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Abstract. We apply sheaf-theoretical methods to monodromy zeta functions of Mil-
nor fibrations. Classical formulas due to Kushnirenko, Varchenko and Oka, etc. on polynomi-
als over the complex affine space will be generalized to polynomial functions over any toric
variety. Moreover our results enable us to calculate the monodromy zeta functions of any
constructible sheaf.

1. Introduction. One of the most beautiful results in the theory of Milnor fibra-
tions would be the formula for the (local) Milnor monodromy zeta functions obtained by
Varchenko [27] (see also [13] and [22] for the detail of this subject). In his formula, the
Milnor monodromy zeta function ζf (t) ∈ C(t)∗ := C(t) � {0} at 0 ∈ Cn of a polynomial
f (x) ∈ C[x1, x2, . . . , xn] on Cn such that f (0) = 0 is expressed by the geometry of the New-
ton polygon of f (for a similar and more precise result on Hodge structures, see also Tanabe
[26]). To prove it, he constructed a toric modification of Cn on which the pull-back of f de-
fines a hypersurface with only normal crossing singularities. Since Cn is a very special toric
variety, it would be natural to generalize his formula to Milnor fibers over general singular
toric varieties. In this paper, we realize this idea with the help of sheaf-theoretical methods,
such as nearby cycle and constructible sheaves. In particular, in Theorem 3.4 we prove a for-
mula for the monodromy zeta functions of Milnor fibers over general (not necessarily normal)
toric varieties. Note that general theories of Milnor fibers over complete intersection varieties
were developed by Looijenga [14] and Oka [22] etc. However toric varieties are not complete
intersection nor of isolated singularities in general. Also for Milnor fibers over varieties of
determinantal singularities, see Esterov [4].

In order to give the precise statement of our theorem, let S be a finitely generated sub-
semigroup of the lattice M � Zn such that 0 ∈ S. Denote by K(S) the convex hull of S in
MR = R ⊗Z M . For simplicity, assume that K(S) is a strongly convex polyhedral cone in
MR such that dimK(S) = n and letM(S) be the Z-sublattice of rank n inM generated by S.
Then X(S) = Spec(C[S]) is a (not necessarily normal) toric variety of dimension n (see [5],
[7] and [20] etc. for the detail) on which the algebraic torus T = Spec(C[M(S)]) � (C∗)n
acts. By our assumption, there exists a unique T -fixed point inX(S), which we denote simply
by 0. Let f : X(S)→ C be a non-zero polynomial function on X(S) (i.e., f =∑v∈S av · v,
av ∈ C) such that f (0) = 0. Denote by F0 the Milnor fiber of f : X(S) → C at 0 ∈ X(S)
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(see for example [24] for a review on this subject). We define the monodromy zeta function
ζf,0(t) ∈ C(t)∗ of f at 0 ∈ X(S) by

ζf,0(t) =
∞∏
j=0

det(id− tΦj,0)(−1)j ,(1)

where

Φj,0 : Hj(F0;C) ∼−→ Hj(F0;C) (j = 0, 1, . . . )(2)

are the isomorphisms induced by the geometric monodromy automorphism F0
∼→ F0. Then

we can give a formula for the zeta function ζf,0(t) as follows. First, we define the Newton
polygon Γ+(f ) ⊂ K(S) of f just as in the classical case of polynomials on Cn (see Def-
inition 3.1). For each face ∆ ≺ K(S) of the cone K(S) such that Γ+(f ) ∩ ∆ �= ∅, let
γ∆1 , γ

∆
2 , . . . , γ

∆
ν(∆) be the compact faces of Γ+(f ) ∩ ∆ such that dim γ∆i = dim∆ − 1. Let

L(∆) be the linear subspace of MR spanned by ∆ and denote by M(S ∩ ∆) the sublattice
of M(S) generated by S ∩ ∆. Then we can define the lattice distance d∆i ∈ Z>0 from γ∆i
to 0 ∈ L(∆) with respect to the lattice M(S ∩ ∆) ⊂ L(∆) (see Definition 3.3). Finally, let
VolZ(γ ∆i ) ∈ Z be the normalized (dim∆− 1)-dimensional volume of γ∆i with respect to the
lattice M(S ∩ ∆) ∩ L(γ ∆i ). Here this normalized volume is (dim∆ − 1)! times the usual
(dim∆ − 1)-dimensional volume. Throughout this paper, for the volumes of polytopes we
use the normalized ones.

THEOREM 1.1. Assume that f is non-degenerate(in the sense of Definition 3.2 below).
Then the monodromy zeta function ζf,0(t) of f at 0 ∈ X(S) is given by

ζf,0(t) =
∏

Γ+(f )∩∆ �=∅
ζ∆(t) ,(3)

where for each face ∆ ≺ K(S) of K(S) such that Γ+(f ) ∩∆ �= ∅ we set

ζ∆(t) =
ν(∆)∏
i=1

(1− td∆i )(−1)dim∆−1VolZ(γ ∆i ) .(4)

We will prove this theorem by decomposing the problem into those on the closures of
T -orbits in X(S) with the help of nearby cycle functors introduced by Deligne [2] (see also
[10, Chapter VIII] etc.). Recall the following basic correspondence for each 0 ≤ k ≤ n:

{k-dimensional faces in K(S)} 1-1←→ {k-dimensional T -orbits in X(S)} .(5)

For a face ∆ of K(S), denote by T∆ the corresponding T -orbit in X(S). Then we obtain
a decomposition X(S) = ⊔∆≺K(S) T∆ of X(S) into T -orbits. To prove Theorem 1.1, we
first interpret the classical notions of Milnor fibers into the language of nearby cycle sheaves
and reduce the problem to the computation of the monodromy zeta functions ζf (CT∆) of
the nearby cycle sheaves ψf (CT∆) (for the definitions see Section 2) of the constructible
sheaves CT∆ onX(S). Then by Proposition 2.5 we can study the monodromy zeta function of
ψf (CT∆) on the closure T∆ of T∆. This simple idea largely simplifies the classical arguments
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and allows us to avoid topological difficulties we usually encounter in treating Milnor fibers
over singular varieties. Indeed even the original proof of Varchenko’s theorem in [27] would
be also simplified by our idea of decomposing Cn into smaller tori (C∗)d . Moreover, by
applying the same idea to complete intersection subvarieties {f1 = f2 = · · · = fk = 0}
in X(S), in Theorem 3.12 we obtain also a generalization of the deeper results of Kirillov
[12] and Oka [21], [22] to Milnor fibers over complete intersection subvarieties of singular
toric varieties. In our Theorem 3.12, even on the smooth toric variety Cn we could remove
some technical assumptions (see [22, Chapter IV, §4, p. 205]) imposed by [21] and [22].
For example, in our Theorem 3.12 we do not assume any condition on the Newton polygons
of polynomial functions f1, f2, . . . , fk on X(S). Note that Theorem 3.12 is also a natural
generalization of the formula for the local multiplicities of toric varieties in [7, Chapter 5,
Theorem 3.14]. The proof of Theorem 3.12 is very simple and follows also from the functorial
property (Proposition 2.5) of the nearby cycle functor. Note that on Cn Gusein-Zade’s student
Gusev [8] obtained independently a similar result in the very special case where k = 2 and
the polynomials f1 and f2 satisfy an additional condition. In Section 5, we extend our results
to the monodromy zeta functions of T -invariant constructible sheaves. Our results in Section
5 have also another very important application. Let X be an algebraic variety over C and
g : X → C a regular function on it. Then for any constructible sheaf F ∈ Dbc(X) on X we
can now explicitly calculate the monodromy zeta function ζf (F) by using our results. Indeed,
by a well-known result (Proposition 2.5) and resolutions of singularities, we can reduce the
calculation to the normal-crossing case studied in Section 5. Especially, our Proposition 5.3,
which is a generalization of the famous A’Campo lemma (see [1] and [22, Chapter I, Example
(3.7)] etc.) to constructible sheaves, is indispensable to complete this calculation. Therefore
we believe that our results in Section 5 are of independent interest and have many applications
in the future. Note that some applications were already given in [17] and [25].

Finally, let us mention that the methods we developed in this paper can be applied also
to other related problems. For example, in [17] we used this idea to compute the monodromy
zeta functions at infinity. In another paper [16], some applications of our methods to A-
discriminant varieties are also given.

Moreover, in [25] our results in Section 5 will be effectively used to compute the mon-
odromy at infinity of A-hypergeometric functions introduced by Gelfand, Kapranov and
Zelevinsky [6].

2. Preliminary notions and results. In this section, we introduce basic notions and
results which will be used in this paper. In this paper, we essentially follow the terminology
of [3], [9] and [10]. For example, for a topological space X we denote by Db(X) the derived
category whose objects are bounded complexes of sheaves of CX-modules onX. For an alge-
braic varietyX over C, let Dbc(X) be the full subcategory of Db(X) consisting of constructible
complexes of sheaves. In this case, for an abelian group G we denote by CFG(X) the abelian
group ofG-valued constructible functions onX. Let C(t)∗ = C(t) \ {0} be the multiplicative
group of the function field C(t) of the scheme C. In this paper, we consider CFG(X) only for
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G = Z or C(t)∗. For a G-valued constructible function ρ : X→ G, by taking a stratification
X =⊔α Xα ofX such that ρ|Xα is constant for any α, we set

∫
X
ρ :=∑α χ(Xα)·ρ(xα) ∈ G,

where χ(·) denotes the Euler characteristic and xα is a reference point inXα . Then we can eas-
ily show that

∫
X
ρ ∈ G does not depend on the choice of the stratification X = ⊔α Xα of X.

More generally, for any morphism f : X→ Y of algebraic varieties over C and ρ ∈ CFG(X),
we define the push-forward

∫
f ρ ∈ CFG(Y ) of ρ by (

∫
f ρ)(y) :=

∫
f−1(y) ρ for y ∈ Y . Now

recall that, for a non-constant regular function f : X → C on a variety X over C and the
hypersurface X0 := {x ∈ X; f (x) = 0} ⊂ X defined by it, there exists a nearby cycle
functor

ψf : Dbc(X)→ Dbc(X0)(6)

defined by Deligne (see [3, Section 4.2] for an excellent survey of this subject). As we see in
the next proposition, the nearby cycle functor ψf generalizes the classical notion of Milnor
fibers. First, recall the definition of Milnor fibers and Milnor monodromies over singular
varieties (see for example [24] for a review on this subject). Let X be a subvariety of Cm

and f : X → C a non-constant regular function on it. Namely there exists a polynomial
f̃ : Cm → C on Cm such that f̃ |X = f . For simplicity, assume also that the origin 0 ∈ Cm

is contained in X0 = {x ∈ X; f (x) = 0}. Then the following lemma is well-known (see for
example [15, Definition 1.4]).

LEMMA 2.1. For sufficiently small ε > 0, there exists η0 > 0 with 0 < η0 � ε such
that for all η with 0 < η < η0 the restriction of f :

X ∩ B(0; ε) ∩ f̃−1(D∗η)→ D∗η(7)

is a topological fiber bundle over the punctured disk D∗η := {z ∈ C; 0 < |z| < η}, where
B(0; ε) is the open ball in Cm with radius ε centered at the origin.

DEFINITION 2.2. A fiber of the above fibration is called the Milnor fiber of the func-
tion f : X→ C at 0 ∈ X and we denote it by F0.

For x ∈ X0, denote by Fx the Milnor fiber of f : X→ C at x.

PROPOSITION 2.3 ([3, Proposition 4.2.2]). For any F ∈ Dbc(X), x ∈ X0 and j ∈ Z,
there exists a natural isomorphism

Hj(Fx;F) � Hj(ψf (F))x .(8)

By this proposition, we can study the cohomology groupsHj(Fx;C) of the Milnor fiber
Fx by using sheaf theory. Recall also that in the above situation, as in the same way as the case
of polynomial functions over Cn (see [18]), we can define the Milnor monodromy operators

Φj,x : Hj(Fx;C) ∼−→ Hj(Fx;C) (j = 0, 1, . . . )(9)

and the zeta-function

ζf,x(t) :=
∞∏
j=0

det(id− tΦj,x )(−1)j(10)
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associated with it. Since the above product is in fact finite, ζf,x(t) is a rational function of t
and its degree in t is the topological Euler characteristic χ(Fx) of the Milnor fiber Fx . This
classical notion of Milnor monodromy zeta functions can be also generalized as follows.

DEFINITION 2.4. Let f : X→ C be a non-constant regular function on X and X0 :=
{x ∈ X; f (x) = 0} the hypersurface defined by it. Then for F ∈ Dbc(X) there exists a
monodromy automorphism

Φ(F) : ψf (F) ∼−→ ψf (F)(11)

of ψf (F) in Dbc(X0) (see e.g. [3, Section 4.2]). We define a C(t)∗-valued constructible
function ζf (F) ∈ CFC(t)∗(X0) on X0 by

ζf,x(F)(t) :=
∏
j∈Z

det
(
id− tΦ(F)j,x

)(−1)j
(12)

for x ∈ X0, where Φ(F)j,x : (H j (ψf (F)))x ∼→ (H j(ψf (F)))x is the stalk at x ∈ X0 of the
sheaf homomorphism

Φ(F)j : Hj(ψf (F)) ∼−→ Hj(ψf (F))(13)

induced by Φ(F).
The following proposition will play a crucial role in the proof of Theorems 3.4 and 3.12.

For the proof, see for example, [3, p.170–173] and [23].

PROPOSITION 2.5. Let π : Y → X be a proper morphism of algebraic varieties over
C and f : X → C a non-constant regular function on X. Set g := f ◦ π : Y → C, X0 :=
{x ∈ X; f (x) = 0} and Y0 := {y ∈ Y ; g(y) = 0} = π−1(X0). Then for any G ∈ Dbc(Y ) we
have ∫

π |Y0

ζg(G) = ζf (Rπ∗G)(14)

in CFC(t)∗(X0), where
∫
π |Y0
: CFC(t)∗(Y0) → CFC(t)∗(X0) is the push-forward of C(t)∗-

valued constructible functions by π |Y0 : Y0 → X0.

Finally, we recall Bernstein-Khovanskii-Kushnirenko’s theorem [11].

DEFINITION 2.6. Let g(x) = ∑v∈Zn avxv be a Laurent polynomial on (C∗)n (av ∈
C).

(i) We call the convex hull of supp(g) := {v ∈ Zn; av �= 0} ⊂ Zn ⊂ Rn in Rn the
Newton polygon of g and denote it by NP(g).

(ii) For a vector u ∈ Rn, we set

Γ (g; u) :=
{
v ∈ NP(g); 〈u, v〉 = min

w∈NP(g)〈u,w〉
}
,(15)

where for u = (u1, . . . , un) and v = (v1, . . . , vn) we set 〈u, v〉 =∑n
i=1 uivi .

(iii) For a vector u ∈ Rn, we define the u-part of g by gu(x) :=∑v∈Γ (g;u) avxv .
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DEFINITION 2.7. Let g1, g2, . . . , gp be Laurent polynomials on (C∗)n. Then we say
that the subvariety Z∗ = {x ∈ (C∗)n; g1(x) = g2(x) = · · · = gp(x) = 0} of (C∗)n is non-
degenerate complete intersection if for any vector u ∈ Zn the p-form dgu1 ∧ dgu2 ∧ · · · ∧ dgup
does not vanish on {x ∈ (C∗)n; gu1 (x) = · · · = gup(x) = 0}.

THEOREM 2.8 ([11]). Let g1, g2, . . . , gp be Laurent polynomials on (C∗)n. Assume
that the subvariety Z∗ = {x ∈ (C∗)n; g1(x) = g2(x) = · · · = gp(x) = 0} of (C∗)n is
non-degenerate complete intersection. Set ∆i := NP(gi ) for i = 1, . . . , p. Then we have

χ(Z∗) = (−1)n−p
∑

a1,...,ap≥1
a1+···+ap=n

VolZ(∆1, . . . ,∆1︸ ︷︷ ︸
a1-times

, . . . ,∆p, . . . ,∆p︸ ︷︷ ︸
ap-times

),(16)

where VolZ(∆1, . . . ,∆1︸ ︷︷ ︸
a1-times

, . . . ,∆p, . . . ,∆p︸ ︷︷ ︸
ap-times

) ∈ Z is the normalized n-dimensional mixed vol-

ume with respect to the lattice Zn ⊂ Rn (see the remark below).

REMARK 2.9. LetQ1,Q2, . . . ,Qn be integral polytopes in (Rn,Zn). Then their nor-
malized n-dimensional mixed volume VolZ(Q1,Q2, . . . ,Qn) ∈ Z is given by the formula

n!VolZ(Q1,Q2, . . . ,Qn) =
n∑
k=1

(−1)n−k
∑

I⊂{1,...,n}
�I=k

VolZ

(∑
i∈I

Qi

)
(17)

where VolZ( · ) ∈ Z is the normalized n-dimensional volume.

3. Milnor fibers over singular toric varieties. In this section, we give explicit for-
mulas for the monodromy zeta functions of non-degenerate polynomials over possibly sin-
gular toric varieties. These formulas can be considered to be natural generalizations of the
fundamental results obtained by Kushnirenko [13], Varchenko [27], Kirillov [12] and Oka
[21], [22] etc.

Let M � Zn be a Z-lattice of rank n and set MR := R ⊗Z M . We take a finitely
generated subsemigroup S of M such that 0 ∈ S and denote by K(S) the convex hull of
S in MR . For simplicity, assume that K(S) is a strongly convex polyhedral cone in MR

such that dimK(S) = n. Then the group algebra C[S] is finitely generated over C and
X(S) := Spec(C[S]) is a (not necessarily normal) toric variety of dimension n (see [5], [7]
and [20] etc. for the detail). Indeed, let M(S) be the Z-sublattice of rank n in M generated
by S and consider the algebraic torus T := Spec(C[M(S)]) � (C∗)n. Then the affine toric
varietyX(S) admits a natural action of T = Spec(C[M(S)]) and has a unique 0-dimensional
orbit. We denote this orbit point by 0 and call it the T -fixed point of X(S). Recall that a
polynomial function f : X(S) → C on X(S) corresponds to an element f = ∑v∈S av · v
(av ∈ C) of C[S].

DEFINITION 3.1. Let f =∑v∈S av · v (av ∈ C) be a polynomial function on X(S).
(i) We define the support supp(f ) of f by supp(f ) := {v ∈ S; av �= 0} ⊂ S.
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(ii) We define the Newton polygon Γ+(f ) of f to be the convex hull of⋃
v∈supp(f )(v +K(S)) in K(S).

Now let us fix a function f ∈ C[S] such that 0 /∈ supp(f ) (i.e., f : X(S)→ C vanishes
at the T -fixed point 0) and consider its Milnor fiber F0 at 0 ∈ X(S). Choose a Z-basis of
M(S) and identify M(S) with Zn. Then each element v of S ⊂ M(S) is identified with a
Z-vector v = (v1, . . . , vn) and to any g = ∑v∈S bv · v ∈ C[S] we can associate a Laurent
polynomial L(g) = ∑v∈S bv · xv on T = (C∗)n. One can easily prove that the following
definition does not depend on the choice of the Z-basis of M(S).

DEFINITION 3.2. We say that f = ∑v∈S av · v ∈ C[S] is non-degenerate if for any
compact face γ of Γ+(f ) the complex hypersurface {x = (x1, . . . , xn) ∈ (C∗)n; L(fγ )(x) =
0} in (C∗)n is smooth and reduced, where we set fγ :=∑v∈γ∩S av · v.

For each face∆ ≺ K(S) ofK(S) such that Γ+(f )∩∆ �= ∅, let γ∆1 , γ
∆
2 , . . . , γ

∆
ν(∆)

be the

compact faces of Γ+(f )∩∆ such that dim γ∆i = dim∆−1. Let L(∆) be the linear subspace
of MR spanned by ∆ and denote by M(S ∩∆) the sublattice of M(S) generated by S ∩∆.
Note that the rank ofM(S∩∆) is dim∆ and we haveM(S∩∆)R = R⊗ZM(S∩∆) � L(∆).
Then there exists a unique primitive vector u∆i in the dual lattice M(S ∩ ∆)∗ of M(S ∩ ∆)
which takes its minimal in Γ+(f ) ∩∆ exactly on γ∆i ⊂ Γ+(f ) ∩∆.

DEFINITION 3.3. We define the lattice distance d∆i ∈ Z>0 from γ∆i to the origin
0 ∈ L(∆) to be the value of u∆i on γ∆i .

Then by using the normalized (dim∆ − 1)-dimensional volume VolZ(γ ∆i ) ∈ Z of γ∆i
with respect to the lattice M(S ∩∆) ∩ L(γ ∆i ) we have the following result.

THEOREM 3.4. Assume that f = ∑v∈S av · v ∈ C[S] is non-degenerate. Then the
monodromy zeta function ζf,0(t) of f : X(S)→ C at 0 ∈ X(S) is given by

ζf,0(t) =
∏

Γ+(f )∩∆ �=∅
ζ∆(t) ,(18)

where for each face ∆ ≺ K(S) of K(S) such that Γ+(f ) ∩∆ �= ∅ we set

ζ∆(t) =
ν(∆)∏
i=1

(
1− td∆i )(−1)dim∆−1VolZ(γ ∆i ) .(19)

We will prove this theorem as the special case of Theorem 3.12 (see Section 4).
Let Γ ∆i be the convex hull of γ∆i � {0} in L(∆). Then the normalized (dim∆)-dimen-

sional volume VolZ(Γ ∆i ) ∈ Z of Γ ∆i with respect to the lattice M(S ∩ ∆) is equal to d∆i ·
VolZ(γ ∆i ) and we obtain the following result.
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COROLLARY 3.5. Assume that f =∑v∈S av · v ∈ C[S] is non-degenerate. Then the
Euler characteristic of the Milnor fiber F0 of f : X(S)→ C at 0 ∈ X(S) is given by

χ(F0) =
∑

Γ+(f )∩∆ �=∅
(−1)dim∆−1

ν(∆)∑
i=1

VolZ(Γ ∆i ) .(20)

Now recall the following correspondence for each k with 0 ≤ k ≤ n:

{k-dimensional faces in K(S)} 1:1←→ {k-dimensional T -orbits in X(S)} .(21)

For a face ∆ of K(S), we denote by T∆ the corresponding T -orbit in X(S). Namely we set
T∆ := Spec(C[M(S∩∆)]). Then we obtain a decompositionX(S) =⊔∆≺K(S) T∆ ofX(S).
By the proof of Theorem 3.12 below, we obtain the following local version of Bernstein-
Khovanskii-Kushnirenko’s theorem which expresses the Euler characteristic χ(T∆ ∩ F0) of
T∆ ∩ F0 in terms of the Newton polygon of f .

COROLLARY 3.6. Assume that f =∑v∈S av · v ∈ C[S] is non-degenerate. Then we
have

χ(T∆ ∩ F0)= χ(RΓ (F0;CT∆∩F0))(22)

= χ(ψf (CT∆)0)(23)

= (−1)dim∆−1
ν(∆)∑
i=1

VolZ(Γ ∆i ) .(24)

PROOF. In the proof of Theorem 3.12 below, we will prove that

χ(ψf (CT∆)0) = (−1)dim∆−1
ν(∆)∑
i=1

VolZ(Γ
∆
i ) .(25)

Moreover, by using Proposition 2.3 we see easily that χ(RΓ (F0;CT∆∩F0)) is equal to
χ(ψf (CT∆)0). Since T∆ is a T -orbit, the decompositionX(S) =⊔∆≺K(S) T∆ ofX(S) satis-
fies the Whitney regularity condition along T∆. Then the decompositionF0 =⊔∆≺K(S)(T∆∩
F0) of F0 ⊂ X(S) is also a Whitney stratification (f : X(S) → C has the isolated stratified
critical value 0 ∈ C by [15, Proposition 1.3]). Finally, by applying [3, Theorem 4.1.22] to the
constructible sheaf CT∆∩F0 on the Whitney stratified analytic space F0 =⊔∆≺K(S)(T∆∩F0),
we obtain

χ(RΓ (F0;CT∆∩F0)) = χ(T∆ ∩ F0) .(26)

This completes the proof. �

In the rest of this section, we extend our results to non-degenerate complete intersection
subvarieties in the affine toric variety X(S). Let f1, f2, . . . , fk ∈ C[S] (1 ≤ k ≤ n =
dimX(S)) and consider the following subvarieties of X(S):

V := {f1 = · · · = fk−1 = fk = 0} ⊂ W := {f1 = · · · = fk−1 = 0} .(27)
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Assume that 0 ∈ V . Our objective here is to study the Milnor fiberG0 of g := fk |W : W → C

at 0 ∈ V = g−1(0) ⊂ W and its monodromy zeta function ζg,0(t). We call ζg,0(t) the k-th
principal monodromy zeta function of V = {f1 = · · · = fk = 0} (cf. [21]). For each face
∆ ≺ K(S) of K(S) such that Γ+(fk) ∩∆ �= ∅, we set

I (∆) := {j = 1, 2, . . . , k − 1; Γ+(fj ) ∩∆ �= ∅} ⊂ {1, 2, . . . , k − 1}(28)

and m(∆) := �I (∆)+ 1.

REMARK 3.7. When S = Zn+ and X(S) = Cn, in [22, Chapter IV, Theorem 4.12]
Oka imposed the condition I (∆) = {1, 2, . . . , k− 1} for any face∆ ≺ K(S) = Rn+ such that
Γ+(fk) ∩∆ �= ∅. See the condition (�′) in [22, p. 205]. However, by our proof of Theorem
3.12 in Section 4, we can remove this condition. Indeed, by Proposition 2.5 we can easily
obtain

ζg,0(t) =
∏

{0}�∆≺Rn+

ζfk◦i∆,0
(
CT∆∩W

)
(t) ,(29)

where i∆ : T∆ = Cdim∆ ↪→ X(S) = Cn is the inclusion (see the proof of Theorem 3.12 in
Section 4). Since fj ≡ 0 on T∆ = (C∗)dim∆ for any 1 ≤ j ≤ k − 1 such that j /∈ I (∆), we
have

T∆ ∩W = T∆ ∩ {fj = 0 ; j ∈ I (∆)}(30)

(see also our key formula (64) below). Therefore, in the calculation of ζfk◦i∆,0
(
CT∆∩W

)
(t)

we can neglect the functions fj (1 ≤ j ≤ k − 1) such that j /∈ I (∆). For various explicit
examples, see Example 3.13 below.

Let L(∆), M(S ∩ ∆), M(S ∩ ∆)∗ be as before and L(∆)∗ the dual vector space of
L(∆). Then M(S ∩ ∆)∗ is naturally identified with a subset of L(∆)∗ and the polar cone
∆∨ = {u ∈ L(∆)∗; 〈u, v〉 ≥ 0 for any v ∈ ∆} of∆ in L(∆)∗ is a rational polyhedral convex
cone with respect to the lattice M(S ∩∆)∗ in L(∆)∗.

DEFINITION 3.8. (i) For a function f = ∑v∈Γ+(f ) av · v ∈ C[S] on X(S) and u ∈
∆∨, we set f |∆ :=∑v∈Γ+(f )∩∆ av · v ∈ C[S ∩∆] and

Γ (f |∆; u) :=
{
v ∈ Γ+(f ) ∩∆; 〈u, v〉 = min

w∈Γ+(f )∩∆
〈u,w〉

}
.(31)

We call Γ (f |∆; u) the supporting face of u in Γ+(f ) ∩∆.
(ii) For j ∈ I (∆) � {k} and u ∈ ∆∨, we define the u-part f uj ∈ C[S ∩∆] of fj by

f uj :=
∑

v∈Γ (fj |∆;u)
av · v ∈ C[S ∩∆] ,(32)

where fj =∑v∈Γ+(fj ) av · v in C[S].
By taking a Z-basis of M(S) and identifying the u-parts f uj with Laurent polynomials

L(f uj ) on T = (C∗)n as before, we have the following definition which does not depend on
the choice of the Z-basis of M(S).
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DEFINITION 3.9. We say that (f1, . . . , fk) is non-degenerate if for any face ∆ ≺
K(S) such that Γ+(fk) ∩ ∆ �= ∅ (including the case where ∆ = K(S)) and any u ∈
Int(∆∨) ∩M(S ∩∆)∗ the following two subvarieties of (C∗)n are non-degenerate complete
intersections.

{x ∈ (C∗)n; L(f uj )(x) = 0 for any j ∈ I (∆)} ,(33)

{x ∈ (C∗)n; L(f uj )(x) = 0 for any j ∈ I (∆) � {k}} .(34)

REMARK 3.10. The above definition is a generalization of the one in [22] etc., since
our result (Theorem 3.12 below) generalizes the ones in [12], [21] and [22].

For each face ∆ ≺ K(S) of K(S) such that Γ+(fk) ∩ ∆ �= ∅, let us set f∆ :=
(
∏
j∈I (∆) fj ) · fk ∈ C[S] and consider its Newton polygon Γ+(f∆) = {∑j∈I (∆) Γ+(fj )} +

Γ+(fk) ⊂ K(S). Let γ∆1 , γ
∆
2 , . . . , γ

∆
ν(∆)

be the compact faces of Γ+(f∆) ∩ ∆ ( �= ∅) such

that dim γ∆i = dim∆− 1. Then for each 1 ≤ i ≤ ν(∆) there exists a unique primitive vector
u∆i ∈ Int(∆∨) ∩M(S ∩∆)∗ which takes its minimal in Γ+(f∆) ∩∆ exactly on γ∆i .

REMARK 3.11. When S = Zn+ and X(S) = Cn, in [22, Chapter IV, Theorem
4.12] Oka used the dual weight vectors u∆1 , u

∆
2 , . . . , u

∆
ν(∆) to parametrize the (dim∆ − 1)-

dimensional faces γ∆1 , γ
∆
2 , . . . , γ

∆
ν(∆)

. Here we formulated our result in terms of γ∆1 , γ
∆
2 , . . . ,

γ ∆ν(∆) following the formulation of Varchenko [27].

For j ∈ I (∆) � {k}, set γ (fj )∆i := Γ (fj |∆; u∆i ) and d∆i := minw∈Γ+(fk)∩∆〈u∆i ,w〉.
Note that we have

γ∆i =
∑

j∈I (∆)�{k}
γ (fj )

∆
i(35)

for any face ∆ ≺ K(S) such that Γ+(fk) ∩ ∆ �= ∅ and 1 ≤ i ≤ ν(∆). For each face
∆ ≺ K(S) such that Γ+(fk)∩∆ �= ∅, dim∆ ≥ m(∆) and 1 ≤ i ≤ ν(∆), we set I (∆)�{k} =
{j1, j2, . . . , jm(∆)−1, k = jm(∆)} and

K∆
i :=

∑
α1+···+αm(∆)=dim∆−1
αq ≥ 1 for q ≤ m(∆)− 1

αm(∆)≥0

VolZ(γ (fj1)
∆
i , . . . , γ (fj1)

∆
i︸ ︷︷ ︸

α1-times

, . . . , γ (fjm(∆) )
∆
i , . . . , γ (fjm(∆) )

∆
i︸ ︷︷ ︸

αm(∆)-times

) .(36)

Here

VolZ(γ (fj1)
∆
i , . . . , γ (fj1)

∆
i︸ ︷︷ ︸

α1-times

, . . . , γ (fjm(∆))
∆
i , . . . , γ (fjm(∆) )

∆
i︸ ︷︷ ︸

αm(∆)-times

)(37)

is the normalized (dim∆ − 1)-dimensional mixed volume with respect to the lattice M(S ∩
∆) ∩L(γ ∆i ) (see Remark 2.9). For ∆ such that dim∆− 1 = 0, we set

K∆
i = VolZ(γ (fk)∆i , . . . , γ (fk)

∆
i︸ ︷︷ ︸

0-times

) := 1(38)

(in this case γ (fk)∆i is a point).
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THEOREM 3.12. Assume that (f1, . . . , fk) is non-degenerate. Then the k-th principal
monodromy zeta function ζg,0(t) (g = fk|W : W → C) is given by

ζg,0(t) =
∏

Γ+(fk)∩∆ �=∅
dim∆≥m(∆)

ζg,∆(t) ,(39)

where for each face ∆ ≺ K(S) of K(S) such that Γ+(fk) ∩∆ �= ∅ and dim∆ ≥ m(∆) we
set

ζg,∆(t) =
ν(∆)∏
i=1

(1− td∆i )(−1)dim∆−m(∆)K∆
i .(40)

In particular, the Euler characteristic of the Milnor fiber G0 of g = fk|W : W → C at
0 ∈ V = g−1(0) is given by

χ(G0) =
∑

Γ+(fk)∩∆ �=∅
dim∆≥m(∆)

(−1)dim∆−m(∆)
ν(∆)∑
i=1

d∆i ·K∆
i .(41)

EXAMPLE 3.13. (i) In the case where S = Z2+ and X(S) = C2, we give an exam-
ple. Set

e1 =
(

1
0

)
, e2 =

(
0
1

)
.(42)

For a subset I ⊂ {1, 2} we denote the face
∑
i∈I R+ei of K(S) = R2+ by ∆I . For positive

integers a, b, c, d , consider the polynomials f1(x, y) = xayb, f2(x, y) = xc+yd onX(S) =
C2. SetW = {f1 = 0} and g = f2|W . Then (f1, f2) is non-degenerate, and by Theorem 3.12
we obtain

ζg,0(t) = ζg,∆1(t)ζg,∆2(t)ζg,∆12(t) = (1− tc)(1− td ) .(43)

Here we used I (∆1) = I (∆2) = ∅. On the other hand, thanks to the irreducible decomposi-
tion W = {x = 0} ∪ {y = 0}, we can calculate ζg,0(t) directly by restricting f2 to the lines
{x = 0} and {y = 0}.

(ii) In the case where S = Z3+ and X(S) = C3, we give an example. Set

e1 =

1

0
0


 , e2 =


0

1
0


 , e3 =


0

0
1


 .(44)

For a subset I ⊂ {1, 2, 3} we denote the face
∑
i∈I R+ei of K(S) = R3+ by∆I . For positive

integers a, b, c, consider the polynomials f1(x, y, z) = xa − ya , f2(x, y, z) = xb + 2yb+ zc
on X(S) = C3. For simplicity, we assume that gcd (b, c) = 1. Set W = {f1 = 0} and
g = f2|W . Then (f1, f2) is non-degenerate, and by Theorem 3.12 we obtain

ζg,0(t) = ζg,∆3(t)ζg,∆12(t)ζg,∆23(t)ζg,∆13(t)ζg,∆123(t) = (1− tc)(1− tb)a(1− tbc)−a .
(45)
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Here we used I (∆3) = ∅. On the other hand, thanks to the irreducible decomposition
W = ⋃a

j=1{x = exp(2π
√−1j/a)y}, we can calculate ζg,0(t) much more easily by re-

stricting f2 to the planes Wj := {x = exp(2π
√−1j/a)y} � C2 (j = 1, . . . , a) and the

line
⋂a
j=1Wj = {x = y = 0} � Cz. Indeed, by the identification of Wj with C2

y,z, the
monodromy the zeta function ζf2|Wj ,0(t) of f2|Wj : Wj → C is equal to the one ζf,0(t) for

f (y, z) = (exp(2π
√−1jb/a) + 2)yb + zc etc. Hence by Varchenko’s formula [27], we

immediately obtain the same result

ζg,0(t) = (1− tc)
{
(1− tc)(1− tb)(1− tbc)−1

(1− tc)
}a
.(46)

4. Proof of Theorem 3.12. Now let us prove Theorem 3.12. Theorem 3.4 will be
proved as a special case of Theorem 3.12. Our proof is similar to the one in [27]. Let
i∆ : T∆ ↪→ X(S) be the closed embedding. Since nearby cycle functors take distinguished
triangles to distinguished triangles, by X(S) = ⊔∆≺K(S) T∆ and W = ⊔∆≺K(S)(T∆ ∩W)
we obtain

ζg,0(t)= ζfk,0 (CW) (t)(47)

= ζfk,0
(
CW\{0}

)
(t)(48)

=
∏

{0}�∆≺K(S)
ζfk,0

(
CT∆∩W

)
(t)(49)

=
∏

{0}�∆≺K(S)
ζfk,0

(
i∆∗CT∆∩W

)
(t)(50)

=
∏

{0}�∆≺K(S)
ζfk◦i∆,0

(
CT∆∩W

)
(t) .(51)

Here we used Proposition 2.5 to prove the first and the last equalities. We set

ζg,∆(t) := ζfk◦i∆,0
(
CT∆∩W

)
(t) ∈ C(t)∗ .(52)

Since the condition Γ+(fk)∩∆ = ∅ is equivalent to the one fk ◦ i∆ ≡ 0, for a face∆ ofK(S)
such that Γ+(fk)∩∆ = ∅ the nearby cycle ψfk◦i∆

(
CT∆∩W

)
vanishes and hence ζg,∆(t) ≡ 1.

Therefore, in order to calculate the monodromy zeta function ζg,0(t) of g = fk |W : W → C

at 0 ∈ g−1(0), it suffices to calculate ζg,∆(t) only for faces∆ ofK(S) such that∆ �= {0} and
Γ+(fk) ∩∆ �= ∅.

Let us fix such a face ∆ of K(S). Set n′ := dim∆ and f := fk ◦ i∆ : T∆ → C. Note
that we have T∆ = Spec(C[M(S ∩∆)]) and T∆ = X(S ∩∆) := Spec(C[S ∩∆]). We shall
calculate the function ζg,∆(t) = ζf,0(CT∆∩W)(t) ∈ C(t)∗. For this purpose, we divide the
polar cone ∆∨ = {u ∈ L(∆)∗; 〈u, v〉 ≥ 0 for any v ∈ ∆} of ∆ in L(∆)∗ by the equivalence
relation

u ∼ u′ def⇐⇒ Γ (fj |∆; u) = Γ (fj |∆; u′) for all j ∈ I (∆) � {k}(53)
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(see (31)). Then we obtain a fan Σ̃∆={σ ′i }i in (L(∆)∗,M(S∩∆)∗) such that
⊔
i rel.int(σ ′i ) =

∆∨, where rel.int( · ) is the relative interior. Note that for the product f∆ =
(∏

j∈I (∆) fj
) ·

fk ∈ C[S] and u, u′ ∈ ∆∨ we have

u ∼ u′ ⇐⇒ Γ (f∆|∆; u) = Γ (f∆|∆; u′) .(54)

By applying sufficiently many barycentric subdivisions to Σ̃∆, we obtain a fan Σ := Σ∆ =
{σi}i∈I in (L(∆)∗,M(S ∩∆)∗) such that

⊔
i rel.int(σi) = ∆∨ and the (normal) toric variety

XΣ associated with it is smooth. Then the open dense torus T ′′∆ in XΣ is defined by T ′′∆ =
Spec(C[M(S ∩∆)]). Since the subsemigroup M(S ∩∆) ∩∆ of M(S ∩∆) is saturated, the
affine toric variety Z(∆) := Spec(C[M(S ∩ ∆) ∩ ∆]) is normal and there exists a natural
T ′′∆-equivariant morphism π1 : Z(∆)→ X(S∩∆) induced by S∩∆ ⊂ M(S∩∆)∩∆. There
exists also a natural T ′′∆-equivariant proper birational morphism π2 : XΣ → Z(∆) induced by
the morphismΣ → {∆∨} of fans in (L(∆)∗,M(S ∩∆)∗). Hence we obtain a T ′′∆-equivariant
morphism π := π1 ◦π2 : XΣ → X(S ∩∆). We shall use this morphism π for the calculation
of ζg,∆(t). For a face τ ≺ ∆∨ of ∆∨, denote by ∆τ the polar face ∆ ∩ τ⊥ of τ in L(∆) and
set

T ′τ := Spec(C[M(S ∩∆) ∩ τ⊥])(55)

= Spec(C[M(S ∩∆) ∩ L(∆τ )]) ,(56)

Tτ := Spec(C[M(S ∩∆τ )]) .(57)

Then T ′τ and Tτ are T ′′∆-orbits in Z(∆) and X(S ∩∆), respectively. Note that we have T{0} =
T∆ and T ′{0} = T ′′∆ under this notation. Since the kernel of the canonical morphism

T ′τ = Spec(C[M(S ∩∆) ∩ L(∆τ )])→ Tτ = Spec(C[M(S ∩∆τ )])(58)

is isomorphic to the finite group M(S ∩ ∆τ )∗/(M(S ∩ ∆) ∩ L(∆τ ))
∗ (see [20, p. 22]), the

morphism π1|T ′τ : T ′τ → Tτ is a finite covering.
For a cone σi ∈ Σ , denote by T ′′σi the T ′′∆-orbit Spec(C[M(S ∩ ∆) ∩ σ⊥i ])

� (C∗)dim∆−dimσi in XΣ (in particular we have T ′′{0} = T ′′∆). Then we obtain a decompo-
sition XΣ =⊔σi∈Σ T

′′
σi

of XΣ . Note that the proper morphism π2 : XΣ → Z(∆) induces an

isomorphism π2|T ′′{0} : T ′′{0}
∼→ T ′{0}.

Let us set f̃ := f ◦ π : XΣ → C and apply Proposition 2.5 to the constructible sheaf
CT ′′∆∩π−1(T∆∩W) ∈ Dbc(XΣ). Since the morphism π : XΣ → X(S ∩∆) is proper and induces

an isomorphism π |T ′′∆ : T ′′∆
∼→ T∆, by the above descriptions of π1 and π2 we have

Rπ∗
(
CT ′′∆∩π−1(T∆∩W)

) � CT∆∩W(59)

in Dbc(X(S ∩∆)). Then by Proposition 2.5, for the calculation of

ζf,0
(
CT∆∩W

)
(t) = ζf,0

(
Rπ∗

(
CT ′′∆∩π−1(T∆∩W)

))
(t) ∈ C(t)∗(60)

it suffices to calculate the value of ζf̃
(
CT ′′∆∩π−1(T∆∩W)

)
at each point of π−1(0).
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Let σ0 ∈ Σ be a cone in Σ such that rel.int(σ0) ⊂ Int(∆∨) (which is equivalent to
T ′′σ0
⊂ π−1(0)). In order to calculate the constructible function ζf̃

(
CT ′′∆∩π−1(T∆∩W)

)
on T ′′σ0

,
take an n′-dimensional cone σ1 ∈ Σ such that σ0 ≺ σ1 and let {a1, a2, . . . , an′ } be the
1-skeleton of σ1. In other words, ai �= 0 ∈ M(S ∩ ∆)∗ are the primitive vectors on the
1-dimensional faces of σ1. Set p := dim σ0. Without loss of generality, we may assume that
{a1, a2, . . . , ap} is the 1-skeleton σ0. For j ∈ I (∆) � {k}, we set

m(j)i := min
w∈Γ+(fj )∩∆

〈ai, w〉 ≥ 0 (i = 1, 2, . . . , n′) .(61)

For simplicity, we set also mi := m(k)i (i = 1, 2, . . . , n′).
Let U1 := Cn′(σ1) � Cn′

y be the affine toric variety associated with the fan {σ ′}σ ′≺σ1 in

(L(∆)∗,M(S ∩∆)∗). Then U1 is an affine open subset of XΣ and in U1 � Cn′
y the T ′′∆-orbit

T ′′σ0
is defined by

T ′′σ0
= {y = (y1, . . . , yn′); y1 = · · · = yp = 0, yp+1, . . . , yn′ �= 0} � (C∗)n′−p .(62)

Moreover for j ∈ I (∆) � {k}, on U1 � Cn′
y the function fj ◦ π : XΣ → C has the form

(fj ◦ π)(y) = ym(j)11 y
m(j)2
2 · · · ym(j)n′

n′ · f σ1
j (y) ,(63)

where f σ1
j is a polynomial function on U1. Note that by the assumptions T ′′σ0

⊂ π−1(0) and

fk(0) = 0 we have T ′′σ0
⊂ f̃−1(0). Since f σ1

k |T ′′σ0
�≡ 0 by the construction of the fan Σ , at

least one of the integers m1,m2, . . . ,mp ≥ 0 must be positive. Note that by the definition of
I (∆) we have fj ◦ i∆ ≡ 0 on X(S ∩ ∆) for any j /∈ I (∆) � {k}. Hence we obtain our key
formula

T ′′∆ ∩ π−1(T∆ ∩W) = T ′′∆ ∩
⋂

j∈I (∆)
{f σ1
j = 0} .(64)

Moreover, by the non-degeneracy of (f1, f2, . . . , fk) (see Definition 3.9) we obtain the fol-
lowing lemma.

LEMMA 4.1. The gradient vectors {grad(f σ1
j )}j∈I (∆) (resp. {grad(f σ1

j )}j∈I (∆)�{k})
are linearly independent on

⋂
j∈I (∆){f σ1

j = 0} (resp.
⋂
j∈I (∆)�{k}{f σ1

j = 0}) in a neigh-
borhood of T ′′σ0

.

PROOF. First, by the non-degeneracy of (f1, f2, . . . , fk), for any u ∈ Int(∆∨)∩M(S∩
∆)∗ the Laurent polynomials L′(f uj ) on Spec(C[M(S)∩L(∆)]) � (C∗)dim∆ defined by the
u-parts f uj ∈ C[S∩∆] (j ∈ I (∆)�{k}) satisfy the conditions similar to the ones in Definition
3.9. Since the natural morphism

Spec(C[M(S) ∩ L(∆)]) � (C∗)dim∆→ T∆ = Spec(C[M(S ∩∆)])(65)

is a finite covering, also the corresponding Laurent polynomials L′′(f uj ) (j ∈ I (∆) � {k}) on

T∆ � (C∗)dim∆ satisfy such conditions. Then the result follows from the classical arguments
(see [22] etc. for the detail). �

For j ∈ I (∆) � {k}, we set hj := f σ1
j |T ′′σ0

: T ′′σ0
→ C.
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PROPOSITION 4.2. In the situation as above, we have
(i) If dim σ0 = 1, then for y = (0, y2, . . . , yn′) ∈ T ′′σ0

� (C∗)n′−1 we have

ζf̃ ,y
(
CT ′′∆∩π−1(T∆∩W)

)
(t)(66)

=
{

1− tm1 if y ∈ (⋂j∈I (∆){hj = 0}) \ {hk = 0} ,
1 otherwise .

(ii) If dim σ0 ≥ 2, we have

ζf̃
(
CT ′′∆∩π−1(T∆∩W)

)∣∣∣
T ′′σ0

≡ 1(67)

PROOF. Set l := �{1 ≤ i ≤ p; mi > 0}. If l ≥ 2, then by Lemma 4.1 we obtain

ζf̃
(
CT ′′∆∩π−1(T∆∩W)

)∣∣∣
T ′′σ0

≡ 1(68)

(see for example [22, Chapter I, Example (3.7)] etc.). Let us consider the case where l = 1. If
y ∈ T ′′σ0

\ (⋂j∈I (∆){hj = 0}) or y ∈ (⋂j∈I (∆){hj = 0}) ∩ {hk = 0}, also by Lemma 4.1 we

can show that ζf̃ ,y
(
CT ′′∆∩π−1(T∆∩W)

)
(t) = 1. By dimT ′′∆ − dimT ′′σ0

= p, in a neighborhood
of each point of (

⋂
j∈I (∆){hj = 0}) \ {hk = 0}, we have

{f̃ = ε} ∩ (T ′′∆ ∩ π−1(T∆ ∩W)
) � (C∗)p−1 ×A (0 < |ε| � 1) ,(69)

where A is a constructible set. If p ≥ 2, the Euler characteristic of (C∗)p−1 is zero and we
can easily prove that the equality

ζf̃
(
CT ′′∆∩π−1(T∆∩W)

)∣∣∣
T ′′σ0

≡ 1(70)

holds (see [22, Chapter I, Example (3.7)] etc.). Finally, consider the case where l = 1 and
p = 1. In this case, on U1 � Cn′

y the function f̃ = fk ◦ π has the form

f̃ (y) = ym1
1 · (ym2

2 y
m3
3 · · · y

mn′
n′ ) · f σ1

k (y) .(71)

Then by Lemma 4.1, for y ∈ T ′′σ0
we can easily prove (66). �

Now let us return to the proof of Theorem 3.12. By the proposition above, in order to
calculate ζg,∆(t), it suffices to consider the values of the C(t)∗-valued constructible function

ζf̃
(
CT ′′∆∩π−1(T∆∩W)

)∣∣∣
π−1(0)

: π−1(0)→ C(t)∗(72)

only on T ′′σ0
for σ0 ∈ Σ such that rel.int(σ0) ⊂ Int(∆∨) and dim σ0 = 1. Let us take such a

1-dimensional cone σ0 ∈ Σ . Let u �= 0 ∈ M(S∩∆)∗ be the unique non-zero primitive vector
on σ0 and for j ∈ I (∆) � {k} set γ (fj )∆u := Γ (fj |∆; u). Then γ (fj )∆u is naturally identified
with the Newton polytope of the Laurent polynomial hj : T ′′σ0

→ C on T ′′σ0
� (C∗)dim∆−1,

and by Theorem 2.8 we have

χ

(( ⋂
j∈I (∆)

{hj = 0}
)
\ {hk = 0}

)
(73)
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= χ
( ⋂
j∈I (∆)

{hj = 0}
)
− χ

( ⋂
j∈I (∆)�{k}

{hj = 0}
)

= (−1)dim∆−m(∆) ∑
α1+···+αm(∆)=dim∆−1
αq ≥ 1 for q ≤ m(∆)− 1

αm(∆)≥0

(74)

VolZ(γ (fj1)
∆
u , . . . , γ (fj1 )

∆
u︸ ︷︷ ︸

α1-times

, . . . , γ (fjm(∆) )
∆
u , . . . , γ (fjm(∆) )

∆
u︸ ︷︷ ︸

αm(∆)-times

) .

Here we set I (∆) � {k} = {j1, j2, . . . , jm(∆)−1, k = jm(∆)}. Now recall that we have

Γ (f∆|∆; u) =
∑

j∈I (∆)�{k}
γ (fj )

∆
u .(75)

Hence if dimΓ (f∆|∆; u) < dim∆− 1, then all the mixed volumes in (74) vanish and

χ

(( ⋂
j∈I (∆)

{hj = 0}
)
\ {hk = 0}

)
= 0 .(76)

This implies that for the calculation of ζg,∆(t) = ζf,0
(
CT∆∩W

)
(t) ∈ C(t)∗, we have only to

consider the compact faces γ∆1 , γ
∆
2 , . . . , γ

∆
ν(∆) of Γ+(f∆)∩∆ such that dim γ∆i = dim∆−1.

Summarizing these arguments, we finally obtain

ζg,∆(t)= ζf,0
(
CT∆∩W

)
(t)(77)

=
ν(∆)∏
i=1

(
1− td∆i

)(−1)dim∆−m(∆)K∆
i
.(78)

Since K∆
i = 0 form(∆) > dim∆ by the definition of K∆

i , we also have

ζg,0(t) =
∏

Γ+(fk)∩∆ �=∅
dim∆≥m(∆)

ζg,∆(t) .(79)

This completes the proof of Theorem 3.12. �
REMARK 4.3. In Theorem 3.4, we assumed that K(S) is strongly convex and 0 ∈

X(S) = Spec(C[S]) is the T -fixed point. We can remove these assumptions as follows. Let
S be a finitely generated subsemigroup of M = Zn such that 0 ∈ S and dimK(S) = n.
We shall explain how to calculate the monodromy zeta functions ζf,x(t) of polynomials f on
X(S) at general points x ∈ X(S). For a point x of X(S), let ∆0 be the unique face of K(S)
such that x ∈ T∆0 = Spec(C[M(S ∩∆0)]). Then

Y (S) := Spec(C[S +M(S ∩∆0)])(80)

is an open subset of X(S) containing T∆0 and we can regard f as a function on Y (S). Set
K ′ := K(S +M(S ∩∆0)). Then there exists a decomposition Y (S) = ⊔∆≺K ′ T∆ of Y (S)
into T -orbits. Note that T∆0 is the smallest T -orbit in Y (S). For ∆ ≺ K ′, let i∆ : T∆ =
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Spec(C[(S ∩∆)+M(S ∩∆0)]) ↪−→ Y (S) be the embedding. Then by Y (S) =⊔∆≺K ′ T∆
and Proposition 2.5 we have

ζf,x(t) =
∏
∆≺K ′

ζf ◦i∆,x(CT∆)(t)(81)

(see also (47) through (51)). Now let us set S∆ := (S ∩ ∆) + (M(S ∩ ∆) ∩ L(∆0)) and
Z̃(∆) := Spec(C[S∆]). Then there exists a decomposition Z̃(∆) =⊔∆1≺∆ T

′
∆1

of Z̃(∆) into

T -orbits and the natural morphism π∆ : Z̃(∆) → T∆ induces a finite covering T ′∆1
→ T∆1

for any∆1 ≺ ∆. Since π∆ induces an isomorphism T ′∆
∼→ T∆, we have Rπ∆∗(CT ′∆) � CT∆ .

Therefore by Proposition 2.5, in order to calculate ζf ◦i∆,x(CT∆)(t) it suffices to calculate
ζf ◦i∆◦π∆(CT ′∆)(t) at each point of the finite set π−1

∆ (x) = {p1, p2, . . . , pk} ⊂ Z̃(∆). Let

M ′ � Zn−dim∆0 be a sublattice ofM such thatM ′⊕(M∩L(∆0)) = M and set S ′∆ =M ′∩S∆.
Then we have

S∆ = S ′∆ ⊕ (M(S ∩∆) ∩ L(∆0))(82)

and K(S ′∆) ⊂ M ′R is a strongly convex cone. Hence we have

Z̃(∆) � Spec(C[S ′∆])× (C∗)dim∆0 ⊃ {0} × (C∗)dim∆0 ⊃ π−1
∆ (x)(83)

and ζf ◦i∆◦π∆(CT ′∆)(t) can be calculated at each point of π−1
∆ (x) = {p1, p2, . . . , pk} by

Corollary 3.6. Indeed, we first multiply a monomial in C[M(S ∩ ∆) ∩ L(∆0)] ⊂ C[S∆]
to f ◦ i∆ ◦ π∆ ∈ C[S∆] and extend it to a function on Spec(C[S ′∆]) × Cdim∆0 . Then by
a suitable translation we may assume that pi ∈ π−1

∆ (x) is the unique T -fixed point of the
product toric variety Spec(C[S ′∆])× Cdim∆0 and Corollary 3.6 can be applied.

5. Monodromy zeta functions of torus invariant sheaves. In this section, we gen-
eralize our Theorem 3.4 to T -invariant constructible sheaves on general toric varieties.

First, let X be a (not necessarily normal) toric variety over C and T ⊂ X the open dense
torus which acts on X itself. Let X =⊔α Xα be the decomposition of X into T -orbits.

DEFINITION 5.1. (i) We say that a constructible sheaf F onX is T -invariant if F |Xα
is a locally constant sheaf of finite rank for any α.

(ii) We say that a constructible object F ∈ Dbc(X) is T -invariant if the cohomology
sheaf Hj(F) of F is T -invariant for any j ∈ Z.

Note that the so-called T -equivariant constructible sheaves on X are T -invariant in the
above sense.

From now on, we consider the (not necessarily normal) toric varietyX(S) and the regular
function f : X(S) → C on it considered in Section 3. We shall freely use the notations in
Section 3. Let F ∈ Dbc(X(S)) be a T -invariant object. Our objective here is to calculate the
monodromy zeta function ζf (F)(t) := ζf,0(F)(t) ∈ C(t)∗ of F ∈ Dbc(X(S)) at the T -fixed

point 0 ∈ X(S). Since we have ζf (F)(t) =∏j∈Z ζf (H j(F))(−1)j , we may assume from the
first that F is a T -invariant constructible sheaf on X(S). For each face ∆ ≺ K(S) of K(S),
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denote by T∆ ⊂ X(S) the corresponding T -orbit in X(S) and consider the decomposition

X(S) =
⊔

∆≺K(S)
T∆(84)

of X(S) into T -orbits. For ∆ ≺ K(S), we denote the local system F |T∆ on T∆ by L∆. Let
j∆ : T∆ ↪→ X(S) be the inclusion. Then by Proposition 2.5 we have

ζf (F)(t) =
∏

∆≺K(S)
ζf ((j∆)!L∆)(t) .(85)

In order to calculate the monodromy zeta functions ζf ((j∆)!L∆)(t) ∈ C(t)∗ as in the proof
of Theorem 3.4, we need the following elementary propositions.

PROPOSITION 5.2. Let L be a local system of rank r > 0 on C∗ = C \ {0}. Denote by
A ∈ GLr(C) the monodromy matrix of L along the loop {e

√−1θ ; 0 ≤ θ ≤ 2π} in C∗, which
is defined up to conjugacy. Let j : C∗ ↪→ C be the inclusion.

(i) Set d := dim Ker(id− A). Then we have

Hj(C∗;L) �
{

Cd (j = 0, 1) ,
0 (otherwise) .

(86)

(ii) For any j ∈ Z, we have

Hj(C; j!L) � 0 .(87)

(iii) Let h be a function on C defined by h(z) = zm (m ∈ Z>0) for z ∈ C. Then we
have

ζh,0(j!L)(t) = det(id− tmA) ∈ C(t)∗ .(88)

PROOF. For the proof of (i), see for example [19, Lemma 3.3]. The assertion (ii) is
easily obtained from (i). Let us prove (iii). By taking small ε > 0, for k = 0, 1, . . . ,m − 1
set pk := εe2π

√−1k/m ∈ C∗. Then we have an isomorphism

ψh(j!L)0 �
m−1⊕
k=0

Lpk .(89)

We fix an isomorphism Lp0 � Cr and for each k = 1, 2, . . . ,m−1 construct an isomorphism
Lpk � Lp0 = Cr by the translation of the sections of L along the path γk : [0, 1] ↪→ C∗,
γk(s) = εe(2π

√−1k/m)s . Then we obtain an isomorphism

ψh(j!L)0 �
m−1⊕
k=0

Lpk � Cmr .(90)
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Since the monodromy automorphism of ψh(j!L)0 corresponds to the matrix


O O . . . O A

id O . . . O O

O id
. . .

. . . O
...

. . .
. . .

. . .
...

O . . . . . . id O



∈ GLmr(C)(91)

via this isomorphism ψh(j!L)0 � Cmr , we obtain (88). �

The following result is a generalization of the famous A’Campo lemma (see [1] and [22,
Chapter I, Example (3.7)] etc.) to constructible sheaves.

PROPOSITION 5.3. Let L be a local system on (C∗)k and j : (C∗)k ↪→ Ck the inclu-
sion. Let h : Ck → C be a function on Ck defined by h(z) = zm1

1 z
m2
2 · · · zmkk ( �≡ 1) (mi ∈ Z≥0)

for z ∈ Ck . If k ≥ 2, the monodromy zeta function ζh,0(j!L)(t) (resp. ζh,0(Rj∗L)(t)) of
j!L ∈ Dbc(C

k) (resp. Rj∗L ∈ Dbc(C
k)) at 0 ∈ Ck is 1 ∈ C(t)∗.

PROOF. Since the proof of ζh,0(Rj∗L)(t) ≡ 1 is similar, we prove only ζh,0(Rj!L)(t) ≡
1. Let F0 be the Milnor fiber of h at 0 ∈ Ck . Then there exist ε0, η0 > 0 with 0 < η0 � ε0

such that the restriction

B(0; ε0) ∩ h−1(D∗η0
)→ D∗η0

(92)

of h is a fiber bundle over the punctured disk D∗η0
= {x ∈ C; 0 < |x| < η0} with fiber F0.

Furthermore, by using the special form of h, we may replace the above constant ε0, η0 > 0
so that there exists also an isomorphism

RΓ (h−1(x); j!L) ∼→ RΓ (h−1(x) ∩ B(0; ε0); j!L)(93)

for any x ∈ D∗η0
. Indeed, this isomorphism can be obtained by applying Kashiwara’s

non-characteristic deformation lemma ([10, Proposition 2.7.2]) to the constructible sheaf
(j!L)|h−1(x) on the complex manifold h−1(x). Set F = (j!L)B(0;ε0)

∈ Db(Ck). Then for

any j ∈ Z, the cohomology sheaf Hj(Rh∗F) is a local system on D∗η0
, and via the isomor-

phism

Hj(ψh(j!L))0 � Hj(F0; j!L) � Hj(Rh∗F)x (x ∈ D∗η0
)(94)

(obtained by Proposition 2.3) the monodromy automorphism of Hj(ψh(j!L))0 corresponds
to the one Qj,x : Hj(Rh∗F)x ∼→ Hj(Rh∗F)x obtained by the translation of the sections

of the local system Hj(Rh∗F)x along the path γx : [0, 1] → D∗η0
, γx(s) = e2π

√−1sx (see
the discussions just after [3, Proposition 4.2.2]). This automorphism Qj,x can be functorially
constructed as follows. First, define a morphism Ψ̃ : [0, 1] × D∗η0

→ D∗η0
by Ψ̃ (s, x) =

e2π
√−1sx and let π : [0, 1] × D∗η0

→ D∗η0
be the projection. For q = 0, 1, let iq : D∗η0

�
{q} × D∗η0

↪→ [0, 1] × D∗η0
be the inclusion and set Ψq = Ψ̃ (q, ∗) = Ψ̃ ◦ iq : D∗η0

∼→ D∗η0
.

Note that Ψ0 = Ψ1 = idD∗η0
in this case. Then for q = 0, 1 we obtain an isomorphism
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Rπ∗Ψ̃−1Rh∗F ∼→ Rπ∗(iq)∗(iq)−1Ψ̃ −1Rh∗F � Ψ−1
q Rh∗F(95)

in Dbc(D
∗
η0
). Hence by setting Ψ := Ψ1 we obtain an automorphism of Rh∗F

Rh∗F ∼→ RΨ∗Ψ −1Rh∗F ∼→ RΨ∗Ψ−1
0 Rh∗F = Rh∗F(96)

which induces Qj,x . Similarly, define a morphism Φ̃ : [0, 1] × Ck → Ck by

Φ̃(s, z) = (e(2π√−1/md)sz1, e
(2π
√−1/md)sz2, . . . , e

(2π
√−1/md)szl, zl+1, . . . , zk

)
(97)

and let� : [0, 1]×Ck → Ck be the projection. For q = 0, 1, set Φq := Φ̃(q, ∗) : Ck → Ck .
In this case, we haveΦ0 = idCk , andΦ1 induces the monodromy automorphisms of the global
Milnor fiber h−1(x) and the local one F0 = h−1(x) ∩ B(0; ε0) for any x ∈ D∗η0

. Then by

setting Φ := Φ1 : Ck ∼→ Ck , we obtain also isomorphisms

Φ−1j!L ∼←− R�∗Φ̃−1j!L ∼→ Φ−1
0 j!L = j!L(98)

and hence an automorphism Rj,x of Hj(F0; j!L) defined by

Hj(F0; j!L)→ Hj(F0;RΦ∗Φ−1j!L) � Hj(F0;RΦ∗Φ−1
0 j!L) = Hj(F0; j!L) .(99)

By the functorial constructions ofQj,x andRj,x , we can easily check that via the isomorphism
Hj(Rh∗F)x � Hj(F0; j!L) the automorphismQj,x corresponds to Rj,x . Therefore, in order
to calculate the monodromy zeta function ζh,0(j!L)(t) it suffices to calculate the one for the

automorphisms Rj,x : Hj(F0; j!L) ∼→ Hj(F0; j!L) induced by the isomorphism Φ−1j!L ∼→
j!L. Moreover, by the isomorphism (93), we have only to calculate the zeta function for the
automorphisms of Hj(h−1(x); j!L) induced also by Φ−1j!L ∼→ j!L.

Now, without loss of generality, we may assume that there exists 1 ≤ l ≤ k such that
m1,m2, . . . ,ml > 0 and ml+1 = · · · = mk = 0. Moreover, by replacing exponents, we
may assume also that h(z) = (z

m1
1 · · · zmll )m with m ≥ 1 and gcd(m1, . . . ,ml) = 1. Set

d := m1+· · ·+ml . LetM = (mi,j ) ∈ SL(l;Z) be a unimodular matrix such thatm1,j = mj
for j = 1, . . . , l. We define an isomorphism ΛM : (C∗)l × Ck−l ∼→ (C∗)l × Ck−l by

w = ΛM(z) = (zm1,1
1 · · · zm1,l

l , . . . , z
ml,1
1 · · · zml,ll , zl+1, . . . , zk)(100)

and an isomorphism Φ ′ : Ck ∼→ Ck by

Φ ′(w1, . . . , wk)

= (e(2π√−1/m)w1, e
(2π
√−1d2/md)w2, . . . , e

(2π
√−1dl/md)wl,wl+1, . . . , wk

)
,

(101)

where we set di := mi,1 + · · · + mi,l for i = 2, . . . , l. Moreover we define a function
h′ : (C∗)l × Ck−l → C by h′(w) = wm1 . Then we have

ΛM(h
−1(x)) = h′−1(x) (x ∈ D∗η0

) ,(102)

ΛM ◦ (Φ|(C∗)l×Ck−l ) = (Φ ′|(C∗)l×Ck−l ) ◦ΛM .(103)
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Let j ′ : (C∗)k ↪→ (C∗)l × Ck−l be the inclusion and consider the local system L′ :=
(ΛM |(C∗)k )∗L on (C∗)k . Similarly to Rj,x , we can construct an automorphism

R′j,x of Hj(h′−1(x); j ′!L′) by constructing an isomorphism Φ ′−1j ′!L′
∼→ j ′!L′. Then via

the natural isomorphism Hj(F0; j!L) � Hj(h−1(x); j!L) � Hj(h′−1(x); j ′!L′) induced by

ΛM , the automorphism Rj,x corresponds to R′j,x . Define an automorphism Φ ′′ : Ck ∼→ Ck

by

Φ ′′(w1, . . . , wk) =
(
e(2π

√−1/m)w1, w2, . . . , wk
)
.(104)

Then we can construct also an automorphism R′′j,x of Hj(h′−1(x); j ′!L′) by constructing an

isomorphism Φ ′′−1j ′!L′
∼→ j ′!L′. We define a homotopy morphism Θ : h′−1(x) × [0, 1] →

h′−1(x) such that Θ(·, 0) = Φ ′′|h′−1(x) andΘ(·, 1) = Φ ′|h′−1(x) by

Θ(w, s)

= (e(2π√−1/m)w1, e
(2π
√−1d2/md)sw2, . . . , e

(2π
√−1dl/md)swl,wl+1, . . . , wk

)
.

(105)

Let p : h′−1(x) × [0, 1] → h′−1(x) be the projection. Then similarly to Φ−1j!L ∼→ j!L,
we can construct a natural isomorphismΘ−1(j ′!L′|h′−1(x))

∼→ p−1(j ′!L′|h′−1(x)). By applying
Lemma 5.4 below to Y = h′−1(x) and Θ , we get R′j,x = R′′j,x and

ζh,0(j!L)(t) =
∞∏
j=0

det(id− tR′′j,x)(−1)j .(106)

Note that each connected componentK of h′−1(x) is isomorphic to (C∗)l−1×Ck−l . Moreover
by our assumption k ≥ 2 and Proposition 5.2 the Euler-Poincaré index χ(RΓ (K; j ′!L′)) of
RΓ (K; j ′!L′) is zero. Then the result follows from the classical arguments as in [22, Chapter
I, Example (3.7)] and the Künneth formula. This completes the proof. �

LEMMA 5.4. Let f0, f1 : Y → X be two morphisms of topological spaces. Set I =
[0, 1] and let pY : Y × I → Y be the projection. Assume that there exists a homotopy mor-
phismΘ : Y×I → X between f0 and f1 such thatΘ(·, q) = fq for q = 0, 1. For F ∈ Db(Y )

and G ∈ Db(X), assume that there exists an isomorphismΦ : Θ−1G ∼→ p−1
Y F . For q = 0, 1,

let f �q : RΓ (X;G)→ RΓ (Y ;F) be the morphism obtained by

RΓ (X;G)→ RΓ (X;Rfq∗f−1
q G) � RΓ (Y ; f−1

q G) Φ|Y×{q}−→ RΓ (Y ;F) .(107)

Then we have f �0 = f �1 .



134 Y. MATSUI AND K. TAKEUCHI

PROOF. For q = 0, 1, let iq : Y � Y × {q} ↪−→ Y × I be the embedding. Then we
obtain the following commutative diagram:

RΓ (X;G) ��

������������ RΓ (Y × I ;Θ−1G) Φ ��

��

RΓ (Y × I ;p−1
Y F)

��

RΓ (Y ;F)∼��

RΓ (Y ; i−1
q Θ−1G)Φ|Y×{q}�� RΓ (Y ; i−1

q p−1
Y F).

����������

����������

(108)

This proves the lemma. �

With these propositions at hands, we can prove the following explicit formula for
ζf (F)(t) ∈ C(t)∗ as in the same way as the proof of Theorem 3.4. For each ∆ ≺ K(S) by
fixing an isomorphismM(S∩∆) � Zdim∆, we obtain an isomorphism T∆ = Spec(C[M(S∩
∆)]) � (C∗)dim∆. We regard L∆ as a local system of rank r∆ on (C∗)dim∆ via this isomor-
phism and denote by A∆j ∈ GLr∆(C) (j = 1, 2, . . . , dim∆) the monodromy matrices of L∆
along the loops

{(1, 1, . . . , 1, e
√−1θ , 1, . . . , 1) ∈ (C∗)dim∆; 0 ≤ θ ≤ 2π}(109)

(e
√−1θ is in the j -th entry) in (C∗)dim∆ � T∆, which are determined up to conjugacy. Note

that the matricesA∆1 , A
∆
2 , . . . , A

∆
dim∆ mutually commute. Finally by using the inner conormal

vectors u∆1 , u
∆
2 , . . . , u

∆
ν(∆) ∈ M(S ∩∆)∗ of the compact faces γ∆1 , γ

∆
2 , . . . , γ

∆
ν(∆) of Γ+(f )∩

∆ introduced in Section 3, we set

B∆i :=
dim∆∏
j=1

(A∆j )
u∆i,j ∈ GLr∆(C)(110)

for 1 ≤ i ≤ ν(∆), where (u∆i,1, u
∆
i,2, . . . , u

∆
i,dim∆) ∈ Zdim∆ is the image of u∆i by the isomor-

phism M(S ∩∆)∗ � Zdim∆.

THEOREM 5.5. Assume that f = ∑v∈S av · v ∈ C[S] is non-degenerate. Then the
monodromy zeta function ζf (F)(t) = ζf,0(F)(t) ∈ C(t)∗ of the T -invariant constructible
sheaf F at 0 ∈ X(S) is given by

ζf (F)(t) =
∏

Γ+(f )∩∆ �=∅
ζf,∆(F)(t) ,(111)

where for each face ∆ ≺ K(S) of K(S) such that Γ+(f ) ∩∆ �= ∅ we set

ζf,∆(F)(t) =
ν(∆)∏
i=1

det(id− td∆i B∆i )(−1)dim∆−1VolZ(γ ∆i ) .(112)

By the same methods, also for non-degenerate complete intersection subvarieties W =
{f1 = · · · = fk−1 = 0} ⊃ V = {f1 = · · · = fk−1 = fk = 0} in X(S) and T -invariant
constructible sheaves F on X(S), we can give a formula for the monodromy zeta function

ζfk (FW)(t) := ζfk,0(FW)(t) ∈ C(t)∗(113)
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of FW = F ⊗CX(S) CW ∈ Dbc(X(S)) at 0 ∈ X(S). The precise formulation is now easy and
left to the reader.
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