
Copyright 2001 Psychonomic Society, Inc. 174

Behavior Research Methods, Instruments, & Computers
2001, 33 (2), 174-178

As operating systems progress to match faster hard-
ware and higher user expectations, they seem to become
less compatible with the needs of experimenters whose
research requires real-time capabilities. Although some
researchers have stated that this is a reason to continue
utilizingnonmultitaskingenvironments(e.g., DOS; Myors,
1999), this strategy prevents the use of many advances,
such as 32-bit graphic libraries and video hardware ac-
celeration. Furthermore, although graphic libraries exist
for DOS, most displays must be written directly to the
video card (often in assembly language) to achieve the
performance required of experimental software. By con-
trast, and owing in part to the popularity of computer
games, 32-bit graphical libraries for Windows (such as
OpenGL) havebecomeviable, offering an impressivecom-
binationof fast speed, easy programming, and high qual-
ity displays. OpenGL can be used to create experimental
displays that would have needed specialized equipment a
few years ago. These displays range from simple two-
dimensional presentations to complex three-dimensional
(3-D) representations (see, e.g., Shore, Stanford, Mac-
Innes, Klein, & Brown, 2001). Moreover, new video cards
are being released without any thought given to DOS dri-
vers or support, leaving the DOS programmer to fall back
to the lowest common denominator—VGA. This denies
the use of any of the advanced features that are commonly
found on even the least expensive of today’s video cards.

Software is quickly becoming another problem for re-
searchers using DOS systems. Newer (usually better) soft-
ware packages will not run on DOS systems, and some
new compilers (e.g., Microsoft Visual C) can no longer
compile DOS programs. Other compilers (e.g., Metro-
werks CodeWarrior) offer advanced graphical support
for Windows’ conventions such as MMX and AMD’s
3DNOW!. Working on a Windows system and experiment-
ing on a DOS system can lead to other compatibility is-
sues related to the need to convert to short file names for
DOS and the use of different file systems and default
palettes.

Despite the difficulties associated with using nonmulti-
tasking environments, they have sometimes been favored
over newer systems owing to concerns over timing issues.
Windows 95 and, later, MacOS and Linux are all multi-
tasking operating systems. This means that the operating
system is responsible for allocating time to each of the
applications. Even if only a single application is running,
the operating system will periodically “steal time” from
the application to ensure that OS errors do not crash the
entire system. Although the degree of multitaskingvaries
between operating systems, all will steal time from a pro-
gram under normal running conditions. So long as this is
the case, an experimenter cannot achieve true real time.

Many solutions (both free and commercial) have been
proposed to deal with the conundrum of optimizing mod-
ern operating systems for real-time operation, but most
are expensive, difficult to verify, or fall short of true real
time. Some of these solutions require specialized hardware
(see, e.g., McKinney, MacCormac, & Welsh-Bohmer,
1999) or center around arguments that time-critical data
can be collected without a true real-time system (Hecht,
Oesker, Kaiser, Civelek,& Stecker, 1999;Stevenson,Fran-
cis, & Kim, 1999). Finally, it is difficult to judge commer-
cial software packages, because many do not advertise
real-time statistics and most do not include source code
for independent testing. Readers should also be warned

This research was funded in part by the National Science and Engineer-
ing Research Council of Canada, the Canadian Space Agency, and Dal-
housie University. Thanks to William Schmidt, Steven Finney, and four
anonymous reviewers for comments on this and earlier versions of this
paper. The testing software used in this article is owned and copyrighted
by the first author and is available for free download under the GNU
public license. Individuals using this software in published articles are
asked to cite the source of the code. Correspondence concerning this ar-
ticle should be addressed to W. J. MacInnes, Department of Psychology,
Dalhousie University,Halifax, NS B3H 4J1,Canada (e-mail: macinnwj@
cs.dal.ca).

Millisecond timing on PCs and Macs

W. JOSEPH MACINNES and TRACY L. TAYLOR
Dalhousie University, Halifax, Nova Scotia, Canada

A real-time,object-oriented solution for displaying stimuli on Windows 95/98, MacOS and Linux plat-
forms is presented. The program, written in C++, utilizes a special-purpose window class (GLWindow),
OpenGL, and 32-bit graphics acceleration; it avoids display timing uncertainty by substituting the new
window class for the default window code for eachsystem.We report the outcome of tests for real-time
capability across PC and Mac platforms running a variety of operating systems. The test program,
which can be used as a shell for programming real-time experiments and testing specific processors,
is availableat http://www.cs.dal.ca/~macinnwj. We propose to provide researcherswith a sense of the
usefulness of our program, highlight the ability of many multitasking environments to achieve real time,
as well as caution users about systems that may not achieve real time, even under optimal conditions.

MILLISECOND TIMING 175

that packages claiming to use millisecond timers are not
necessarily claiming real time. This is akin to claiming
that prices are measured in pennies without reporting the
actual price.

The purpose of this report is to present a software so-
lution that is capable of achieving and testing for real time.
This software solution is designed to be easily ported to
any system capable of 32-bit (OpenGL) graphics and can
be used on a variety of systems, including MacOS, Win-
dows, and Linux. It may be used as a base for developing
real-time experiments or used “as is” to test the timing
capabilities of experimental machines. To demonstrate
the utility of this program as a test for real-time opera-
tion and to inform the reader of which modern computer
systems are capable of achieving real time, we examined
the results of timing tests run on a variety of hardware
and software combinations.

METHOD

All software for this timing test was written and compiled using
Metrowerks CodeWarrior 5.0 (for Windows and Mac) and a stan-
dard “make” file for Linux. Although the code could be easily con-
verted to other compilers, Metrowerks has the advantage of being able

to optimize graphics for both MMX and 3DNOW! calling conven-
tions and is available for all three operating systems. The executable
included in the PC download is optimized for an AMD (K6-2 or Ath-
lon) computer, but settings are also available for Intel-based CPUs.

Apparatus
OpenGL version 1.1 was used as the graphics library for all tests

to take advantage of graphic hardware acceleration and cross-platform
compatibility. Performance tests were run on a variety of PCs, rang-
ing from low-end Pentiums with no graphics accelerator to high-
speed Athlons with 3DNOW!, MMX, and OpenGL acceleration.
Mac systems also ranged from low-end with no acceleration to new
systems with OpenGL acceleration. Operating systems included
Windows 95/98/2000, MacOS 7.5/8.6/9.0, and Mandrake Linux
7.1. The Linux systems were installed with the XFree86 4.0 X win-
dow distribution to take full advantage of any OpenGL hardware
acceleration. See Table 1 for a full list of the systems tested.

The testing program, written in C++, utilized a full-screen,
OpenGL window. Although code is included for stimulus display
and keyboard /mouse responses, these features were not used dur-
ing the timing tests. For the duration of the timing test, the computer
screen was in full-screen mode (a completely black screen). The
screen was not updated, and input was not recorded for the duration
of the experiment. This was to ensure a measure of system timing
that was not confounded with the measurement of delays that were
due to display or input devices. The only class that differed between
operating systems was that used for creating the window (GLWindow

Table 1
Performance of Machines Tested Using Real-Time Software

Number of Excessive Average Loop Average Miss
System Loop Durations Duration (msec) Duration (msec)

Linux
Athlon 650 Xwindows 51 <0.001 7.04
Athlon 650 ‘bash’ 34 <0.001 6.76
Athlon-Duron 600 Xwindows 0 <0.001 0.00

(with scheduler)
Macintosh

OS7.6-8500 0 0.055 0.00
OS8.1-8500 0 0.059 0.00
OS8.6-G3Tower(1) 165 0.011 2.32
OS8.6-G3Tower(2) 327 0.002 1.41
OS8.6-6500 1,666 0.042 2.13
OS9.0-G4-No Zip 0 0.006 0.00
OS9.0-G4-With Zip 0 0.006 0.00
OS9.0-G3Desktop 1,666 0.019 1.72

PC-Win2K
W2K-Athlon-Duron600 0 0.002 0.00
W2K-K6-2-500 0 0.009 0.00
W2K-P133 0 0.013 0.00
W2K-Celeron400 ERR* ERR* ERR*
W2K-Athlon500 ERR* ERR* ERR*
W2K-Athlon650 ERR* ERR* ERR*

PC-Win95/98
W98-Athlon500 0 0.007 0.00
W98-K62-350 0 0.006 0.00
W95-K62-400 0 0.005 0.00
W95-P125 0 0.007 0.00
W95-P166/MMX 0 0.006 0.00
W98-PII-233w 2 video cards 1 0.006 3.85
W98-PII-233w 1 video card 0 0.006 0.00
W98-Athlon650 0 0.006 0.00

Note—Number of excessive loop durations refers to the total number of loops that exceeded
1 msec. Average miss duration is the average length of those excessive loops. Average loop dura-
tion is the lengthof all loops, includingthose that were missed. All results are generated by the sam-
ple program in the file time.dat. ERR* refers to Windows 2000 systems that were unable to com-
plete the test owing to a bug in the multimedia timer.

176 MACINNES AND TAYLOR

class). Functions used in the GetTime() method of this class were the
following: Linux, gettimeofday(); Mac, Seconds(); and PC, Query-
PerformanceCounter(). All other code was platform independent.

Procedure
All timing tests were accomplished using a simple loop that did

nothing but track the time between iterations by calling GetTime()
from the window class (see below).

By simulating 500 discrete trials with a duration of 10 sec each,
each machine underwent over 83 min of continuous testing. A
“sample” was defined as the “LoopDuration” of a single iteration
of the timing loop, and a missed sample was any single iteration that
took longer than 1 msec to complete. An “ideal” system, would,
therefore, complete this entire test without a loop duration exceeding
1 msec. Even though 1 msec is the maximum allowable loop, the aver-
age loop duration should be small enough (a fraction of our 1-msec
maximum) to allow for the code and calculations that typically fall
within a typical experiment’s timing loop. All errors were buffered
in memory and written to the file at the end of the experiment.

It is important to note that this was a customized timing loop, and
not the messaging loop commonly used with standard “window” pro-
gramming. Message loops on Windows, Mac, and Linux allow the
operating system to pass information between the hardware and the
individual applications, as well as between applications. Because the
standard messaging loop was bypassed on all of these platforms, al-
ternative ways were found to interact with such devices as the key-
board, the mouse, and the display.

To facilitate cross-platform programming, all of the hardware-
specific code was kept within the window class (GLWindow). Win-
dow setup, rendering, timing, and input were all controlled through
methods in this class. Changing the program to support new oper-
ating systems meant simply changing the code internal to GLWindow
and leaving the method names the same; the remainder of the code
needed no modification.

Wherever possible, the priority of the experiment was boosted to
the maximum supported by that system. SetPriorityClass(h, REAL-
TIME_PRIORITY_CLASS)(Microsoft Developer Network On-Line
Library, 2001) was used for all the Windows systems. For the Linux
system, SetPriority(-20) was used, and then, prompted by success in
achieving real time reported by Finney (2001), sched_setsched-
uler() was added to improve the Linux test. For MacOS, there is
currently no official priority setting. Although there are implemen-
tations (Pelli, 2001) of an older, unsupported, priority call, this was
not used in these tests. Since the code is not supported by Mac and
is not PowerPC native, there was no guarantee of how it would per-
form on current and future systems. Macs, however, were run with-
out nonessential extensions and with virtual memory disabled.

It should be noted that although real-time priority (process pri-
ority, in particular) in Windows can have a large effect on perfor-
mance, it does so at the expense of all other processes, including the
operating system. Although real-time priority does not completely
shut out the operating system, it will completely shut out the mes-
saging loop, as well as cause the disk cache not to flush immediately.
When in doubt, researchers should consider using HIGH_PRIOR-
ITY_CLASS or ABOVE_NORMAL_PRIORITY_CLASS,both of
which are higher priority than most other programs, but not the op-
erating system.

RESULTS AND DISCUSSION

Table 1 summarizes the outcome of the timing tests that
were performed. The number of excessive loop durations
refers to the total number of loops that exceeded 1 msec,
the average miss duration is the average time (in milli-
seconds) of those missed loops, and the average loop du-
ration is the average lengthof all the loops, includingthose
that were missed. This information is the same as research-
ers will find in the time.dat file produced by the down-
loadable software http://www.cs.dal.ca/~macinnwj.

Windows
All of the PC systems achieved true real time while run-

ning Windows 9x. The only exception was a Pentium II,
which consistently had a loop duration that exceeded a
millisecondwithin the first second of the experiment.This
was likely due to the overhead associated with the use of
two video cards for graphics acceleration; no single-card
solution had this problem, including the same system
with the second card removed. All other tests on Win-
dows 9x PCs completed the entire 83 min (500 iterations
of 10,000 msec) without skipping a single millisecond.

The results for Windows 2000 were not as clear-cut.
Some systems were capable of consistent real-time per-
formance, whereas others behaved as if the drivers were
incompleteor containedbugs. Both low-end Pentium sys-
tems (P133 and a PII 233), an Athlon 650, and an Athlon
(Duron) 600 achieved real time without a single loop du-
ration exceeding1 msec. An Athlon 500 system, however,
had consistent long loops every 10 sec, and a Celeron 400
had compatibility problems with the multimedia timer
that was used. The Celeron finished the entire 83-min
experiment in under 20 sec, despite the fact that the timer
and compatibility test providedby Microsoft for this timer
returned positive results. In an attempt to determine
whether this represented a bug in Windows 2000, the lat-
est service pack1 was installed on the Celeron 400, the
Athlon 500, and the Athlon 650. This caused all three
machines to report incorrect times with the multimedia
timer, despite passing the compatibility test. Although it
seems possible to achieve true real time on Windows 2000,
tests on all machines will not be conclusive until bug-
free drivers are available.

One of the most critical time-bandits in Windows, sur-
prisingly, was displaying the mouse cursor. Failing to
disable the cursor display actually had a greater effect on
timing than setting the priority. Although it was possible
to achieve real time without the cursor in normal priority,

CurrentTime := GetTime() //Set up Timer; resolution = 1 msec//
FinalTime := CurrentTime + 10,000 //10 sec per test //
PreviousTime := CurrentTime
While(FinalTime—CurrentTime > 0)

CurrentTime := GetTime()
LoopDuration[i]:= CurrentTime—PreviousTime //save loop duration for test //
[Test to see if LoopDuration < 1 ms, and report errors]
PreviousTime := CurrentTime
i := i + 1

MILLISECOND TIMING 177

samples were lost with the standard cursor displayed even
on real-time priority.

Macintosh
Results for Mac systems also varied according to a

number of factors. Machine type, operating system, and
extension set played a large role in determining the out-
come of the timing tests. Some systems were capable of
producing real time, whereas others were not. Every sys-
tem tested with Version 7 of the operatingsystem produced
real time without any diff iculty; some systems tested
with OS 8.x achieved real time, whereas others did not;
and finally System 9.0 achieved real time on G4 ma-
chines, but not on any other. It should be noted that the
speed of the machine does not always determine perfor-
mance. For example, an 8500 runningSystem 8.1 achieved
real time, whereas a G3 running System 8.6 did not.

It is interesting to note that the extensions on a given
machine had a large impact on the performance in these
timing tests. By disabling the internal Zip drive alone,
most of the missed samples were eliminated (all the tests
in Table 1 are after the Zip was disabled,unless otherwise
stated). In fact, only the G4s tested (OS 9.0) were able to
achieve real time with the Zip drive enabled. All times
reported for Macs in this paper are for tests run with
minimal system extensions and with virtual memory dis-
abled. On a final note, it is difficult to separate the per-
formance of the G4 from that of OS9. Machine and op-
erating system were designed to work together, and
although OS9 did not achieve real time on a G3, it is im-
possible to test a G4 on an earlier operating system.

Linux
None of the original Linux systems examined was ca-

pable of pure real time, using this test. Although the
Xwindows code presented is not quite ready for full ex-
perimentation (mouse cursor can only be hidden, not re-
moved, and Xwindows must be restarted after running),
it is sufficient for real-time tests (see Finney, 2001, for
another solution to real-time data acquisition and con-
trol on Linux). To ensure that time loss was not due to
improper implementation, a similar timing loop was run
without Xwindows, using only the Bourne Again Shell
(bash)—the Linux command line DOS equivalent. Al-
though bash did perform better than the Xwindows im-
plementation, it was also incapable of performing the
test without loop durations exceeding 1 msec. Finney has
also measured loop performance in Linux and has also
been able to improve this performance by setting the
schedulingpriority, in addition to the methods presented
in this paper. He shows that when the sched_setschedular
call in Linux is used to give a process high priority, Linux
provides timing resolution (100 μsec or better) that is
more than sufficient for millisecond-level control. This
result was replicatedby adding the schedulingcalls to this
timing test (see Table 1, Athlon-Duron 600 Xwindows
[with scheduler]).

IMPLEMENTATION AND EXTENDABILITY

The program used to run the timing tests is available
at http://www.cs.dal.ca/~macinnwj and is currently ca-
pable of system timing tests on a variety of machines.
The executable files included with the downloads should
be entirely compatible with AMD (Windows), PowerPC
(MacOS), and Kernel 2.2.16 (Linux). Other systems (In-
tel based PCs, etc.) shouldbe able to use the software after
a simple recompilation of the included source code.2

The code is written to run 500 trials. For a shorter test,
researchers may change the first number in the included
stimulus file (stim.in) from 500 to any number of 10-sec
loops. Timing results from the program are output to a
file called time.dat. Each line of the output f ile repre-
sents a summary of the data from a 10-sec loop. Output
includes the number of samples that exceeded 1 msec in
duration, the total number of loops that were run in each
10-sec trial, the sample frequency, the average loop du-
ration, and the average time (in milliseconds) of those
loop durations that exceeded 1 msec.

The software package can also be used as a base for
developingfully-functioningexperiments.3 A simple dem-
onstration experiment4 is included in the code and can be
activated by changing a few comments before recompil-
ing. The method Capp::Run() in the file App.cpp con-
tains the main running loop of the code. The loop that
begins with while(((CurrTime. . . is executed once in
each 10-sec trial and contains code to test the timing, as
well as code to display two 3-D wire frame objects. A re-
searcher may simply comment out the timing code and
uncomment the drawing code to get a sample experiment
that tests the additive effect of various 3-D cues (see
note 4). As with the timing test, the first number in the file
stim.in may be changed to alter the number of trials that
the program will run. Each trial awaits a response from
1 to 10 on the computer keyboard, representing the rela-
tive difference in depth between the two objects (see
note 4) that are presented. Results from the trials are out-
put to the file stim.out.

The following is a short description of the classes in-
cluded in this project and of the program flow. It should
be noted that this is not meant to be an introduction to
object-oriented or OpenGL programming; it is intended
only to demonstrate the use of these principles in this
particular application. GLWindow.cpp is responsible for
the creation of the full-screen window, as well as for key-
board input and tracking system time. All platform-
specific code is encapsulated in this class for greater
portability.Main.cpp is not a class, but an entry point for
the program (WinMain). It has only one purpose: to cre-
ate a single instance of the application class (Capp) and
ask it to run. Note that the windows messaging loop is
not entered until after the entire program has finished run-
ning. The application class (App.cpp) controls the ma-
jority of the program flow; it has methods to load data
from input files and save data to output files, as well as

178 MACINNES AND TAYLOR

the main program loop. The trial class (Trial.cpp) is an
abstract class that defines the behavior of any class that
inherits from it. A number of such classes can be found in
Depthtrial.cppand reflect the different types of trials that
are available in this sample experiment.

Program flow is as follows. The application class,
through its Run() method, reads in the stimulus f ile
(stim.in) and begins filling an array of trials (Tlist[])
with instances from the classes found in Depthtrial.cpp.
This selection is currently random, based on the percent-
ages found in the input file. Because all of these classes
inherit from the Trial class, they are interchangeable in
this array and are capable of displaying completely dif-
ferent visuals through their Render() method. Tlist[i]->
Render() is called before the timing loop and renders the
appropriate display for that trial to an off-screen buffer.
The timing loop begins and monitors two possible events:
(1) a keyboard response, which ends the trial, or (2) on-
set time for the trial display, which tells the window class
to swap the off-screen buffer to the front display. This con-
tinues for the preprogrammed number of trials.

CONCLUSION

All the machines, regardless of speed and graphics card,
were able to maintain an average of about 100 loop iter-
ations per millisecond (slightly less for some Macs). Of
course, the most basic experiments will do much more
than check a timer in the main loop, but with loop over-
head this low, there is plenty of room to add whatever cal-
culations are needed. In addition,Windows 9x and Linux
(after modifications) were able to maintain optimum
performance without losing any time to the operating
system. Mac, although not true real time under all con-
ditions, still managed to keep the time loss to a minimum.
Finally, it is important to realize that every combination
of hardware, operating system, and experimental soft-
ware is potentially different and must be tested to ensure
that it meets the needs of the experimenter. A capacity for
real time does not guarantee real-time performance, as
our results demonstrate. It is the responsibility of the re-

searcher to perform real-time tests on their systems and
of the makers of experimental software to include such
tests with their software.

REFERENCES

Finney, S. A. (2001). Real-time data collection in Linux: A case study.
Behavior Research Methods, Instruments, & Computers, 33, 167-173.

Hecht, H., Oesker,M., Kaiser, A., Civelek,H., & Stecker,T. (1999).
A perception experiment with time-critical graphics animation on the
World-WideWeb. Behavior Research Methods, Instruments, & Com-
puters, 31, 439-445.

McKinney, C. J., MacCormac,E. R., & Welsh-Bohmer,K. A. (1999).
Hardware and software for tachistoscopy: How to make accurate
measurements on any PC utilizing the Microsoft Windows operating
system. Behavior Research Methods, Instruments, & Computers, 31,
129-136.

Microsoft Developer Network On-Line Library [On-line]. Available:
http://msdn.microsoft.com/library/default.asp. (Retrieved March 1,
2001)

Microsoft Windows2000 Service Pack 1 Download [On-line] Available:
http://www.microsoft.com/windows2000/downloads/recommended /
sp1/default.asp. (Retrieved March 1, 2001)

Myors,B. (1999).Timing accuracy of PC programs runningunder DOS
and Windows. Behavior Research Methods, Instruments, & Comput-
ers, 31, 322-328.

Pelli, D., Video Toolbox [on-line]. Available: http://vision.nyu.edu/
VideoToolbox/. (Retrieved March 1, 2001)

Shore,D. I., Stanford, L., MacInnes, W. J., Klein, R. M., & Brown,

R. E. (2001). Of mice and men: Using virtual Hebb–Williams mazes
to compare learning across gender and species (Homo sapiens and
Mus musculus). Cognitive, Behavioral, & Affective Neuroscience, 1,
83-89.

Stevenson, A. K., Francis,G., & Kim, H. (1999). Java experiments for
introductorycognitivepsychologycourses. Behavior Research Meth-
ods, Instruments, & Computers, 31, 99-106.

NOTES

1. Service Pack 1.0 (2001) can be downloaded from the Microsoft
Home Page.

2. In CodeWarrior the target processor setting can be found under
Edit->Settings->Code Generation->x86 Processor.

3. It should be noted that the following description of the code is not
needed to run or understand the timing capabilities of the software.
Anyone not interested in modifying the code should skip ahead to the
Conclusion section.

4. This experiment is only provided as a sample of what can be accom-
plished. The authors make no claims as to its scientific validity.

(Manuscript received November 8, 2000;
revision accepted for publication March 21, 2001.)

