanned aerial vehi-

cles (UAVs) communications [16], and high speed trains

(HSTs) [17]. Specially, it is shown that the speed of HST can

reach 500km/h, where the mmWave channel of this scenario

will change much more rapidly compared to the conventional

MIMO channel. The study in [18] has proposed an adaptive

estimation (AAE) algorithm for the time-varying mmWave

channel. However, it suffers from the overhead transmission

from the receiver to the transmitter. This motivates us to

investigate efficient channel estimation algorithms in time-

varying mmWave massive MIMO systems.

In this work, a novel channel estimation algorithm by

exploiting the block-sparse and low-rank characteristics is

proposed for time-varyingmmWavemassiveMIMO systems.

The main contributions of our work are summarized as

follows.

1) A two-stage channel estimation scheme is proposed

for the mmWave time-varying channel. Since the vari-

ations of angles are much shorter than that of path

gains, the mmWave time-varying channel represents

block sparse characteristic. In addition to the block

sparsity, mmWave time-varying channels may exhibit

low-rank structure. Thus, the received data can be mod-

eled as a third-order low-rank tensor. To effectively

exploit the block-sparse and low-rank characteristics,

a two-stage channel estimation method is proposed.

In the first stage, we formulate a block-sparse signal

recovery problem for AoAs/AoDs estimation, and we

develop a block orthogonal matching pursuit (BOMP)

algorithm to estimate the AoAs/AoDs. In the sec-

ond stage, we formulate a low-rank tensor due to

the low-rank structure of time-varying channels, and

based on the results of the first stage, we propose a

CANDECOMP/PARAFAC (CP) decomposition-based

algorithm to estimate the Doppler shifts and path gains.

2) For comparison with the conventional tensor

decomposition-based algorithms, two CP

decomposition-based channel estimation schemes are

proposed for the mmWave time-varying channel esti-

mation. Firstly, through analysis, we conclude that the

dimension extension method proposed in this paper

cannot satisfy the uniqueness condition of CP decom-

position. Then, exploiting the approximation in [19],

a simply extended CP decomposition-based algorithm

is proposed. Secondly, in order to estimate the channel

gains and Doppler shifts effectively, an improved CP

decomposition-based algorithm is proposed

3) We derive the Cramér-Rao Lower Bound (CRLB) for

the proposed scheme and provide the computational

complexity. Moreover, the simulation results show

that the proposed channel estimation algorithm out-

performs the conventional compressed sensing-based

algorithms and the tensor decomposition-based algo-

rithms. In addition, simulation results also show that

the proposed scheme remains close to the CRLBs even

in the low SNR region with the priori knowledge of

AoAs/AoDs.
The rest of the paper is organized as follows. Section II and

III introduce the system model and the block-sparse and low-

rank characteristics of the mmWave time-varying channel.

In Section IV, we propose a two-stage channel estimation

method. Two CP decomposition-based time-varying channel

estimation methods are proposed in Section V. The analysis

of the proposed algorithm is provided in Section VI. The sim-

ulation results are given in Section VII. Finally, Section VIII

draws a conclusion.

Notation: The matrices and vectors are denoted in

bold. Symbols (·)∗, (·)†, (·)H , (·)T , ‖·‖F denote its conjugate,

pseudo-inverse, conjugate transpose, transpose, and Frobe-

nius norm, respectively. The K × K identity matrix is given

by IK . κκκ (n) is the mode-n unfolding of the tensor κκκ . The

outer product of two vectors is given by a ◦ b. A ⊙ B is the

Khatri-Rao product of matrices A and B.

II. SYSTEM MODEL

Consider a typical point-to-point narrowband uplink

mmWave massive MIMO system shown in Fig. 1, where
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FIGURE 1. A block diagram of the uplink mmWave MIMO architecture
that employs hybrid analog/digital precoding.

the base station (BS) is equipped with NR antennas and NRF

radio frequency (RF) chains, where NRF << NR and the

mobile station (MS) employs MT antennas and a single RF

chain [20].

For a practical mmWave massive MIMO system with

hybrid precoding, the MS first modulates the baseband data

symbols via an analog precoder FRF ∈ C
MT×1 . Hence, signal

vector transmitted by the MS at the time instant t can be

expressed as (see, e.g. [4])

f(t) = FRF(t)s(t), (1)

where s(t) denotes the transmitted symbol and without loss

of generality, we set s(t) = 1. Since FRF is implemented

using analog phase shifters, its entries are of constant mod-

ulus, where |fm(t)| = 1(m = 1, . . .MT). Then, at the BS,

the received signal at the time instant t is combined with a

RF combiner WRF(t)∈ C
NR×NRF and followed by a digital

combiner WBB(t)∈ C
NRF×NRF , it yields

y(t) = (WRF(t)WBB(t))
HH(t)FRF(t)s(t) + N(t)

= wH (t)H(t)f(t) + N(t), (2)

where w(t)
1= WRF(t)WBB(t) denotes the combiner at the t-

th instant, y(t)∈ C
NRF×1 is the received signal, and N(t) ∼

CN (0, 1) denotes the additive white Gaussian noise vector.

In addition, the elements of defined combiner w(t) have the

similar constant modulus to precoder f(t) as follows

|wn(t)| = 1(n = 1, . . .NR). (3)

Since the mmWave channel exhibits limited scattering

characteristics, we consider a geometric mmWave channel

model with L scatters between the MS and the BS. Further-

more, to incorporate the Doppler shifts with the conventional

mmWave channel, the time-varying channel at the t-th instant

can be expressed as [21]

H(t) =
L∑

l=1

al(t)αααBS(θl(t))ααα
H
MS(ϕl(t))e

j2π flTst , (4)

where L denotes the number of scatter paths and al(t) ∼
CN (0, 1) denotes the complex gain. αααBS(θl(t))∈ C

NR×1 and

αααMS(ϕl(t))∈ C
MT×1 are the array response vectors associated

with the BS and MS, respectively. θl(t), ϕl(t) ∈ [0, 2π ]

denote the angles of arrival and departure (AoAs/AoDs) of

the l-th path, respectively. Furthermore, for the time-varying

channel parameters, fl and Ts are the Doppler shift and sam-

pling period, respectively. As we consider the uniform linear

array (ULA) to be used in our system, then the steering

vectors can be expressed as

αααBS(θl(t)) =
1

√
NR

[1, . . . , ej(NR−1) 2π
λ
d sin(θl (t))]T ,

αααMS(ϕl(t)) =
1

√
MT

[1, . . . , ej(MT−1) 2π
λ
d sin(ϕl (t))]T , (5)

where λ denotes the signal wave length, and we set the

distance d = λ/2.

III. BLOCK-SPARSE AND LOW-RANK PRESENTATIONS

OF TIME-VARYING mmWAVE CHANNELS

In this section, we first simplify the mmWave channel time-

varying channel model based on a reasonable assumption.

Then, based on the novel time-varying channel, the block-

sparse and low-rank characteristics are discussed.

A. TIME-VARYING CHANNEL MODEL SIMPLIFICATION

Since the AoAs/AoDs and complex gains vary slowly in the

high-mobility scenarios [18], [22], [23], it is reasonable to

make the same assumption presented in [18], [23] that the

time-varying channel parameters θl(t), ϕl(t) and al(t) remain

constant during a training frame. Therefore, in a training

frame, the mathematical expressions of those time-varying

parameters are as follows

θl(t) = θl, ϕl(t) = ϕl, al(t) = al . (6)

Then, the mmWave time-varying channel model can be

rewritten as follows

H(t) =
L∑

l=1

alαααBS(θl)ααα
H
MS(ϕl)e

j2π flTst

=
L∑

l=1

ρl(t)αααBS(θl)ααα
H
MS(ϕl), (7)

where ρl(t) denotes the novel time-varying gain associated

with the Doppler shift. In particular, the path gain ρl(t) varies

with time even in a training frame. Then, in the next subsec-

tions, the special characteristics of the channel model will be

discussed.

B. BLOCK-SPARSE PRESENTATION

In order to effectively reflect the sparsity of mmWave chan-

nel, we first express the channel model in the beamspace as

follows

H(t) = ABSHv(t)A
H
MS, (8)

where Hv(t)∈N1×N2 denotes the beamspace channel matrix,

ABS∈ C
NR×N1 and AMS∈ C

MT×N2 denote the overcomplete

dictionary matrices (i.e., N1 ≥ NR, N2 ≥ MT) consisting

of the steering vectors corresponding with the pre-discretized
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AoAs and AoDs, respectively. For example, the n-th column

in ABS can be expressed as

A
:,n
BS=

1
√
NR

[1, e−j2π (n−1)/N1 , . . . e−j(NR−1)2π (n−1)/N1 ]T , (9)

and the dictionary matrix AMS can be designed in a similar

method.

The beamspace channel matrix Hv(t) is a sparse matrix

with a few non-zero entries due to the sparse scattering char-

acteristic. If all the true channel parameters lie in the dictio-

narymatrix, the non-zero entries ofHv(t) are the channel path

gains {al(t)}. However, because of the power leakage problem
[10], the actual number of non-zero entries will be larger than

the number of multipaths. Therefore, there exist LM ≥ L non-

zero elements in the beamspace channel matrix Hv(t).

By substituting (8) into (2), it yields

y(t) = [(AH
MSf(t))

T ⊗ (wH (t)ABS)]vec(Hv(t)) + N(t)

= (fH (t) ⊗ wH (t))(A∗
MS ⊗ ABS)vec(Hv(t)) + N(t)

= ψψψ(t)vec(Hv(t)) + N(t), (10)

where ψψψ(t)
1= (fH (t) ⊗ wH (t))(A∗

MS ⊗ ABS)∈ C
NRF×N1N2

can be viewed as a measurement matrix. Then, the esti-

mation of the beamspace channel vec(Hv(t)) now becomes

a sparse recovery problem [7]–[12]. Specially, the conven-

tional mmWave channel estimation algorithms assume that

the channel is invariant in the training frame, thus only LM
non-zero entries need to be recovered. In particular, the posi-

tions of the non-zero entries denote the values of AoAs/AoDs.

However, for the mmWave time-varying channel, the path

gain ρl(t) varies with time even in a training frame. There-

fore, assuming M pilot signals, there are up to MLM non-

zero entries need to be recovered. Based on the basic theory

of signal recovery, it is impossible to recover these entries

accurately [24]. Specially, the receivedM measurements can

be expressed as

y =




ψψψ(1) 0 · · · 0

0 ψψψ(2) · · · 0
...

...
. . .

...

0 0 · · · ψψψ(M )







h(1)

h(2)
...

h(M )


+ N, (11)

where y = [yT (1), · · · yT (M )]T∈ C
NRFM×1 denotes the

received signal vector, N∈ C
NRFM×1 denotes the additive

white Gaussian noise vector and h(t) = vec(Hv(t))∈N1N2×1

denotes the beamspace channel at the t-th time instant.

We denote h
1= [hT (1), · · · hT (M )]T∈ C

MN1N2×1 as the

received beamspace channel vector, which has MLM non-

zeros entries.

To solve the above problem, we first utilize the unique

characteristic of mmWave time-varying channels to estimate

AoAs/AoDs. In particular, since the AoAs/AoDs remain con-

stant during a training frame, the received beamspace channel

exhibits block-sparsity after some signal processing. Then the

FIGURE 2. An illustration of a 3-path beamspace channel, where MT = 4,
NR = 8.

received signals is formulated as

y =




ψψψ(1) 0 · · · 0

0 ψψψ(2) · · · 0
...

...
. . .

...

0 0 · · · ψψψ(M )


555

︸ ︷︷ ︸
2

555T




h(1)

h(2)
...

h(M )




︸ ︷︷ ︸
β

+N

= 222βββ + N, (12)

where 222∈ C
MNRF×MN1N2 denotes the novel measurement

matrix, βββ∈ C
MN1N2×1 is the novel beamspace channel, and

555 denotes the permutation matrix which integrates the same

position entry of the beamspace channel at different time

instant. For example, Fig. 2 shows the difference between the

original beamspace channel and the new beamspace chan-

nel, where all the AoAs/AoDs are assumed to be on grid.

Therefore, the estimation of angles now becomes a block

sparse signal recovery problem. By finding the locations of

non-zero blocks, the AoAs/AoDs can be estimated. Then,

to solve the problem, we can resort to some conventional

block sparse algorithms, such as BOMP algorithm [25]. Since

the locations of non-zero blocks are not related to the Doppler

shifts, the above angle estimation algorithms are robust to

different Doppler shifts.

C. LOW-RANK PRESENTATION

In addition to the block-sparsity, the time-varying mmWave

channel may exhibit a meaningfull low-rank tensor structure

because of the time dimension. To better understand the

tensor structure, we first provide some prerequisites about

tensor decomposition, which can be found in [26], [27].

Definition 1 (Rank-one Tensor): The N -order tensor

κκκ∈ C
I1×I2×···IN is rank-one if it can be expressed as

κκκ = a1 ◦ a2 ◦ · · · aN , (13)

where an∈ C
In×1(n = 1, · · ·N ) denotes the factor vector.

Definition 2 (Tensor Rank):

The rank of a N -order tensor κκκ is defined as the small-

est number of rank-one tensors that form tensor κκκ as their

sum.
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L. Cheng et al.: mmWave Time-Varying Channel Estimation via Exploiting Block-Sparse and Low-Rank Structures

Definition 3 (CANDECOMP/PARAFAC Decomposition):

The CANDECOMP/PARAFAC (CP) Decomposition,

which is also know as canonical polyadic decomposition

(CPD), factorizes a tensor into a sum of rank-one tensors.

For example, the CP of a third-order tensor κκκ∈I×J×K has a

form as

κκκ =
K∑

k=1

xk ◦ yk ◦ zk , (14)

where K denotes the rank of tensor κκκ , xk∈I×1(k = 1, · · ·K )

and likewise for yk and zk . Furthermore, the CP model can be

rewritten as

κκκ = [[X,Y,Z]]

=
K∑

k=1

xk ◦ yk ◦ zk , (15)

where X = [x1 · · · xK ] denotes the factor matrix refer to

the combination of the vectors and likewise for Y and Z.

Furthermore, it is often assume that the columns of X, Y, and

Z are normalized with the amplitudes absorbed into a new

vector λλλ∈ C
K×1, such as

κκκ = [[λλλ;X,Y,Z]]

=
K∑

k=1

λkxk ◦ yk ◦ zk . (16)

After the above necessary preparations, we start to con-

struct the tensor model for mmWave time-varying MIMO

channel. Based on (7), the time-varying channel at the t-th

time instant can be developed as

H(t) =
L∑

l=1

ale
j2π flTstαααBS(θl) ◦ ααα∗

MS(ϕl). (17)

Then the time-varying channel for theM time instants can be

expanded as

χχχ = [[a;A,B,C]]

=
L∑

l=1

αlαααBS(θl) ◦ ααα∗
MS(ϕl)◦βββ l, (18)

where χχχ∈ C
NR×MT×M denotes the third-order channel ten-

sor whose three orders represent the AoA dimension, AoD

dimension, and time dimension, respectively. a∈ C
L×1 is the

amplitude vector, βββ l = [ej2π flTs · · · ej2π flTsM ]T∈ C
M×1and

define

A = [αααBS (θ1) · · · αααBS (θL)]∈ C
NR×L , (19)

B = [ααα∗
MS (ϕ1) · · · ααα∗

MS (ϕL)]∈ C
MT×L , (20)

C = [βββ1 · · · βββL]∈ C
M×L . (21)

Based on the above derivation, it is clear to observe that

the mmWave time-varying channel satisfies the form of CP

decomposition when considering the time dimension. Fur-

thermore, due to the sparse scattering nature of the mmWave

time-varying channel, the number of paths, is usually very

small. Thus the channel tensor χχχ has an intrinsic low-rank

structure.

Our objective is to estimate the mmWave time-varying

channel via utilizing the joint block sparse and low-rank

structures. Since estimation of time-varying channel via uti-

lizing revised BOMP algorithm [18], [23] and estimation

of static channel via utilizing CP decomposition algorithm

[13], [14] have been studied. However, there is much less

research for cases where the time-varying channel is charac-

terized by two structures simultaneously. In particular, how

to utilize the two structures to improve the performance of

time-varying channel estimation is of most concern. Thus,

in the following section, a two-stage scheme is proposed to

estimate time-varying channels by utilizing the two structures

simultaneously.

IV. PROPOSED TWO-STAGE TIME-VARYING CHANNEL

ESTIMATION ALGORITHM

In this section, we divide the proposed algorithm into two

separate stages. In the first stage, we utilized the block-sparse

structure to estimate the AoAs/AoDs of the mmWave time-

varying channel. In the second stage, based on the estimated

AoAs/AoDs, a CP decomposition-basedmethod is developed

to extract the path gains and the Doppler shifts by utilizing

the low-rank structure. Through the above two stages, all the

parameters of the time-varying channel are estimated, then

the final channel can be recovered.

For the stage of AoAs/AoDs estimation, the MS employs

M1 pilot signals to estimate the time-varying channel,

and at time instant t , the BS employs a combing matrix

w1(t)∈ C
NR×NRF to receive signal and the MS employs a

precoding vector f1(t)∈ C
MT×1 as pilot signal. In particu-

lar, each entry of w1(t) and f1(t) can be chosen uniformly

from a unit circle [14]. Then, similar to that described in

the Section III-A, the received M1 measurements can be

expressed as

y = 2βββ + N, (22)

where y ∈ C
NRFM1×1, 222∈ C

M1NRF×M1N1N2 , N∈NRFM1×1,

βββ∈ C
M1N1N2×1 and all the above parameters are defined in

Section III-A. Note that the beamspace channelβββ has a block-

sparse structure and the locations of non-zero blocks denote

the information of angles. Then a revised BOMP algorithm

in [18] can be utilized to estimate the AoAs/AoDs and the

number of non-zeros blocks, i.e., the number of paths L̃.

Finally, as the locations of non-zero blocks are not related

to the Doppler shifts, then this scheme is robust to different

Doppler shifts.

For the second stage, the designs of pilot signal and comb-

ing matrix are different from that of the first stage. Spe-

cially, the MS employs M2 constant beamforming vectors

fMS to detect the time-varying channel and the BS utilizes a

constant combing matrix w2 to detect signals. In particular,

the design of beamforming vector and combing matrix is

similar to the design in the first stage. Then, different from

the frame structure in the first stage, the received signal can be

VOLUME 7, 2019 123359



L. Cheng et al.: mmWave Time-Varying Channel Estimation via Exploiting Block-Sparse and Low-Rank Structures

written as

y(t) = wH
2 H(t)fMS + N(t), (23)

where w2∈ C
NR×NRF and fMS∈ C

MT×1. Then the received

signal is multiplied by a precoding vector fBS∈ C
1×Ns where

each entry is chosen uniformly from a unit circle. The pro-

cessed signal can be expressed as

R(t) = wH
2 H(t)f2 + N(t), (24)

where R(t) = y(t)fBS∈ C
NRF×Ns , f2 = fMSfBS∈ C

MT×Ns and

N(t)∈ C
NRF×Ns .

Furthermore, the processed signal can be rewritten as a

form of a weighted sum of common set of rank-one outer

products, such as

R(t) =
L∑

l=1

ale
j2π flTstwH

2 αααBS(θl)ααα
H
MS(ϕl)f2 + N(t)

=
L∑

l=1

ale
j2π flTst−→ααα BS(θl) ◦ −→

ααα MS(ϕl) + N(t), (25)

where
−→
ααα BS(θl)

1= wH
2 αααBS(θl),

−→
ααα MS(ϕl)

1= fT2ααα
∗
MS(ϕl).

And then, similar to what is discussed in Section III-

C, the received data can be model as a low-rank tensor

γγγ∈NRF×Ns×M2 . Specially, the three modes represent the RF

chain of BS, the extended dimension, the time instant, respec-

tively. Therefore, the tensor γγγ can be rewritten as a form of

CP decomposition, i.e.

γγγ =
L∑

l=1

al
−→
ααα BS(θl) ◦ −→

ααα MS(ϕl) ◦ βββ l + N

=
[[
a,

−→
A ,

−→
B ,C

]]
+ N, (26)

where

−→
A = [

−→
ααα BS(θ1) · · · −→

ααα BS(θL)]∈ C
NRF×L , (27)

−→
B = [

−→
ααα MS(ϕ1) · · · −→

ααα MS(ϕL)]∈ C
Ns×L . (28)

To obtain the three estimated factor matrices Ã, B̃, C̃,

alternating lease square (ALS) method is always exploited

by conventional CP decomposition-based algorithms [13],

[26], [27]. However, these algorithms need to design unique

precoding and combing matrices to ensure the uniqueness

of CP decomposition. Meanwhile, these algorithms are only

suitable for static mmWave channel estimation. In our two-

stage scheme, by utilizing the block-sparse structure of

mmWave time-varying channels, the AoAs/AoDs can be

obtained. Then, a novel CP decomposition method is pro-

posed by utilizing the basic property of CP decomposition.

Specially, regardless of the uniqueness condition of the CP

decomposition, the equality of noiseless γγγ is always held as

follows [27]

γγγ (3) = C333(
−→
B ⊙

−→
A )T , (29)

where 333 = diag(a). Therefore, based on the estimated

angles, the estimated factor matrix Ẽ
1= C̃3̃ is calculated by

Ẽ = γγγ (3)[(B̃ ⊙ Ã)T ]†, (30)

where the estimated factor matrices Ã and B̃ can be recon-

structed by the estimated AoAs/AoDs.

Then, a correlation-based scheme can be utilized to esti-

mate the Doppler shifts as follows

f̃l =argmax
fi

∣∣̃eH
l
βββ(fi)

∣∣
‖̃el‖2‖βββ(fi)‖2

, 1 ≤ i ≤ J , f̃l ∈ [0, f max], (31)

where ẽl denotes the lth column of Ẽ. Finally, the path gains

can be estimated through a simple least square (LS) method,

such as

ãl = βββ(fl)
†ẽl, 1 ≤ l ≤ L̃, (32)

Therefore, all the parameters of mmWave time-varying

channel are obtained and the final channel can be recov-

ered. Furthermore, the detail steps are listed in the

Algorithm 1.

Algorithm 1 Two-Stage Channel Estimation Algorithm for

Time-Varying mmWave MIMO Channels

Input: Received signals y and γγγ , precoding matrices f1 and

f2, combing matricesw1 andw2, one-dimensional search

number J , and error threshold ε.

Output: The estimated mmWave time-varying channel

parameters L̃, ã, θ̃θθ, ϕ̃ϕϕ, f̃ .

1: Construct the measurement matrix222 by (12).

2: Estimate the AoAs/AoDs and L̃ by (22) and BOMP

algorithm.

3: Update the estimated factor matrices B̃ and Ã according

to (27) and (28).

4: Calculate the factor matrices Ẽ by (30).

5: Estimate the Doppler shifts f̃ by (31).

6: Estimate the path gains ã according to (32).

V. PROPOSED TENSOR DECOMPOSITION-BASED

TIME-VARYING CHANNEL ESTIMATION ALGORITHMS

By exploiting the low-rank structure of the time-varying

channel, the time-varying channel estimation problem seems

to be able to be formulated as a simple low-rank tensor

decomposition problem. However, the conventional tensor

decomposition-based algorithms [13], [14] are only designed

for static channels. For comparison with these conventional

algorithms, in this section, we propose two simple extended

algorithms based on the conventional tensor decomposition-

based channel estimation algorithms [13], [14].

A. SIMPLY EXTENDED TENSOR DECOMPOSITION-BASED

ALGORITHM

We first consider utilizing the similar dimensional expansion

method in (24) to model the received time-varying data into
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a three-dimensional tensor, such as

Rs(t) = wH
s
H(t)fs + N(t) (33)

where the design of precoder ws and combiner fs is similar

to (24). And then, the three factor matrix can be rewritten

as

A = wH
s
A∈NRF×L (34)

B = fT
s
B∈Ns×L (35)

C = [βββ1 · · ·βββL]∈M×L (36)

where the three matrices {A,B,C} have been described in

section III-A. Besides, it is well known that the uniqueness

of CP decomposition can be guaranteed [27], if the Kruskal’s

condition [28] is satisfied, i.e.

kA + kB + kC ≥ 2L + 2, (37)

where kA, kB, and kC are the k-rank of matrices A, B, and

C, respectively. Note that the k-rank of the similar factor

matrices A and C have been proofed as follows [14]

kA = min(NRF,L) (38)

kC = min(M ,L). (39)

Then, consider that the k-rank is always less than or equal to

the matrix rank, the k-rank of matrix B is given by

kB ≤ rank(B)

= rank(fTs B)

≤ min(rank(fTs ), rank(B)). (40)

Note that fTs = (fMSfBS)
T = fTBSf

T
MS, therefore the rank of

matrix fTs is obtained as

rank(fTs ) = rank(fTBSf
T
MS)

≤ min(rank(f TBS ), rank(f
T
MS )

= 1. (41)

Substituting (41) into (40) yields

kB ≤ min(1, rank(B)) = 1. (42)

Then based on (42), the Kruskal condition is not

satisfied, i.e.

kA + kB + kC
(a)= 2L + 1 < 2L + 2, (43)

where (a) comes from the fact that the L is usually small.

Therefore, it can be easily verified that the simple

dimensional expansion method for conventional tensor

decomposition-based algorithm can not be utilized to esti-

mate the time-varying channel. And then, the uniqueness

of tensor decomposition can be guaranteed by utilizing the

following approximation [19]:

ρl(1) ≈ ρl(2) . . . ρl(M1), H(1) ≈ H(2) · · ·H(M1), (44)

where M1 denotes the number of sub-frames. Hence,

by assuming the time-varying channel remain constant in a

sub-frame, the precodingmatrixF and combingmatrixW can

Algorithm 2 Tensor Decomposition-Based Channel Estima-

tion Algorithm for Time-Varying mmWave MIMO Channels

Input: Received tensor τττ and MS beamforming matrix F,

BS measurement matrix W, L, I and ε.

Output: The estimated a, θ, ϕ, fd .

1: Initialize: Generate random initial matrices Ã(1) ∈
C
NRF×L , B̃(1) ∈ C

M1×L , C̃(1) ∈ C
T×L , n = 1.

2: repeat

3: n = n + 1;

4: Ã(n) = τττ (1)[(C̃
(n−1) ⊙ B̃(n−1))T ]†;

5: Ã(n) = Ã
(n)
:,j /

∥∥∥Ã(n)
:,j

∥∥∥
2
, 1 ≤ j ≤ L

6: B̃(n) = τττ (2)[(C̃
(n−1) ⊙ Ã(n))T ]† ;

7: B̃(n) = B̃
(n)
:,j /

∥∥∥B̃(n)
:,j

∥∥∥
2
, 1 ≤ j ≤ L

8: C̃(n) = τττ (3)[(B̃
(n) ⊙ Ã(n))T ]†;

9: τττ (n) =
[[
Ã(n), B̃(n), C̃(n)

]]

10: until

∥∥τττ (n+1)−τττ (n)
∥∥2
F

‖τττ (n)‖2
F

≤ ε

11: for 1 ≤ l ≤ L do

12: θ̃l = argmax
θi

∣∣∣̃aH
l

−→
ααα BS(θi)

∣∣∣
‖̃al‖2‖−→

ααα BS(θi)‖2

, 1 ≤ i ≤ J , θi ∈ [0, 2π ]

13: ϕ̃l = argmax
ϕi

∣∣∣̃bH
l

−→
ααα MS(ϕi)

∣∣∣
∥∥̃bl

∥∥
2‖−→
ααα MS(ϕi)‖2

, 1 ≤ i ≤ J , ϕi ∈ [0, 2π ]

14: f̃ ld = argmax
f id

∣∣∣̃cH
l
βββ(f ld )

∣∣∣
‖̃cl‖2

∥∥βββ(f ld )
∥∥
2

, 1 ≤ i ≤ J , f id ∈ [0, f max
d ]

15: g(̃f ld ) = [ej2π f̃
l
dM1Ts · · · ej2π f̃ ldTM1Ts ]T

16: Ã = [
−→
ααα BS(θ̃1) · · · −→ααα BS(θ̃L)]

17: B̃ = [
−→
ααα MS(ϕ̃1) · · · −→ααα MS(ϕ̃L)]

18: C̃ = τττ (3)[(B̃ ⊙ Ã)T ]†

19: [̃a1...̃aL] = diag([g(̃f 1d )...g(̃f
K
d )]†C̃)

be designed [13] to guarantee the uniqueness of CP decompo-

sition. For clarity, we summarize the simple extended tensor

decomposition-based algorithm [14] in Algorithm 2.

B. IMPROVED TENSOR DECOMPOSITION-BASED

ALGORITHM

As we hold the (44) to guarantee the uniqueness of the

CP decomposition, the method may approximation the

time dimension information of the received tensor. Thus,

the Algorithm 2 can not accurately estimate the path gains

and Doppler shifts of the mmWave time-varying channel.

In this subsection, we propose a improved two-stage tensor

decomposition-based algorithm to estimate the time-varying

channel.

In the first stage, we utilize the steps 1- 13 of the Algo-

rithm 2 to estimate the AoAs/AoDs. Note the AoAs/AoDs

keep constant during a training frame, the approximation (44)

retains accurate angular information.

Then, in the second stage, the MS sends M2 pilot signals

to estimate the time-varying channel. Furthermore, based on

the estimated angles and (29), the Doppler shifts and path

gains can be extracted by utilizing the steps 14-19 of the

Algorithm 3. Finally, the detailed steps can be seen in the

Algorithm 3.
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Algorithm 3 Improved Tensor Decomposition-Based Chan-

nel Estimation Algorithm for Time-VaryingmmWaveMIMO

Channels
Input: Received tensors τττ and ηηη, MS beamforming matrix

f1 and f2 , BS measurement matrixW, L, I and ε.

Output: The estimated a, θ, ϕ, fd .

1: Initialize: Generate random initial matrices Ã(1) ∈
C
NRF×L , B̃(1) ∈ C

M1×L , B̃(1) ∈ C
T×L , n = 1.

2: repeat

3: n = n+1;

4: Ã(n) = τττ (1)[(C̃
(n−1) ⊙ B̃(n−1))T ]†;

5: Ã(n) = Ã
(n)
:,j /

∥∥∥Ã(n)
:,j

∥∥∥
2
, 1 ≤ j ≤ L

6: B̃(n) = τττ (2)[(X̃
(n−1) ⊙ Ã(n))T ]† ;

7: B̃(n) = B̃
(n)
:,j /

∥∥∥B̃(n)
:,j

∥∥∥
2
, 1 ≤ j ≤ L

8: C̃(n) = τττ (3)[(B̃
(n) ⊙ Ã(n))T ]†;

9: τττ (n) =
[[
Ã(n), B̃(n), C̃(n)

]]

10: until

∥∥τττ (n+1)−τττ (n)
∥∥2
F

‖τττ (n)‖2
F

≤ ε

11: for 1 ≤ l ≤ L do

12: θ̃l = argmax
θi

∣∣∣̃aH
l

−→
ααα BS(θi)

∣∣∣
‖̃al‖2‖−→

ααα BS(θi)‖2

, 1 ≤ i ≤ J , θi ∈ [0, 2π ]

13: ϕ̃l = argmax
ϕi

∣∣∣̃bH
l

−→
ααα MS(ϕi)

∣∣∣
∥∥̃bl

∥∥
2‖−→
ααα MS(ϕi)‖2

, 1 ≤ i ≤ J , ϕi ∈ [0, 2π ]

14: Ã = [
−→
ααα BS(θ̃1) · · · −→ααα BS(θ̃L)]

15: Redefine
−→
ααα MS(ϕl)

1= fT2ααα
∗
MS(ϕl)

16: B̃ = [
−→
ααα MS(ϕ̃1) · · · −→ααα MS(ϕ̃L)]

17: C̃ = ηηη(3)[(B̃ ⊙ Ã)T ]†

18: for 1 ≤ l ≤ L do

19: f̃ ld = argmax
f id

∣∣∣̃cH
l
βββ(f ld )

∣∣∣
‖̃cl‖2

∥∥βββ(f ld )
∥∥
2

, 1 ≤ i ≤ J , f id ∈ [0, f max
d ]

20: g(̃f ld ) = [ej2π f̃
l
dM1Ts · · · ej2π f̃ ldTM1Ts ]T

21: [̃a1...̃aL] = diag([g(̃f 1d )...g(̃f
K
d )]†Z̃)

VI. PERFORMANCE ANALYSIS

In this section, we provide the CRLB of the proposed two-

stage time-varying channel estimation scheme, and then give

the computational complexity order of our scheme.

A. CRLB ANALYSIS

Different from the previous work [18] focused on the CRLB

of the channel estimation algorithm under the static channel,

we discuss the CRLB of the proposed channel scheme under

the time-varying channel. We firstly consider the received

time-varying data in the second stage of our proposed scheme

can be modeled as a three-dimensional tensor γγγ∈NRF×Ns×M2 ,

such as

γγγ =
L∑

l=1

al
−→
ααα BS(θl) ◦ −→

ααα MS(ϕl) ◦ βββ l + N, (45)

where the unknown time-varying channel parameters

{al, θl, ϕl, fl} are contained in this tensor, and each entry of

N is i.i.d zero mean, circular symmetric Gaussian random

noise, of variance σ 2. Then, similar to [29], [30], to simplify

the CRLB derivation, the unknown complex parameter vector

can be expressed as

µµµ = [θ1 · · · θL ϕ1 · · ·ϕL f1 · · · fL a1 · · · aL]. (46)

Finally, the CRLB of the channel parameter estimation in

the received tensor is given as follows [14], [31]

CRLB(µµµ) = ���−1(µµµ)

= E−1

{(
∂f (µµµ)

∂µµµ

)H (
∂f (µµµ)

∂µµµ

)}
, (47)

where ���(µµµ) denotes the complex Fisher information matrix

(FIM) [32], and the log-likelihood function f (µµµ) can be

expressed as

f (µµµ) = −NRFNsM2 ln(πσ
2)−

1

σ 2

∥∥∥γγγ T(1) − (C ⊙
−→
B )

−→
A

∥∥∥
2

F

= −NRFNsM2 ln(πσ
2)−

1

σ 2

∥∥∥γγγ T(1) − (C ⊙
−→
A )

−→
B

∥∥∥
2

F

= −NRFNsM2 ln(πσ
2)−

1

σ 2

∥∥∥γγγ T(1) − (
−→
B ⊙

−→
A )C

∥∥∥
2

F
.

(48)

B. COMPUTATIONAL COMPLEXITY ANALYSIS

We now discuss the computational complexity order of the

proposed two-stage channel estimation scheme in the next

two parts:

For the stage of AoAs/AoDs estimation, the computa-

tional complexity of the revised BOMP algorithm [18] is

O(RL̃MTNRG + RI L̃M1G + I2L̃3M1}, where R denotes the

number of iterations in each inner loop, I is the basis expan-

sion model (BEM) order, and G denotes the number of angle

grids.

For the stage of path gains and Doppler shifts estimation,

the major computational task of the proposed method is the

one-dimensional search method in (31). Thus, the complexity

order of the second stage scheme at each iteration isO(JM2).

Then, the total complexity order of the two stages is

O(RL̃NTNRG + RI L̃M1G + I2L̃3M1 + JM2). To avoid the

power leakage problem, the number of angle gridsG is always

very large, such as G ≫ NTNR. Besides, the number of

estimated path L̃ and the iteration number R are very small.

In particular, the total number of iterations in the second stage

is the estimated path L̃, so the main complexity order for the

one-dimensional search can be ignored. Therefore, the final

complexity order of the proposed two-stage scheme can be

simplified as O(RNTNRG+ RIM1G+ I2L̃3M1).

VII. SIMULATION RESULTS

In this section, we show the performance improvement of

our proposed two-stage mmWave time-varying channel algo-

rithm over other algorithms. Here, we consider a mmWave

massive MIMO system with hybrid precoding, where MT =
16, NR = 64, NRF = 6. For the geometric mmWave channel

parameters, the number of paths is set L = 3, the AoAs/AoDs

are assumed to distribute in [0, 2π ], and the static complex
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gain al follows a circularly symmetric Gaussian distribu-

tion. Furthermore, for the time-varying channel parameters,

the Doppler shift fl is randomly distributed in [0, f max], Ts =
1µs, and the carrier frequency fc = 60 GHz. In Algorithm 1,

we take J = 600 and Ns = 32 to get a better tradeoff between

the performance and complexity order. Besides, the total

transmission time instant of our method is MP = M1 + M2,

where M1 = 120, M2= 30.

To examine the estimation performance of the time-varying

channel parameters {a, θ, ϕ, f }, in this section, the mean

square error (MSE) is utilized to evaluate the estimation

accuracy separately, such as

MSE(x) = E
[
‖x − x̃‖22

]
, (49)

where x and x̃ denote the real parameter vector and estimated

parameter vector, respectively. Then, the normalized mean

square error (NMSE) is utilized to examine the estimation

accuracy of the time-varying channel, such as

NMSE = 10log10

(
E

[∥∥H − H̃
∥∥2
F

‖H‖2F

])
, (50)

where H̃ denotes the estimated time-varying channel.

A. ESTIMATION PERFORMANCE OF THE TIME-VARYING

CHANNEL PARAMETERS

In this subsection, the estimation accuracy of our proposed

two-stage method is compared with the conventional ten-

sor decomposition-based mmWave channel estimation meth-

ods Algorithm 2 and Algorithm 3, which are proposed in

Section V.

FIGURE 3. MSEs comparison among the proposed method and the
Algorithm 2 versus SNR, v = 120 km/h.

Fig. 3 plots the MSEs performace versus signal-to-noise

(SNR) of our proposed two-stage method and the simply

extended CP decomposition-based method (Algorithm 2).

From Fig. 3, it is clear to see that the proposed method

can accurately estimate all parameters of the mmWave time-

varying channel, in the meantime, the conventional CP based

methodmay not. The reason for this phenomenonmay be that

the conventional method needs to guarantee the uniqueness

of decomposition, which blurs the information in the time

dimension. Furthermore, by utilizing the block-sparsity of

time-varying channel, the proposed scheme achieves a better

estimation accuracy for angle estimation even under low SNR

compared with the conventional CP method.

FIGURE 4. MSEs comparison among the proposed method and the
Algorithm 3 versus the maximum doppler shift, SNR = 20dB.

Considering the problem of conventional tensor decompo-

sition based algorithm in estimating time-varying channels,

we proposed a improved algorithm (Algorithm 3) in the

Section V-B. Then, in Fig. (4) and Fig. (5), we examine the

channel parameter estimation performance of the proposed

two-stage method and the Algorithm 3.

FIGURE 5. MSEs comparison versus the maximum doppler shift with
priori knowledge of AoAs/AoDs, SNR = 20dB.
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Firstly, Fig. (4) portrays the MSEs performance compari-

son of the different algorithms versus the maximum Doppler

shift with SNR = 20dB. Observed from Fig. (4) that, for

the high maximum Doppler shift, the proposed improved

algorithm obtains a good MSE performance for all the time-

varying channel parameters. This implies that the improved

tensor decomposition-based algorithm can effectively extract

time dimension information from the received data when the

maximum Doppler shift is high. However, when the maxi-

mum Doppler shift is low, the improved algorithm performs

poorly due to the fact that the uniqueness condition of the

CP decomposition no longer exists. It’s also shown that the

propose two-stage method are robust to different Doppler

shifts. This is because that our method utilize the joint block-

sparse and low-rank structures of the mmWave time-varying

channel.

Secondly, in order to investigate the estimation perfor-

mance without considering the uniqueness condition of the

CP decomposition, we depict the MSEs curves against the

maximum Doppler shift based on the ideal AoAs/AoDs

in Fig. (5). From Fig. (5), we see that the improved tensor

decomposition-based algorithm still performs poorly when

estimating the path gains for the lowmaximumDoppler shift,

even with the ideal AoAs/AoDs. This indicates that the pro-

posed LS path gain estimation is superior to the method in the

Algorithm 3.

FIGURE 6. MSEs and CRLBs of the proposed method versus SNR with
priori knowledge of AoAs/AoDs, v = 120 km/h.

Finally, as analyze in the Section VI-A, the theoretical

CRLB derived in (47) is provided as the benchmark. Then,

Fig. (6) compares the MSEs performance of the proposed

two-stage method and the CRLBs with the priori knowledge

of AoAs/AoDs. As can be observed from Fig. (6), the MSEs

performance attained by our proposed two-stage method are

close to their corresponding CRLBs, even in the low SNR

region.

FIGURE 7. NMSE comparison among the different algorithms versus
SNR, v = 120 km/h.

FIGURE 8. NMSE comparison among the different algorithms versus the
maximum Doppler shift, SNR = 20dB.

B. ESTIMATION PERFORMANCE OF THE TIME-VARYING

CHANNEL

In this subsection, the performance of our proposed scheme

is compared with other conventional algorithms, such as the

OMP-minimal total coherence (OMP-MTC) algorithm [8],

the LS algorithm and the revised AAE algorithm [18].In

particular, the AAE algorithm is designed based on the time-

varying channel, which makes use of the block-sparsity char-

acteristic. Furthermore, the total numbers of pilots in LS,

OMP-MTC, AAE are 1024, 1024, 130, respectively.

In Fig. 7, we show the time-varying channel estimation

performance of different schemes versus SNR. As expected,

the AAE algorithm obtains a good performance, while it still

have some performance loss compared with our proposed

algorithm. The above phenomenon may be due to the joint

block-sparse and low-rank characteristic is utilized in our pro-

posed algorithm. Then, in Fig. 8, we examine the performance
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of different algorithms as a function of the maximumDoppler

shift from 5kHz to 20kHz, with the corresponding velocities

from 90km/h to 360km/h. Obviously, the AAE algorithm

lacks robustness when the maximum Doppler shift is very

high. It is important to point that, our proposed scheme

maintains a stable and better estimation performance with the

increase of Doppler shift, compared with other algorithms.

This is due to the fact that our proposed algorithm captures

the channel information in the time dimension, by utilizing

the low-rank structure of the received three-order tensor.

VIII. CONCLUSION

In this paper, the problem of time-varying channel estima-

tion for mmWave systems with hybrid structures is stud-

ied. In particular, it is shown that the block sparsity, along

with the low-rank structure, can be utilized to extract the

Doppler shifts and other channel parameters. Thus, a two-

stage channel estimation method is developed, in which the

block-sparsity is utilized to estimate the AoAs/AoDs, and

then followed by a tensor decomposition-based method to

extract the path gains and the Doppler shifts based on the

estimated AoAs/AoDs. Moreover, in order to compare with

conventional tensor decomposition-based channel estima-

tion algorithms, two simple extended algorithms for time-

varying channel estimation are proposed. Simulation results

demonstrate that the proposed scheme outperforms the con-

ventional compressed sensing-based algorithms and the ten-

sor decomposition-based algorithms. Moreover, simulation

results also show that the proposed scheme remains close

to the CRLBs even in the low SNR region with the priori

knowledge of AoAs/AoDs.
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