
transactions of the
american mathematical society
Volume 257, Number 1, January 1980

MILNOR'S ¿t-INVARIANTS AND MASSEY PRODUCTS
BY

RICHARD PORTER

Abstract. The main result of this paper gives an interpretation of Milnor's
^-invariants of a link in terms of Massey products in the complement of the link.
The approach presented here can be used to give topological proofs of results
about the /¡-invariants obtained by Milnor using different methods.

The main result of this paper, Theorem 3, gives an interpretation of Milnor's
jŒ-invariants of a link in terms of Massey products in the complement of the link.
This settles the question raised by Stallings [21] of how Milnor's invariants are
related to Massey products. The jü-invariants are isotopy invariants of a link
defined in terms of certain presentations of the quotient of the fundamental group
of the complement of a link by lower central series subgroups. The existence of a
relationship between Massey products and Milnor's invariants is suggested by the
result [21] that homological invariants of 77, and 772, such as Massey products of
elements in 77', are invariants of quotients of lower central series subgroups.
Specific results relating the lower central series to products and coboundaries of
one-dimensional cochains can be found in [3], [4], and [6]. Massey products are
used to define linking invariants in [13] and [19].

It was conjectured by Stallings [22] that Milnor's invariants can be described in
terms of the spectral sequence of the fundamental group of the complement of a
link. Since Massey products determine differentials in the cohomology spectral
sequence of a group [8], the main result of this paper implies that Milnor invariants
determine some of the differentials in the spectral sequence of the fundamental
group of the complement of a link (see [9]).

The jiï-invariants of a link in the 3-sphere are defined by Milnor [18] as follows.
Denote by F, the fundamental group of the complement of the link. For a > 1, set
Fq+X = [Fq, F,]. Fq is the qih lower central series subgroup of F,. An ith parallel in
Fx/Fq can be represented by a word w¡ in the meridians a,, . . ., a„ (one meridian
for each component of the link). The group Fx/Fq then has the presentation
(a,, . . . , ay. [a„ w¡] = 1, A = 1) where Aq is the <?th lower central series subgroup
of the free group generated by the «. Denote by /x(/„ . . . , lp) the coefficient of
K¡, . . . , K,    in the Magnus expansion of the word w,.

Forp < q, the residue class, p., of n(lx, . . . , lp) modulo an integer, A(/„ . . . , lp),
determined by the ¡i, is an isotopy invariant of the link. If the indices /,,..., lp are
all distinct, then the corresponding /I is a homotopy invariant.
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40 RICHARD PORTER

Canonical elements u¡ and "f¡, in the cohomology groups of the complement of a
link are defined by taking the k,'s to be the Alexander duals to the components of
the link and the y^'s to be Lefschetz duals to paths from one component of the link
to another. The collection, u¡, forms a basis for H1(S3 — L : R) and the y, 's
generate H2(S3 — L : R) subject to the relations y,, = 0 and yfJ + yJk = yiJc.

Each sequence (/„ .. ., lp) determines a subset (t^,. . ., u,} of H2(S3 — L : R)
called the generalized Massey product. The main result is that with R equal to the
integers modulo A(/„ . . . ,lp) the product <«7i, . . ., u, > contains the single element
(-iy/t(/,, . . ., lp)y¡t±■ The elements in a defining system for <w/(,. . ., «,> are
required to be cochains in the complement of certain sublimes. Examples 3 and 4 of
§2 show that this restriction is generally necessary for Theorem 3 to be true.

§1 contains definitions and a precise statement of the main result. The inde-
terminacy of generalized Massey products is compared with the indeterminacy of
ordinary Massey products in the complement of a link, and there is a discussion of
how some of the results about jü-invariants can be reproved using Theorem 3 and
the methods of [13] and [19]. Examples are given in §2.

The proofs are contained in §3. There are two key steps in the proof of the main
result. First a theorem of Milnor's is used to construct a 2-dimensional CW
complex whose Massey products determine the Massey products in the comple-
ment of the link. Massey products in the 2-dimensional CW complex are then
evaluated using Theorem 2 which gives a formula for Massey products in a
2-dimensional CW complex in terms of the coefficients of the Magnus expansion of
words corresponding to the attaching maps of the 2-cells. Theorem 2 is closely
related to Proposition 4.1 of [6]. The proof of Theorem 2 is based on a geometric
interpretation of cup products and coboundaries of cochains motivated by R. M.
Goresky's geometric description of the algebraic topology of stratified objects, [7].
See also [15], [16], [23], [24] and [25]. I am indebted to W. S. Massey for suggesting
that Goresky's viewpoint be applied to the problem of calculating Massey prod-
ucts, and for several very helpful conversations. The referee's comments have
resulted in a much improved exposition.

1. Definitions, statement of main result. Denote by C(N) the space consisting of
N disjoint oriented circles. An TV-link in the three-sphere S3 is an embedding L:
C(N) —> S3. Two links L and L' are called isotopic if there is a continuous
1-parameter family of links h, with h0= L and A, = L'. L and L' are called
homotopic if there is a continuous 1-parameter family of maps ht: C(N) -» S3 such
that for each t disjoint circles in C(7V) have disjoint images in S3, h0 = L and
hx = L'.

Given a link L in S3 denote by F, the fundamental group of the complement of
the link. Subgroups Fq of F, are defined by setting Fq+X = [Fq, F,] for a > 1 where
[Fq, F,] denotes the subgroup of F, generated by elements of the form aba~lb~l
with a G Fq and b G F,. Fq is the qth lower central series subgroup of F,.
Meridians and parallels to a link are elements in Fx/Fq defined in [18] as follows.
Choose A/,0, . . . , M% pairwise disjoint connected neighborhoods of the compo-
nents Lx, . .., LN of the link. For each i = 1, 2,. .., TV choose a sequence M° D
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MILNOR'S /i-INVARIANTS AND MASSEY PRODUCTS 41

M¡ D • • ■ D M? of connected open neighborhoods of L¡ such that Mj can be
deformed into L, within A//-1 for each j = 1, 2, . . ., q. (That is, there is a
homotopy rt: Mf -» A//-1 such that r0 is the inclusion map and r,(A//) G L¡.) Such
a sequence can be constructed inductively since L¡ and A//-1 are both absolute
neighborhood retracts. Choose the base point x0 to be a point in S3 — (U fl, A/,0).
For each / choose a path />,(/) (0 < r < 1) from x0 to L¡. An ith meridian a, of L
with respect to the path/», is defined as follows: first traverse the path/?, to a point
in Mf — L¡, then traverse a closed loop in Mf — L¡ which has linking number + 1
with L¡ and is homotopic to a constant in Mf, and finally return to x0 along/»,. This
procedure defines a unique element a, of Fx/Fq.

An ith parallel /?, of L with respect to the path /?, is an element of Fx/F
obtained by traversing />, from x0 to a point in Mf — L„ then traversing a closed
loop in Mf - L¡ which is homotopic to L, within Mf and has linking number 0
with L¡, and finally returning to x0 along p¡. This procedure defines a unique
element /?, of Fx/Fq. If />, is replaced by some other path then the pair (a„ /?,) is
replaced by some conjugate pair (Xa¡X~\ À/8,A-1).

The following result (Theorem 4 of [18]) is used to define the /t-invariants of a
link L, and will be used in the proof of Theorem 3 to construct a 2-dimensional
CW complex whose Massey products determine the Massey products in S3 — L.

Theorem 1 (Milnor). If L is an N-link in Euclidean space, then the group Fx/Fq
has the presentation

{a„ . . . , aN/[a¡, w,] = 1, / = 1, 2, . . . , N; Aq = 1}

where the a, are meridians, and the w, are certain words in ax, . . . , aN which
represent parallels, and where Aq is the qth lower central series subgroup of the free
group generated by the a.

The Magnus expansion of the word w, is obtained by substituting

a,. = 1 + Kt,        a,"1 = 1 - Kt + K2 - K3 + . . .

in vv, and multiplying out to get a formal power series in the noncommuting
indeterminates K¡, i = 1, . . . , N. Given a sequence (/„ . . . , ¡p) of integers with
1 < lj< N and p < q set ju(/,, . . ., lp) equal to the coefficient of K,t, . . . , K, ( in
the Magnus expansion of w^, and set A(/,, . . ., lp) equal to the greatest common
divisor of the numbers ¡i(jx, . . . ,js) where (jx, . . . ,js),s > 2, ranges over all cyclic
permutations of proper subsequences of (/,, . . . ,lp). The Milnor invariant
fi(lx, . . ., ¡p) of the link L is the residue class of /x(/,, . . ., lp) modulo A(/,, . . ., lp).
In [18] it is shown that jS(/,, . . . , lp) is an isotopy invariant of L and a homotopy
invariant of L if the /,'s are distinct. In addition, L is homotopic to the trivial link if
and only if /*(/,,. . . , lp) is zero for all sequences with distinct /,'s [17].

Massey products of elements in 77 ' are defined, [10], as follows. Let {Xi}pi_x be a
collection of subspaces of a space X. Given elements w, in H1(X¡ : R) for i =
1.p; a defining system for the Massey product <«„ . . ., upy in the system
{X¡Y¡-\ with coefficients in the commutative ring with unit, R, is a collection of
cochains, m¡y, 1 < i < j < p, (i,j) ¥= (l,p) satisfying:
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42 RICHARD PORTER

1. mtJ g c\Xt n xi+x n ■ ■ ■ nXj-.R).
2. m¡¡ is a cocycle representative of u¡, for i = 1,2, ... ,p.
3. 5(w,v) = 2i~', mikmk+XJ for j </' where by abuse of notation mikmk+XJ

denotes the cup product in C*(X¡ n • • • C\Xj, : R) of the restrictions of mik and
™k+ijtoXi n • • • nA}.

C*(y : R) denotes the singular cochains of Y with coefficients 7?. It follows that
^■k-i m\,kmk+\j> is a cocycle in C2(XX f\ ■• • • nXp : R). <w„ . . . , up} is defined if
there is a defining system for it, in which case <m„ . . . , up)> is the subset of
H2(XX n • • • n Xp : R) consisting of all elements representable by cocycles of the
form 2£~', rnXkmk+Xj> with {m¡j} a defining system for <«,, . . . , up}. Massey
products in a system, {X¡}p^x are a special case of the products considered in [14].

Given an TV-link, L, in S3 set «, equal to the element in H\S3 — L¡) which
corresponds by Alexander duality to the generator of HX(L¡) determined by the
orientation of L¡. For i and j in {1, 2,. . ., TV} set ytJ equal to the element in
H2(S3 — (L¡ u Lj)) which corresponds by Lefschetz duality to the element in
HX(S3, L, u Lj) determined by a path from L, to L,, The relationship between the
/T-invariants of a link and Massey products in the complement of the link is given
by the following result where Z0 denotes the ring of integers and Z„ the ring of
integers modulo the positive integer n.

Theorem 3. Let L be an N-link in S3. For any sequence, (/„ . . . , lp), of integers
with 1 < lj < TV, the Massey product <t/;,. . ., w, > in the system {S3 — L¡)p_x with
coefficients ZA(/| ;) is defined and contains the single element
(-iyji(lx, . . . , lp)y¡^." '

Theorem 3, along with the techniques of [13], [19], and [21], can be used to
recover some of the properties of the /I-invariants. For example, the naturality of
Massey products together with Alexander duality implies that Massey products in
the complement of a link are isotopy invariants (see [21]). Hence the /f s are isotopy
invariants of a link. If the number /, occurs only once in the sequence (/„ . . ., ¡p),
then the Massey product <«,, ... , «,) in the system {S3 — L¡)p_x with R =
^A(/,..,/) can De identified with a functional Massey product (see [13] and [19]). It
then follows that ß( /,,..., lp) is an invariant of the homotopy class of the inclusion
of the /,th component into S3 — (Uf_2^.)- This together with the relation
jŒ(/„ . . . , lp) = fi(l2, . . . , lp, /,) (obtained as part of the proof of Theorem 3), then
implies that (t^, . . . , u, > and hence /!(/„ . . ., lp) are homotopy invariants of a
link if the indices (/„ . . . , lp) are all distinct.

Massey products in the system {S3 - L¡y¡^x are related to Massey products in
S3 — L (the elements in a defining system for a product in S3 — L are only
required to be cochains in S3 — L) as follows. From the definition of Massey
product it follows that (u,t, . . ., «,> in S3 — (Uf_,F^). Hence Theorem 3 implies
that the Massey product {ut¡, . . . , u, > in the system {S3 — L¡¡}P_X is always a
subset of the product <«,i, . . . , u,} in S3 — (Uf_, L¡y) with R = Z^ ,j is
defined and contains the element (-iyfi(lx, . . ., /p)?/,,/• For p = 2, 3 this is the
only element in the product. Examples 4 and 5 of the next section indicate that for
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milnor's /¿-INVARIANTS AND MASSEY PRODUCTS 43

p > 4, the product generally contains more than the one element
(-Vfji(lx, . . ., lp)y¡y±- In particular, Massey products in S3 — L do not, in general,
determine the /T-invariants of a link.

If products in {S3 — F/}?_, are replaced by products in S3 — L in the proof of
Theorem 3, then the following result is obtained: The Massey product
(t/^, . . . , u,} in S3 — L with coefficient ring Zß(/] ,} is defined and contains
the single element (-iyj5(/,,. . . , lp)yi> where D(lx, . . . , lp) is defined by D(lx, l^
= 0. For p > 2, £)(/,,..., lp) is the greatest common divisor of the following
numbers:

(i) IHM, ...,ly),\<j-\<p-2;
(ii)/*(/„...,/}), 1 <j-l<p-2;
(iii) D(lx, . . . , 4_„ *, lk+2, ...,lp)*G{l,2,3,...,N);
(iv) (*(/„ . . . , lk_x, *, lk+2, ...,/,). e {1, 2, 3, ..., TV}.

Conditions (i) through (iv) can be explained as follows, (i) guarantees that each of
the products <«,,...,«,) in S3 — L is defined and has zero indeterminacy (that is
the product contains only one element), (ii) then implies that each of the products
<k/(, ...,«,> contains only zero. (In the terminology of [14], (i) and (ii) imply that
<«,,...,«<,> is strictly defined.) Conditions (iii) and (iv) now imply that
(u¡, . . . , u, > has zero indeterminacy. (See Propositions 2.4 and 2.7 of [14].) To see
that D(lx, . . . , lp) divides A(/„ . .. , lp) note that, using the identity /!(/,, . . . , lp) =
fi(l2, . . . ,lp, /,), a definition of A(/,, . . ., lp) is obtained by replacing the condition
* G {1, 2, ..., TV} by * = lk or lk+l in the definition of D. The identity
A(/„ . . . ,lp)= D(lx, . . . , lp) for p < 3 and L = U f., ¿, follows from the rela-
tion ß(lx, /,) = 0.

2. Examples. There are a number of methods for calculating Massey products in
the complement of a link. If the link is smooth, then Massey products with
coefficients equal to the real numbers can be calculated using differential forms in
the complement of a tubular neighborhood of the link. For a polygonal link,
Massey products with rational coefficients can be calculated using the algebra of
ö-polynomial forms on a simplicial subdivision of the complement of a neighbor-
hood of the link [4]. For a polygonal link and arbitrary coefficient ring, Massey
products can be calculated by generalizing Rules I and II of §3 to 3-manifolds [7]
and drawing pictures of defining systems for Massey products. This is essentially
the same as using duality theorems to translate the cup product on C*(S3 — L: R)
into an intersection theory on C„(S3, L), [5], [13], and [19]. Another approach is to
construct a 2-dimensional CW complex, Y, and a map /: Y -► S3 — L so that
Massey products in S3 — L can be calculated by evaluating the corresponding
product in Y (Lemma 3). This last approach is used to prove Theorem 3.

The purpose of Examples 1, 2, and 3 is to illustrate Theorem 3. Example 4 is an
example of a fourth order product in S3 — L that contains more elements than the
corresponding product in the system {S3 — F,}?.,. Example 5 shows that Massey
products, <m7i, . . ., u, > in S3 — L with (/„ . . . , lp) all distinct, cannot, in general,
be used to define homotopy invariants of a link. (Recall that if (/,,..., lp) are all
distinct then the Massey product <«,,..., m»> in the system {S3 — L,}P_X can be
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44 RICHARD PORTER

viewed as a homotopy invariant of the link.) Additional calculations of Massey
products in the complement of a link are in [5], [13], and [19]. Calculations related
to the /I-invariants are in [1], [17], and [18].

Example 1. Let a,, a2 be meridians to the link in Figure la with respect to the
paths /», and p2. The word w2 = [ax~\ a^la^ a2f represents an element in
irx(S3 — L, x0) which commutes with a2 and is a parallel to L2. The Magnus
expansion of w2 is 1 + TV7f:,2Ä:2 - 2NKXK2KX + NK2KX + (terms of order > 4).

Figure la

Hence the nonzero Milnor invariants of order 4 are

fi(l, 1, 2, 2) = ß(l, 2, 2, 1) = iT(2, 2, 1, 1) = ß(2, 1, 1, 2) = TV,
¡1(1, 2, 1, 2) = iT(2, 1, 2, 1) = -2TV.

The corresponding Massey products are

<m„ ux, u2, u2> = TVy,2,        <m„ u2, ux, u2) = -2Nyx2,

(u2, u2, ux, m,> = TVy2)„       <i/2, «„ u2, «,> = -2Nyxx.

Figure lb

Figure lb can be used to show that w2 is a parallel for TV = 1 as follows. Clearly
axläx is a parallel to L2 with respect to the path/>2. Using â, = âxaxâx~\ it follows
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that af'a,a,of"1 is a parallel to L2. But a, = a2axa2x so

45

a, xa2axa2 laxa2ax  'a2 ' =[a, ', a2][a„ a2] = w2

is a parallel to F2.

Figure 2
Example 2. Let a,, a2 be meridians to the link in Figure 2 with respect to the

paths/», and/»2. The word w2 = axa2laxa2 represents an element in irx(S3 — L, x¿)
which commutes with ot2 and is a parallel to L2. The coefficient of Kx in the
Magnus expansion of w2 is 2 so /¿(l, 2) = ¿7(2, 1) = 2 and each of the /¿-invariants
/t(l, 1, 2), /I(l, 2, 1), /¿(2, 1, 1), fi(2, 2, 1), ¿7(2, 1, 2), /I(l, 2, 2) is an element of the
integers mod 2. The coefficient of Kx and the coefficient of KXK2 in the Magnus
expansion of w2 are both 1. Hence

/¿(l, 1, 2) = /¿(l, 2, 1) = /¿(2, 1, 1) = 1    in Z,
and

/¿(l, 2, 2) = j5(2, 2, 1) = /I(2, 1, 2) = 1    in Z,.

Figure 3
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The corresponding products are

"l«2 = 2Vl,2>

<8j, «„ M2> = <M2, Ux, M,> = <U„ M2, K2> = <M2, W2, M,> = y, 2,

(Z2 coefficients).

Example 3 (see Figure 3). There is a word, w3, in the a,'s representing an
element in irx(S3 — L, x0) which commutes with a3 and is a parallel to L3. If a3 is
set equal to 1 in w3, the resulting word is [a„ a2]N. The Magnus expansion of
[a„ aj" is 1 + TV7c;,7í:2 - NK2KX + (terms of order > 3). Hence

/¿(l, 2, 3) = /t(2, 3, 1) = ¿7(3, 1, 2) = TV,
/¿(2, 1, 3) = fi(l, 3, 2) = ¿7(3, 2, 1) = -TV.

All other Milnor invariants of length < 3 are zero.

Figure 4

Example 4. If either of the components L, or L2 is removed from the link in
Figure 4, then the resulting link is trivial. If F3 and L4 are removed, the remaining
link is isotopic to the link in Example 2. Hence the only nonzero /¿-invariants of
length < 3 are those in Example 2. By drawing a picture of a defining system for
<w,, u2, w3, m4> in {S3 - F,};_, with Z2 coefficients (see [5], [13] or [19]), it follows
that <«,, u2, m3, m4> contains the element y, 4. From Theorem 3, it follows that this
is the only element in the product. The product <«„ u2, w3, w4) in S3 — L with Z2
coefficients contains <«„ u2, u2} in its indeterminacy. From Example 2, <«,, u2, k2>
= y, 2 (Z2 coefficients). Hence the product <«„ u2, u3, m4) in S3 — L with Z2
coefficients contains both y, 4 and y, 4 + y, 2. This gives an example of a fourth
order product in S3 — L which contains more elements than the corresponding
product in the system (S3 — £,.},_,.

Example 5. For the link in Figure 5a, the Massey product <m,, u2, u3, m4, u5, m6>
in S3 — L is defined and consists of all integer multiples of y,6. For the link in
Figure 5b, the Massey product <w,, u2, u3, u4, u5, u6} in S3 — L contains the single
element y,6. Since the links in Figures 5a and 5b are homotopic, the example
indicates that Massey products in S3 — L with distinct uf$ do not, in general,
determine homotopy invariants of the link. For the link in Figure 5a and the link in
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Figure 5b, the Massey product <«,, u2, . . . ,u6} in {S3 - F,}/_, contains the
single element y, 6. The link in Figure 5b is one of the examples considered in [17].

Figure 5a

Figure 5b

3. Proofs. This section is organized as follows. First the notion of a special
2-dimensional cell structure is defined. A special cell structure is a regular 2-dimen-
sional CW complex each of whose 2-cells is either a simplex or a cube, together
with an ordering of the vertices. The ordering of the vertices is used to give the
cellular cochains the structure of an associative differential graded algebra whose
Massey products can be identified with those given by the algebra of singular
cochains (Lemma 1). The cellular cochains of a CW complex do not, in general,
admit such a product, [24]. The next step is to give a geometric description of the
coboundary of one-dimensional cochains and the cup product of certain pairs of
one-dimensional cochains (Rules I and II). The rule for cup products, Rule II,
depends on the existence of a suitable ordering of the vertices but is independent of
the ordering chosen. Using Rules I and II it is possible to draw pictures of defining
systems for Massey products and calculate the corresponding element of the
product (Lemma 2, Theorem 2). Theorem 2 gives a formula for Massey products in
a 2-dimensional CW complex in terms of coefficients in the Magnus expansion of
words corresponding to the attaching maps of the 2-cells.

The main result, Theorem 3, is proved as follows. The first step is to construct a
2-dimensional CW complex, X, a map/: X-» S3, and a collection, {Ar,}f_„ of
subcomplexes of X, one for each component of a link L, with/ÍX,) G S3 — L¡ for
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i = 1, 2, . . ., TV. (The subcomplex jf, n • • • n XN is the complex y of Lemma 3.)
The naturality of Massey products implies that information about the products in a
system {S3 — L,}?_, can be obtained by calculating the corresponding product in
the system {X¡ }f_,. Massey products in {X, }f_, are calculated using Theorem 2. A
technical result of May, Lemma 4, is then used to show that the Massey product
</*(«,), . . . ,/*(«/)> in {X,_}P_X completely determines the product <m,.u,>
in{S3'-L^p_x.

Definition. A special cell structure is a regular 2-dimensional cell complex
together with a partial ordering of the vertices such that:

(i) Each 2-cell is either a simplex or a cube;
(ii) The vertices of any cell are totally ordered and for each 2-cube the smallest

and largest vertices are the endpoints of a diagonal of the cube.
Condition (ii) is used to define a boundary operator and diagonal approximation

on the cellular chain complex. Note: There are regular 2-dimensional cell com-
plexes (on the real projective plane for example) satisfying (i) for which there is no
ordering of the vertices satisfying (ii).

The cells of a special cell structure will be indicated by listing the vertices of the
cell in increasing order. A triple of vertices thus denotes a 2-simplex, a four-tuple
indicates a 2-cube. If a space, X, has been given a special cell structure, set Cy(X)
equal to the cellular chains of X and C(X) = Hom(C¡(X); Z).

A boundary operator on Ct(X) is defined by

3(a, b) = (b) - (a),
d(a, b, c) = (a, b) + (b, c) - (a, c),

3(a, b, c, d) = (a, *) + (*, d) - (a, c) - (c, d).

3 is the usual boundary operator for singular theory combined with the boundary
operator for cubical singular theory where the vertices of the 2-cube, (a, b, c, d),
correspond to the vertices of the standard 2-cube by:  a-»(0,0); 6-»(1,0);
c-»(0, !);rf-»(l, 1).

A diagonal approximation $: Cm(X) -» Cm(X) ® Cm(X) is defined by

<i>(a) = (a) ® (a),

<b(a, b) = (a) ® (a, b) + (a, b) <8> (b),
<f>(o, b, c) = (a) ® (a, b, c) + (a, b) ® (b, c) + (a, b, c) ® (c),

<t>(a, b,c,d) = (a) ® (a, b,c,d) + (a, b) ® (b, d)
- (a, c) ® (c, d) + (a, b, c, d) <8> (d).

<j> is the usual Whitney diagonal approximation combined with the diagonal
approximation for cubical theory given in [20].

Lemma 1. Suppose the space X has a special cell structure with cellular cochains
C*(X). Then the map </>*: C*(X) ® C*(X) -+ C*(X) induced by the map $ defined
above gives C*(X) the structure of an associative differential graded algebra. Massey
products calculated in C*(X) can be identified with those given by the algebra of
singular cochains on X.
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Proof. A simplicial subdivision of the special cell structure is obtained by
subdividing each cube (a, b, c, d) into the two 2-simplices (a, b, d), (a, c, d).
Denote by C+(A), (C*(A)), the corresponding cellular chains (cochains). The
ordering of the vertices in the special cell structure is an ordering of the vertices in
the simplicial subdivision. Use the ordering to define 3 and <j> on C^(A). An
inclusion Ct(X) -» C^(A) is defined by

i(a) = (a),

i(a, b) = (a, b),
i(a, b, c) = (a, b, c),

i(a, b,c,d) = (a, b, c) - (a, c, d).
i is a chain map and the map <f> on C+(X) is the Whitney diagonal approximation
on C„(A) restricted to C^(X). Since the Whitney diagonal approximation on C^(A)
gives C*(A), the structure of an associative differential graded algebra and /*:
C*(A) -» C*(X) is an epimorphism, it follows that </>* gives C*(X) the structure of
an associative differential graded algebra. /*: C*(A) -» C*(X) is a map of algebras
inducing an isomorphism of cohomology groups so Massey products in C*(A) can
be identified with those in C*(X). Similarly, Massey products in C*(A) can be
identified with Massey products given by the algebra of singular cochains on X.

The following geometric interpretation of one- and two-dimensional cochains
together with Rules I and II below make it possible to draw pictures of defining
systems for Massey products and calculate the corresponding element of the
Massey product.

-b

Figure 6a

c

A
/"Ma

Figure 6b Figure 6c

Suppose a space, X, has been given a special cell structure. Each 1-cochain and
each 2-cochain determine a picture in X. For h G CX(X), the picture of h
intersected with a 1-cell, (a, b), a 2-simplex, (a, b, c), and a 2-cube, (a, b, c, d), are
given in Figures 6a, 6b, and 6c, where the cells of X are indicated by dotted Unes
and the picture of a cochain is drawn with solid lines. The integers /,/, k, I are
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defined by i = h evaluated on the 1-cell (a, b) = h(a, b), k = h(a, c) and / =
h(c, d). In Figure 6b, j = h(b, c). In Figure 6c, j = h(b, d). For h G C2(X), the
picture of h intersected with a 2-simplex, (a, b, c), and a 2-cube, (a, b, c, d), are
given in Figures 7a and 7b, where i = h(a, b, c) and j = h(a, b, c, d). The picture
of an /-cochain intersected with any cell of dimension < i is empty. The pictures of
cochains are motivated by the proof of Poincaré duality which involves associating
to each cell in a manifold a dual cell of complementary dimension. Recall from
Chapter III of [11] that if X is a regular cell complex, then there is a simplicial
subdivision of X whose vertices are in a 1-1 correspondence with the cells of X and
whose simplices are denoted by sequences of cells of X, (a0, ax, . . . , ap), with a,_,
contained in the boundary of a, for / = 1, 2, . . . ,p. For each cell a of X, denote by
Da the subcomplex of the simplicial subdivision consisting of all simplices
(a0, . . . , ap) with a contained in the closure of o0. In the terminology of [11], Da is
the closure of the transverse complex of a. Note that if X is an TV-manifold and o is
an /-cell of X, then Da is a homological (TV - i) disc. The Da's play an important
role in the proof of Poincaré duality and in the intersection theory of [11].

c

/
c_d

•V-/ \/ \
a ¿_\b

z>
Figure 7a Figure 7b

Assume now that X has been given a special cell structure. For a cell
(ct0, . . ., op) in the simplicial subdivision of X, define the codimension of
(a0, . . ., o ) to be dim^) — p. For cells in X of positive dimension, /, a co-orienta-
tion of D„ is by definition an orientation of the normal bundle to the codimension i
cells in D„. Note that co-orientations of Da are in a 1-1 correspondence with
orientations of a. Suppose A is a positive dimensional cochain which is nonzero on
only one cell, a. Then the picture of h is the triple (the complex D„, a co-orienta-
tion, 0, of Dy, an integer k) where the cochain h evaluated on the cell a, oriented by
9, is the integer Ac. In general, write a positive dimensional cochain as a sum of
cochains which are nonzero on only one cell. The picture of the cochain is then the
union of the pictures of the summands. Note that the picture of a cochain of
positive dimension, i, restricted to any /-cell, a, consists of an orientation, 9, of a
and an integer Ac. The cochain is recovered from its picture by the rule: The
cochain evaluated on the cell a, with orientation 9, is the integer Ac. The pictures of
cochains are a special case of the geometric cochains in stratified objects defined in
[7]. See also [15], [16], [23] and [25].

Suppose a space X has been given a special cell structure. The coboundary of

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



milnor's /¿-INVARIANTS and massey products 51

one-dimensional cochains and the cup product of certain pairs of one-dimensional
cochains can then be calculated in terms of pictures by the following rules which
follow from the definition of 3 and <b.

A
/   \

/ \T) \
_A

r ~~~~i¡r+'D  = ! G I
L_J

II

I-1 r-
.i i D-H--i       u       |

I I
I_i i_

—i |--,

~ ï = r <d i
Rule II says that if the pictures of two 1-cochains are transverse, then the

intersection of their pictures is a picture of their cup product. Rule II is the
motivation for allowing some of the 2-cells to be cubes.

Using geometric pictures of cochains and Rules I and II, the technique for
calculating Massey products in a 2-dimensional CW complex is as follows. View
the space X as a set of disjoint 2-discs whose boundaries have been attached to a
wedge of circles. Calculate cup products by drawing pictures of cocycle representa-
tives so that the cup product can be evaluated by Rule II. If cup products are
cohomologous to zero use Rules I and II to draw a picture of cochains in a
defining system for a triple product. Choose the pictures so that the corresponding
element of Massey product can be evaluated by Rule II. A special cell structure on
X such that the pictures are pictures of cochains can be constructed as follows.
First draw a small cube around each point where Rule II was used to calculate a
cup product. Order the vertices of the cubes so condition (ii) in the definition of
special cell structure is satisfied. Complete the cell structure by taking a simplicial
subdivision of the complement of the interiors of the cubes. Extend the ordering of
the vertices. Taking the cells in the subdivision transverse to the pictures guarantees
that the pictures determine cochains in the special cell structure and that calcula-
tions based on Rules I and II are valid. The following example illustrates these
ideas. Denote by X the quotient of the rectangle in Figure 8 obtained by attaching
the boundary of the rectangle to a wedge of two oriented circles c,, c2, so that the
attaching map is given by [«,, «2] = a2a2ax~2a2K Orient the rectangle by the
ordered basis {(1, 0), (0, 1)} for R2. The image of the oriented rectangle in X is a
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cycle whose boundary class generates H2(X : Z) at Z. A basis for 77, is given by
{[c,], [c2]} where [c¡] denotes the homology class determined by the oriented circle
c,. Let «, and u2 be the elements in 77\X : Z) dual to [c,], [c2] and let e denote the
element in H2(X : Z) dual to the homology class determined by the oriented
rectangle. By drawing pictures of cochains and using Rules I and II to calculate
coboundaries and cup products it will be shown that u2 = u\ = 0, uxu2 = 2e, and
with Z2 coefficients the triple product <«,,«,, m2> is the mod 2 reduction of e.

Figure 8

6, in Figure 9 is a picture of a cocycle representative for ux. b2 in Figure 10 is a
picture of a cocycle representative for u2. By moving the picture of bx parallel to
itself, it is possible to get a picture of a cocycle, b\, which represents ux and does
not intersect the picture of bx. u2 = 0 by Rule II. Similarly u\ = 0. From the
picture of Z>, u b2 (Figure 11) it follows that uxu2 = 2e.

L_ _1 _w _ J

With Z2 coefficients all cup products of elements in 77 ' are zero. Hence all triple
products of elements in 77', with Z2 coefficients, are defined and contain only one
element. Let b'x, bx, b2 and ¿>, 2 be the cochains pictured in Figures 12 and 13. With
7^ coefficients, b\ u bx = 0 and 8bx2 = 6, U b2. Hence b\ u bia is a cocycle
representative of <k„ m„ k2>. Rule II implies that <u,, «,, w2> is the mod 2 reduc-
tion of e.
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Figure 13

The purpose of Lemma 2, below, is to construct 1-cochains, v, and 2-cochains, a,
in a 2-dimensional cell complex so that coboundaries and cup products of the v are
given by formulas involving coefficients in the Magnus expansions of words
corresponding to the attaching maps of the 2-cells. These cochains are used in the
proof of Theorem 2 to construct defining systems for Massey products and derive a
formula for the corresponding product which involves coefficients in the Magnus
expansions of words corresponding to the attaching maps of the 2-cells. Theorem 2
applied to the example above implies that with Z2 coefficients each triple product
of the form <«,-, u,, uk)> is the mod 2 reduction of n(i,j, k : [a2, a2])e where
¡x(i,j, k : [a2, a2]) denotes the coefficient of K¡KjKk in the Magnus expansion of
[a2, a2]. Since /t(l, 1, 2 : [a,, a2]) = 1, the formula checks with the explicit calcula-
tion carried out above. Theorem 2 applied to the example above also yields the
more general formula that for any three elements hx, h2, h3 in HX(X : Z^, the triple
product <A,, h2, h3} with Z2 coefficients is 2/i,(/,)/i2(/2)/t3(/3)/i(/„ i2, i3: [a2, a2])e
where the sum is over all sequences (/,, i2, i3) with /, = 1 or 2 and hs(i) denotes hs
evaluated on the homology class [c,]. The cochains constructed by Lemma 2 to
evaluate <u,, «,, u2> are essentially different (and less obvious) than those pictured
in Figures 8-13. This less obvious approach seems necessary in order to derive the
general formula of Theorem 2. Pictures of the cochains constructed in Lemma 2
which can be used to evaluate <m,, ux, m2> in the above example are described after
the statement of Lemma 2.

Denote by X(ax, . . ., ay: { H^J^a) me 2-dimensional CW complex determined
by the group presentation (a,, . . . , ay: {WA}A6A). There is a single 0-cell, one edge
for each generator a and a 2-cell for each relator W. The attaching map of the
boundary of a 2-cell is determined by the recipe that the relator gives as a word in
the a. /¿(/,, . . . ,ly. Wx) denotes the coefficient of K,, . . . , K¡ in the Magnus
expansion of the word Wx.

Lemma 2. Given the 2-dimensional CW complex, X = X(ax,. . ., ay: { Wx}XeA)
and a positive integer p; there is a subdivision of the cell structure on X which is a
special cell structure having the following cochains. For X G A and j = 1,2, ... ,p

!_
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there is a 2-cochain, ax(j). For each sequence (/„ . . . ,lk) of integers with 1 < /, < /
and eachj = 1,2, ... ,p there is a 1- cochain v(j :/,,..., lk). The cochains a and v
have the following properties.

1. The 2-cochain, ax(j), evaluated on the oriented 2-chain determined by the
relator, Wx-, is lifX = X' andO otherwise.

2. The l-cochain, v(j : /,), evaluated on the oriented l-chain determined by the
generator a, is 1 if i = /, and 0 otherwise.

3. 6v(j ■ ¡i) = 2XeA /¿(/, : Wx)ax(j).
4. vU ■ h, ■ ■ ■, lk)vU' ■ h> ■ ■ ■ . '*') = ° 'ff <f - ! and Ac' > 2.
5. v(j -   1   :/,,... , lk)v(j : lk+x) +   8v(j :/,,..., lk+x) =

Zx«AP('t»ft4+l :  W\)aX<J)-
The following example illustrates the construction of the cochains a and v and

shows how these cochains can be used to evaluate Massey products. A 2-dimen-
sional cell complex whose fundamental group has presentation (a„ a2 : [a2, a2]) is
obtained as a quotient of the rectangle [0, 6] X [-1, 5] by making the identifications
(0,y) = (6,^) for all y in [1 —, 5]; (x, 5) = (x', 5) for x and x' in [0, 6]; and by
identifying the interval [0, 6] X {-1} to a wedge of two circles according to the
word [a2, a2] = axaxa2ax~lax~la21. (See the proof of Lemma 2 for more details.)
The quotient space, X, has a cell structure with one 0-cell, two oriented edges, and
one oriented 2-cell. The ordered basis {(1, 0), (0, 1)} for R2 orients the 2-cell of X.
The oriented 2-cell is a cycle whose homology class generates H2(X : Z)atZ.
{a,, a2} is a basis for HX(X : Z) at Z © Z where a, denotes the homology class
determined by the oriented edge corresponding to the generator a,. For / = 1, 2,
denote by «, the element in 77 l(X : Z) dual to a, and denote by e the element in
H2(X : Z) dual to the generator of H2(X : Z) determined by the oriented 2-cell. It
will be shown that:

1. u\=u\ = 0;
2. uxu2 = 2e;
3. with Z2 coefficients, the triple product <w„ ux, k2> is defined and contains the

mod 2 reduction of e.
Each of these calculations corresponds to a certain coefficient in the Magnus

expansion of [a2, a2] as follows:

u\ = 0, coefficient of 7C,2 is 0;

u\ = 0, coefficient of 7v2 is 0;
uxu2 = 2e, coefficient of 7^,7if2 is 2;
(t/„ m„ u2) = e (Z2 coefficients),

coefficient of KXK2 reduced mod 2 is nonzero.

A cocycle representative, u(l : 1), for ux is constructed in steps as follows. First
choose a point, p, in the interior of the edge corresponding to the generator a,.
From each point of the rectangle which is in the inverse image of p, under the
attaching map, draw a vertical line from the point to the horizontal line.y = 1. On
each vertical line draw an arrow which points in the direction of increasing values
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of x. Label each of the arrows with either + 1 or -1 so that the result is a picture of
a cochain which is +1 when evaluated on the oriented edge corresponding to a,
(see Figure 14). Draw in the line y = 1 together with arrows pointing down. The
next step is to label the vertical arrows with integers. The arrow furthest to the left
is labeled 0. The other arrows are labeled so that the coboundary of the resulting
cochain is 0 except possibly in a small neighborhood of the point (6, 1) (see Figure
15). This completes the construction of v(l : 1) a cocycle representative of w,. It is
important to note that the integers which label the vertical arrows are the
coefficients of Kx in the Magnus expansion of certain words as follows (reading
Figure 15 from left to right).

0 = coefficient of Kx in the expansion of 1,

1 = coefficient of Tí, in the expansion of a„

2 = coefficient of Kx in the expansion of a2 and <x2a2,

1 = coefficient of AT, in the expansion of a2a2ax~l,

0 = coefficient of Kx in the expansion of a2a2af2 and [a2, a2].

y=l

y=-l
x = 0 a.      x=l      ~a,    x=2      ""a- x=3 cf. x"=4      a. jî=5      a,        *=^a,      x=l a,    x=2 a^ x=3 a, x=4      a, x=5      a-,        X

Figure 14

v(l:l)
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The product u\ can be calculated by constructing another cocycle representative,
o(2 : 1), for m, and then using Rule II to evaluate v(l : 1) u v(2 : 1). v(2 : 1) is
constructed in the same manner as t>(l : 1) with the following changes. First choose
a point, p', in the interior of the edge corresponding to a, so that if the edge is
traversed in the direction indicated by the orientation, then the point p' occurs
before/». Secondly the vertical lines go from.y = -1 to>> = 2. Figure 16 contains
u(l : 1) and v(2 : 1) with v(l : 1) dotted. A cochain v(2 : 1, 1) with v(l : l)u(2 : 1)
+ 8v(2 : 1, 1) = 0 is constructed as follows. The product v(l : l)u(2 : 1) consists of
two oppositely oriented points on the line y = 1. From each of these points draw a
vertical line to the horizontal line>> = 2. Put arrows going from left to right on each
of the lines. Label the arrows with integers so that when restricted to a small
horizontal strip about the line 7 = 1 we have that the coboundary of the cochain +
u(l : l)u(2 : 1) = 0. The result is Figure 17. The construction of v(2 : 1, 1) is
completed by putting vertical arrows along the line y = 2 and labeling the arrows
with integers so that the integer farthest to the left is 0 and the coboundary of
v(2 : 1, 1) is 0 when restricted to the line y = 2 except possibly in a small
neighborhood of the point (6, 2) (see Figure 18).

v(2:l)

-1

a-.

Figure 16
y=2

y=l
vj>: LVl>

Figure 17

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



58 RICHARD PORTER

I +
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al a2 «1

Figure 18

-4

The numbers which label the vertical arrows are the coefficients of K2 in the
Magnus expansion of certain words as follows (reading Figure 18 from left to
right).

0 = coefficient of Kx in the expansion of 1 and a,,

1 = coefficient of Kx in the expansion of a2 and a2a2,

0 = coefficient of Kx in the expansion of a2a2ax~l; a2a2ax~2 and [a2, a2].

Since ij(l : l)t>(2 : 1) + 8v(2 : 1, 1), it follows that u2 = 0. A similar argument
shows that u\ is 0. The product uxu2 is calculated by constructing the cocycle
representative, v(3 : 2), for u2 (Figure 19). The picture of v(2 : 1) u t>(3 : 2) is 1) 2.
Hence uxu2 = 2e in H2(X : Z).

Since all cup products of elements in 77 l(X : Zj) are zero, the triple product
<«,, ux, u2) (with Z2 coefficients) is defined and contains a single element. Set
t>2(l : 1); t>2(2 : 1); t?2(2 : 1, 1) and t>2(3 : 2) equal to the mod 2 reductions of the
corresponding cochains v. With Z2 coefficients, Su2(2 : 1, 1) = v2(l : l)t>2(2 : 1)
and v2(2 : l)t>2(3 : 2) = 0. Hence v2(2 : 1, 1)d2(3 : 2) is a cocycle representative of
the unique element in <w,, m„ m2>. The product v(2 : 1, l)u(3 : 2) is indicated in
Figure 19. A cochain, v(3 : 1, 1, 2) is constructed as follows. From the point where
v(2 : 1, 1) intersects v(3 : 2) draw a vertical line up to the linej' = 3. Put arrows on
this line and on the line y = 3. Label the arrows so that v(2 : 1, l)u(3 : 2) +
8v(3 : 1, 1, 2) = 0 in the complement of a small neighborhood of the point (6, 3)
(see Figure 20). Set a(3) equal to the 2-cocycle whose picture as Sl located at the
point (6, 3). a(3) is a cocycle representative of e and v(2 : 1, 1)ü(3 : 2) +
8v(3 : 1, 1, 2) = a(3). Hence with Z2 coefficients, the product <m„ t/„ m2> contains
the mod 2 reduction of e. (This also follows directly from Figure 19.) The numbers
0 and 1 on the vertical arrows in Figure 20 are the coefficients of K2K2 in the
Magnus expansion of certain words as follows.

0 = coefficient of KXK2 in the expansion of 1, a„ and a2,

1 = coefficient of KXK2 in the expansion of a2a2, a\a2ax~',

axa2ax~2 and [a2, a2].
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Proof of Lemma 2. The cochains a and v are constructed by first drawing their
pictures and then describing a procedure for giving X a special cell structure with
cochains whose pictures are the given ones. Properties 1-5 are then proved by
applying Rules I and II to the pictures.

The first step is to give an explicit description of the cell complex
X(ax, . . . , ay : (Wx}XeA). The one-skeleton is a wedge of /-oriented circles,
C\ V c2 V • • • Viy, one circle for each generator a. The attaching maps of the
2-cells are described as follows. For each X e A write

Wx = «£,...,<*£   withe,. = ±1,

WKr = a?e;, . . . , a¿    for 1 < r < s.

Consider the 2-cell, Ex, corresponding to the relator, Wx, as the quotient of the
rectangle [0, s] X [-1,/» + 2] by the relations (0,y) = (s,y) for all>> in [-l,/> + 2]
and (x,p + 2) = (x',p + 2) for x and x' in [0, s]. For each j,j = 1, 2, . .., J,
choose an orientation-preserving homeomorphism, fp from the unit circle in the
complex plane to the circle c,. The attaching map, gx, of the boundary of Ex to
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cx V c2 V • • • V<V is given by the formula
gA(x, -1) = /Jcos[2tt(x - r + 1)], er sin[2ir(x - r + 1)])

for x in the closed interval [r - 1, r].
The next step is to specify the pictures of the cochains a and v. The picture of

axU) intersected with Ex is the triple (the point with coordinates (s,j); the
orientation of FA given by the ordered basis {(1, 0), (0, 1)}; the integer 1). The
picture of axU) intersected with any cell other than Ex is empty.

To describe pictures of the cochains o(y :/,,..., ¡k) choose a number h with
0 < h < 1/2/». The picture of v(j : /,) intersected with the strip [r — 1, r] X [-\,p
+ 2] in the cell 7sA is given in Figure 21a where ar = /¿(/, : WXr_x), cr =
/i(/, : WXr) and ar + br = cr. For Ác > 2 the picture of vU ■ ¡\, ■ ■ ■, 4) intersected
with the same strip is given in Figure 21b where ar = /¿(/,, . . ., lk : WKr_x),
cr = /¿(/„ . . ., lk : WKr) and ar + br = cr.

i

y=3

(r-1,-1) (r-l/2-jhEr,-l) (r,-l)

Figure 21a

i T.
y=]

(r-l/2-jher,j-l)

(r-1,-1) (r,-l)

Figure 21b

In order to describe the restriction of Figure 21a to the wedge of circles
f i v f j v ■ ■ • voinote ^at ior any wor<i w in tne a>

(i) /¿(/ : Wot?) = /¿(/ : IF) if / ¥> I, e = ± 1 and
(ii) fi(l : Wet,') = /¿(/ : W) + e; e = ± 1.
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It follows that the numbers br in Figure 21a for the picture of vU ■ ¡x) satisfy
(iii)

Í0     if qr*lxr  U »*-'i
Hence the picture of v(j : /,) restricted to the circle c, is empty if i =£ /,. The picture
of vU '• l\) restricted to the circle c, consists of the triple (the point /, (cos[2w(| —
jher)], er sin[2w(2L — jher)]); the orientation of c, ; the integer 1). The picture of
©0' : 4> • • • » he) restricted to the wedge of circles c, V c2 V • • ■ Vcy is empty for
k> 2.

The next step is to show that there is a subdivision of X(ax,. . . , ay : { WX}X^A)
which is a special cell structure with cochains a and v whose pictures are the ones
described above. First take a regular subdivision of c, V c2 V • ■ " VÇ/ so that the
points

y¡(cos[27r(i - jh)], sm[2tr{\ - jh)]),        1 < / < J, 1 < j < /»,

are in the interiors of different one-cells. Next, take a small cube around each of
the points (r — \ — jher,j — 1) and (r — ^ — jher,j) that occurs in Figure 21b, and
the points (s,j) used in defining the picture of aA(y). Draw the cubes with edges
parallel to the x and y axes. Take the cubes small enough so that the cubes are
disjoint and do not intersect c, V c2 V ' ' ■ VÇ/- Now order the vertices so
condition (ii) in the definition of special cell structure is satisfied. Complete the cell
structure by adding 2-simplices without subdividing any of the 1-cells already
described. Extend the ordering of the vertices to get a special cell structrue. Add
the 2-simplices so that each cell in the special cell structure is transverse to each of
the pictures in Figures 21a and 21b. Then each picture of an /-cochain restricted to
an /-cell of the special cell structure consists of an orientation of the cell and an
integer. Each of the pictures above thus determines a cochain in the special cell
structure and calculations based on the pictures using Rules I and II are valid.

Properties 1-5 in the statement of Lemma 2 are proved as follows. Property 1
follows directly from the definition of aA(_/) and the rule for recovering a cochain
from its picture. Property 2 follows since the picture of u(y : /,) restricted to c,
consists of the triple (a point on c, ; the orientation of c¡ ; the integer 1) and the
picture of vU '■ l\) restricted to c, is empty for / ¥= lx. Property 3 follows from Rule I
(recall that ar + br = cr in Figure 21a). Property 4 holds since the picture of
vU '■ l\> ■ • •. 4) does not intersect the picture of u(/ :/,,..., ik) ifj </ — 1 and
Ac' > 2. This leaves Property 5. From Rule II and the definition of the cochains v, it
follows that the picture of vU — 1 : ¡v ■ ■ • , ¡k)vU '• 4+i) restricted to the 2-cell,
Ex, is the collection of triples (the point (r — \ — jher,j — 1); the orientation of FA;
the number dr) where 1 < r < s and the integers dr satisfy

d =
0    if «.*&+!
/¿(/„ . . ., lk : WXr_x)   if qr = 4+, and er = 1
-/¿(/„ . . . , lk : WKr)   if qr = lk+x and er = -1
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dr = 0 when qr¥=lk+x since the number br in Figure 21a for vU '• 4+i) *s 0- If
ir = 4+1'lnen tne formula for a"r follows from Figures 22a and 22b.

*(*k+l!WX,r-l> "^k+l'Vr»        /<i:*k+l>
y=j

y=j-l.

t

^l-V»»,:-!1

t

■+ f..

X_ f
■pU1.-*k!Wx,r>

(r-l/2-(j-l)h,j-2)

(r-1,-1) (r,-l)

<3r=£k+l'Er=1

Figure 22a

y-j ^k+rVr-l*
^(tk+l!W»,r»        v<^*k+l>

•f
y=3 M

"V'W,:-!1     •i(*l-£ksWX,r)

(r-l/2+(j-l)h,j-2)

i

v(j-l:41...£k)

<

~-l

(r-1,-1) (r-l/2+jh,-l) (r,-l)

«ïr=tk+l'er—X

Figure 22b
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On the other hand, 8vU : 4, •• •, 4+i) ~ 2AEEA /¿(/„ . . ., 4+1 : Wx)axU) re-
stricted to the 2-cell Ex is the collection of triples (the point (r — \ — jher,j — 1);
the opposite orientation of FA; the integer br), where 1 < r < s and br is the
number given in Figure 21b. Thus it suffices to show that dr — br for 1 < r < s.
This is done using the following properties of coefficients in the Magnus expansion.
For any two words W0, Wx, in the generators a:

/¿(/,...,4+1: W0WX) = ,1(1,, . . ., lk+x : W0)

+ 2  H(i»...,h- WQ)fi(li+x,...,lk+x: Wx)
1=1

+ /¿(4,...,4+, :WX).
Hence:

(a) /¿(/„ . . ., 4 + , : Wa,') = M(4, • • •, 4+i : W) if i + lk+l, « - ± 1;
(b) /¿(4, ..., 4+, : WalkJ = /¿(4> • • -, 4+i ■: W) + /¿(/„ . . ., 4 : IF); and
(c) m(4.4+i : »¡O = K4> • • •, 4+. : w) - K4, • • •. 4 : »*0

To prove (c) set lk+x = I and write (/„ . . ., 4+i) as

/„..., lp /,...,_/

with / > 1 and £ =^ /. The expansion of a,~l is  1 - K, + Kf + ■ ■ ■ +(-!)%'
+ . . . so

/¿(/„ . . . , /,, h. ..,_/ : If«,"1) = ft(/„ .... If, /,.-,;_/ : w)

-m(/„-..,/j, /^.J: W)

+ • • • + (-l)'/¿(/„ ...,/,: IT).
Similarly

/¿(/„ . . ., lj,h...J : UV') = m(4. ■ • •. ¡j, I, ;■_■ d : ̂ )

-/¿(/„ ...,/,, A--- J:If)
v (-2 '

+ ••• + (-l)^V(/i. •. •-, h : W).
Adding these two equalities yields property (c) in the form

/¿(/„ . . ., 4+i : Wa^\) + /¿(/„ . . ., 4 : Wa¿)  = tff„ . . . , lk+x : W).

From the definition of the cochains vU '• 4> ■ ■ ■ > 4+i) li follows that

b, = cr - ar = /¿(/„ . . . , 4+, : PFV) - /¿(/„ . . ., lk+x : WXr_x).

Since

wx,r = wKr_x «;;,   z»r = /¿(4, • • •. 4+. : Wx,r-1«;;) - /¿(/„..., 4+, : wKr_x),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



64 RICHARD PORTER

formulas (a), (b) and (c) imply

0 if <7r* 4+1
b, = ■ m(4> • • • , 4 : ^v-i)    if 9r = 4+, and er = 1

-/¿(/„ . . . , 4 : WAr)      if ar = 4+, and er = -1

Hence br = a", for 1 < r < s and this completes the proof of Lemma 2.
Lemma 2 can be used to calculate cup products and Massey products as follows.

Suppose for simplicity that each relator, Wx, is in the commutator subgroup of the
free group generated by the a. The Magnus expansion of each relator then has the
form 1 + (terms of order > 2), [12]. The generators, a, determine a basis for 77,
and the relators determine a basis for 772. From Properties 2 and 3 it follows that
for fixed y the cochains v(j :/),/= 1,2, ... ,J are cocycles which give the basis
for 77 ' which is dual to the basis for 77, determined by the a and, from Property 1,
it follows that for fixed y the collection, aA(y), À G A, of 2-cocycles determines the
basis for 772 which is dual to the basis for 772 determined by the relators. Cup
products can now be evaluated using Property 5. For / = 1, 2, . . ., J, set u¡ equal
to the element in 77 ' represented by the cocycle vU '■ *)• The cup product u¡ u «,2
is represented by v(j — 1 : lx)v(j : 4) and from Property 5 it follows that u, u,
evaluated on the homology class determined by the relator Wx is the coefficient of
K¡ K¡ in the Magnus expansion of Wx.

Set TV equal to the greatest common divisor of the numbers /¿(/,, l2 : Wx). Then
all cup products of elements in 77 '(A' : ZN) are zero. Hence, with coefficients ZN,
all triple products <«,,«,,«,> are defined and contain a single element. A defining
system for the triple product (u^, u,2, m,3> is given by setting m¡¡ equal to the mod TV
reduction of v(i : /,) for / = 1, 2, 3 and by setting mii+x equal to the mod TV
reduction of -t>(/+ 1 :l¡,li+x) for /= 1,2. Then the mod TV reduction of
-v(2 : /,, l2)v(3 : l3) is a cocycle representative of <«,, u,2, u¡ >. Property 5 implies
that <«,, u,2, «,3> evaluated on the homology class determined by the relator, IFA, is
the reduction mod TV of the negative of the coefficient of K,K¡K, in the Magnus
expansion of Wx.

Suppose the following are given: a group presentation (a,, . . ., ay : { Wx}XsA), a
collection {X¡}P_X of subcomplexes of the 2-dimensional complex
X(ax, . . . , ay : {WX}X(EA) determined by the presentation, and for each / =
1,2, ... ,p an element h¡ in Hl(X¡ : R), R a commutative ring with unit. In
general, the Massey product </»,, . . . , hp} in the system {X¡}P_X with coefficients 7?
will not be defined. However, after replacing R with the quotient of 7? by an ideal
(hx, . . . , hp), it is possible to use the cochains of Lemma 2 to construct a defining
system for <A,, . . . , hp) and describe the corresponding element of the product in
terms of the coefficients in the Magnus expansions of the relators Wx.

Theorem 2. Suppose the following are given:

X = X(ax,...,aj:{Wx}XfEA),

the   2-dimensional   CW   complex    determined   by    the   group   presentation
(ax, . . . , aj : {Wx}XeA), a collection {A',}f_,, of subcomplexes of X and for each
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i = 1,2, ... ,p an element h¡ in Hl(X¡ : R). Define the elements I(i,j : X) and the
ideal (hx, . . . ,hp) in R as follows: For 1 < / < j < /» and X the index of a 2-cell in
x¡ n xl+, n • • • nXjset

I(i,j : X) = 2 Ä,(/,), . . ., hj(lj_i+Mlx, ..., lj_i+x : Wx),
where the sum is over all sequences (/,, . . . , /}_,■+,) with 1 < /, < J and h¡(l) denotes
h¡ evaluated on the homology class determined by the generator a,. (h¡(l) is zero if the
circle in X corresponding to a, is not in the subcomplex X¡.) Set (hx, . . . ,hp) equal to
the ideal in R generated by the I(i,j : X) with (i,j) ¥= (\,p). Then the Massey product
<A,, . . . , hp) in the system {X¡}p_x with coefficients R/(hx, . . . ,hp) is defined and
contains the cohomology class given by the homomorphism which is (-Yfl(\,p : X)
when evaluated on the 2-cell of Xx n • • • C\Xp indexed by X.

Proof. For 1 < i < j < p set

mu = (-íy-'S *,(/,), • • •, hj(lj_i+x)v(j :/„..., lj_i+x),
where the sum is taken over all sequences (/„ . . ., ¿_i+l) with 1 < /, < J and
v(j :/,,..., lj-i+x) denotes the cochain u(y :/„..., /}_, + ,) of Lemma 2 re-
stricted to the subcomplex X¡ n ■ ■ ■ C\Xj. It will be shown that {m,,} with
('. j) * (!>/>) is a defining system for <A,, . . . , hp} with coefficients
R/(hx, . . ., hp). The cochains m¡j satisfy:

1. 8miti = 2A I(i, i : X)ax(i) for / = 1, 2, ...,/» in C\X¡ : R).
2. With coefficients R/(hx, . . . , h), mit is a cocycle representative of h¡.
3. m(i,j)m(k, k') = 0ifj<k< k'.
4. 8m(i,j) = m(i,j - \)m(j, j) + (-iy-'2A I(i, j : X)ax(j) in C2(X.

n • • • C\Xj : R). The sum is over all X which index a 2-cell oí Xt \~\ • • • n Xj.
From the definition of the mtJ it follows that m,, = 2^=, h¡(l)v(i : I). Property 3

of Lemma 2 implies 8m¡¡ = 2,_, 2A h¡(l)¡x(l : Wx)ax(i). The sum is over all X
which indexed a 2-cell of X¡. Applying the definition of 7(/,y : X) yields 1 above.

From 1 and the definition of the ideal (hx, .. . ,hp) it follows that with
coefficients R/(hx, . . . , hp) each of the w,, is a cocycle. Property 2 of Lemma 2
and the definition of m¡¡ imply that w,, and h¡ are the same when evaluated on any
of the oriented 1-cells in X¡. Hence m¡¡ is a cocycle representative of h¡.

Property 3 above follows directly from Property 4 of Lemma 2. From the
definition of m(i,j) it follows that

8m(ij) = (-iy-'S Mh), • • • - Wh-,+x)to(j ■ /„ • • •, ,-,+,)•
Property 5 of Lemma 2 implies

8m(i,j) = (-I/"'£   2 A,(4), .'•.. hj(lj_i+Mlx, ..., lj_i+x : Wx)ax(j)
A

+ (-iy-/+1S a,(4)>• • •,M-i+iW/-1:A.....ij-MJ■ ij-,+0,
where the sum over X is the sum over all X which index a 2-cell of X¡ r\ ■ • • n Xp
and the other sum is over all sequences (lx, . . . ,lj_i+x) with !</,</. From the
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definition of m(i,j) it follows that
m(i,j - l)m(j,j)

= (-iy"'2 *M). • • •, hj(lj_i+x)v(j - 1 :/„..., lj_x)v(j : /,_,+,).
Hence

8m(i,j) = w(/,y - \)m(j,j)

+ (-iy~'2   2 WÙ, ■ • ■, *,(',-,+lV(4, . . ., /,_, + , : Wx)ax(j).

The definition of I(i,j : X) implies

8m(i,j) = m(i,j - l)m(j,j) + (-lV-'2 I(i,j : X)ax(j).

Properties 1-4 above imply that with coefficients R/(hx, . . . ,hp) the collection
{ny,}, 1 < / < j < p, (i,j) ¥= (1,/»), is a defining system for the Massey product,
<A,,. . . , hp), in the system {X¡}P_X. Property 4 above with (i,j) = (\,p) implies
that the corresponding element of </i„ . . ., hp) is represented by the cocycle

(-1)"2 HhP ■■ Vax(p)   in C2(XX n • • • nXp : R/(hx, ..., hp)).
A

For polygonal (or smooth) links, Lemma 3, below, follows directly from Theo-
rem 1. For arbitrary (i.e., wild) links, the proof is more complicated and will be
omitted. This is the only point in the proof of Theorem 3 where it is assumed that
the link is polygonal.

Lemma 3. Given L, a polygonal N-link in S3, q, an integer > 3, and a„ . . ., aN,
meridians in Fx/Fq, then there are words wx, . . . ,wN in the a which represent
parallels to L, a presentation

P = (a„ . . . , aN, aN+„ . . . , ay : [w„ al\a¡ = 1 for i = 1,2, ... ,N)

and a map f: Y(P) —> S3 — L (where Y(P) denotes the complex determined by the
presentation) so that the presentation, P, and the map fsatisfy:

1. Each of the words ax, . . . ,aN represents an element in the qth lower central
series subgroup of the free group on a,, . . ., ay,

2. f restricted to the circle in Y(P) corresponding to the generator a¡, i = 1, . . . , TV
is the closed loop a,;

3.f*(y¡j) evaluated on the homology class determined by the relator [w¡, a¡]a¡ is

-1       ifj=i^k
-  +1     ifj^i= k k

0 otherwise
where yJk denotes the element of H2(S3 — L) Lefschetz dual to a path from Lj to Lk.

Properties 1 and 2 are a direct consequence of the statement of Theorem 1
(which is Theorem 4 in [18]). From the proof of Theorem 1 for a polygonal link, it
follows that ity+„ . . . , ay can be taken to be meridians and the image of the 2-cell
corresponding to the relator [w„ a,]a, can be assumed to be homologous to a torus
that separates L, from the other components of the link which implies Property 3.
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Lemma 4 is a special case of Proposition 2.4 in [14].

Lemma 4 (May). Assume a collection of subspaces, {Y¡}p_x, of a space Y, and a
collection of cohomology classes h,: G H1(Yi, : R), / = 1, . . .,/», have been given.
Assume further that with coefficient ring R, each of the following products in the
specified system consists only of the zero element.

1. <A„ . . ., hj) in { ¥„ Yi+X, . . ., Yj)for K j -/</»- 2.
2. <A„ . . . , hk_x, h, hk + 2, . . . , hp} in { Yx, . . . , Yk_x, Yk n Yk+X,

**+2> • • • > Tp} for k = 1, 2, ...,(/> — 1), and h any element of H\Yk n
Yk+X:R).

Then the product <A„ . . ., hp) in the system { Y¡}P_X with coefficients R is defined
and contains only one element.

Proof of Theorem 3. Let L be an TV-link in S3. Let a¡, / = 1, . . ., TV, be
meridians in Fx/Fq. Choose words wx, . . . , wN in a,, . . ., aN representing parallels
to L in Fx/Fq, choose a presentation

F = (a„ . . . , aN, . . . , ay : [w¡, a^q, i = 1, 2, . . . , TV)

and a map / of the complex Y, determined by the presentation P into S3 — L
satisfying Properties 1, 2, and 3 of Lemma 3. For any coefficient ring 7?, the map
/*: H2(S3 — L) -» H2(Y) is a monomorphism by Property 3 of Lemma 3. So
information about Massey products in S3 — L can be obtained by calculating
Massey products in Y. By adding 2-cells to Y it is possible to construct a collection
of subcomplexes X¡, i = 1, . . . , TV of a complex X, so that Massey products in a
system {S3 - L,}Pm,x can be calculated by evaluating Massey products in the
system {X,}p_x. Specifically: set X equal to the complex determined by the
presentation

(a„ ..., aN,..., m.j : [w¡, al\a¡ = 1, a¡ = 1, i = 1, 2, . . . , TV),

and for / = 1, . . . , TV, set X¡ equal to the subcomplex of X obtained by deleting the
relator a¡ from the presentation. Note that Xx n • • • n XN is the complex Y of
Lemma 3. Clearly the map /: y-> S3 — L extends to a map /: X —* S3 with
f(X¡) G S3 - L¡ for i = 1, . . . , TV. From the naturality of Massey products it
follows that if the product (u,t,..., fa,> in the system {S3 — L,}P_X is defined,
then the product </*(«/,), . . . ,/*("/)> in {X,}Pm.x is defined and contains

/*««,,, . . ., «t».
The relators [w¡, a¡]a¡ give a basis for H2(X). Set r„ / = 1, . . . , TV equal to the

dual basis for H2(X). If A' is a subcomplex of X which contains Xx n • • • ("IXN,
then the inclusion of X into X induces an isomorphism on 772. By abuse of
notation, the restriction of r, to such a complex will also be denoted by r,..

The proof of Theorem 3 is completed by verifying the following statements.
1. f*(y¡j) = Tj — r, in H2(X¡ n Xj) where / is viewed as a map of X¡ n Xj to

S3 — (L¡ \J Ly). Hence for any nonempty subset D of (1, 2, . . ., TV} and any
coefficient ring 7?, the map
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/*772(n(S3-L,):JR)^772(n   X, : R )
\i<ED I V/eD /

is a monomorphism.
Let (lx, . . ., lp) be a. sequence of integers with 1 < /, < TV and/» < a where a is

the integer occurring in the statement of Lemma 3. Then,
2. The Massey product </*(«/,),...,/*(«;)> in the system {X,}P_X with

coefficients ZA(/i       ,> is defined and contains the single element

(-ir[r7(4>...,//,)r^-/i(/2,...,4,4K]-
3. The Massey product <«,_, . . . , u, > in the system {S3 — L¡}pm,x with

coefficients ZA(/i       , > is defined and contains only one element.
Statements 1, 2, and 3 above, together with the naturality of Massey products,

imply that /¿(/,, . . . , lp) = /7(/2, . . . ,lp, /,) and that the product (w^, . . ., u, > in
the system {S3 — L¡i}P_x with coefficients ZA(/) ,j is defined and contains the
single element

(~\f¡i(lx,...,lp)y^.
Statement 1 follows from Lemma 3, so the proof is completed by proving

Statements 2 and 3 above. The first step in the proof of Statement 2 is to use
Theorem 2 to show that <.f*(u,), ..., f*(ufi) in {X¡¡}P_X with coefficients
ZA(/     . / ) is defined and contains the element

(-\y[ß(lx,...,lp)rlp-ß(l2,...,lp,lx)r,i}.

Set (f*(u¡t), . . . ,f*(u,)) equal to the greatest common divisor of the numbers
I(U j '• A) with 1 < i < j < p, (i,j) ¥= (\,p) and Wx a relator corresponding to a
2-cell in X, n • • • D X,, where

i{i,j ■ a) = 2/*(«()(<4), • • • ./*ty-X4-<+i)fi(4. ■ • •. 4-i+i: *&
The sum is over all sequences (dx, . . ., a}_i+1) with 1 < d, <J. It will be shown
that A(/„ ...,lp) divides (/*(M/,), . . . ,/*(t^)).

First note that the summand

f*(Ul)(dx),... ,f*{*%M-**M<ii, • • ■. 4-+1: wk)
is zero if H\ is one of the relators a,. Thus (/*(«,,)./*("i,)) 's t'ie greatest
common divisor of the numbers 7(/,y : [wk, ak]ak). ak is in the ath lower central
series subgroup of the free group generated by a,, ..., aN, . . ., ay. So the Magnus
expansion of ak has the form 1 + (terms of order > a) (see [12]). Thus

H(dx, . . . , dj_i+x : [wk, ak]ak) = /¿(a1,, . . ., a}_,.+ , : [wk, ak])

since/» < a.
So

¡(tj ■ [W/t, <xk]ak)

- 2 /*("a)W, • • • >/*(«t)(4-.+i)K^.. • • •«4-+i: ["fc. «*])-
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where the sum is over all sequences (dx, . . . ,dj_i+x) with 1 < dt < TV. For 1 < d,
< N,f*(u,)(d) equals u, evaluated on the homology class, ft(ad), which is the same
as the linking number of L, and ad. ad is a meridian to the ath component of L.
Hence f*(u,)(d) = linking # of L, and

i-f1     Úd=li   )■
[ 0    otherwise J

So I(i,j : [wk, ak]ak) = /¿(/,., ...,/,: [wk, ak]) and (/*(«,,), . . . .A^)) is the great-
est common divisor of the numbers /¿(/,, . . . ,lj : [wk, ak]) where 1 < / < j < />,
(»>/) ^ (1»f) an(* 1 < Ac < TV. Recall that A(/„ . . . ,lp) is the greatest common
divisor of the numbers ¡x(jx, ..., js : w, ) with (/,, . . . ,yi+1) some cyclic permuta-
tion of a proper subsequence of (/,, . . . , lp). To show that A(/,, . . . , lp) divides
(/*(»/,)./"(«/))   it   suffices   to   show   that  /¿(/„ . . . , lj : [wk, ak]) = 0    mod
A(/„ .'..,/„).

First note that if /, = li+x = • • • = lp then /¿(/„ ...,/}: [h^, aj) = 0 since
[h>¿, a¿] is a commutator. It will be assumed that not all of the /r's are the same,
/ < t < j. /¿(/„ . . . , lj : [wk, ak]) is the sum

2 M(4 • • • - '/+/>,-i : »*)/*('/+,,. •'• • • A+^-i : «*)
X K'i+w • • ■ ' 4+*-i : ♦•'/f'MW • • • ' 'i+*,-l : a*~')

where the sum is over all (px,p2,p3,p4) with 0 < /», < p2 < p3 < /»4 =y — / + 1.
If for some s,ps=ps+x, then the sequence 7/+A, . . ., //+A+1_, is empty and
Kh+p, •«•> ^+/> + -i : *f) is to be replaced by 1 for all words W. If p2 —/>, > 2,
then /¿(^+i,, . . . , li+p _, : afc) = 0 since the expansion of ak is 1 + 7£¿. The sum
over (Pi,p2,p3,p4) with/»2 = />, is the coefficient of K¡, . . . , K, in the expansion of
wkwklakx = %_1 but ¡i(l¡, . . . , lj : ak_1) = 0 from the assumption that the /,'s are
not all the same. Hence /¿(/,, . . . ,lj : [wk, ak]) is the sum

2 M(4 • • • > /,+,,-! : wk)n(li+t¡ : ak)

X f*U+i,+i, • • •, li+h-i ■ *k OfU+y • ■ • » 4+*-i : «*"')•
The sum over all (/,, t2, t3) with 0 < r, < t2 < t3, = j — i + 1. If £+<, ̂  *» then
/¿(/, + ,  : a¿) = 0. So it can be assumed that li+l> = Ac.

If the sequence (/,,..., /,+/ _,) is nonempty, then the corresponding summand
contains the factor p(l¡, . . . , l¡+, x : w¡¡+¡). In this case (/„ . . ., //+,) is a proper
subsequence of (/,, . . . , lp) so /¿(/,, . . . , lt+t ¡ : w, ) equals zero mod
A(/,, . . . , lp). Hence we can assume ?, = 0. If the sequence (//+„ . . . , /,+,2_,) is
nonempty, the corresponding summand contains the factor
[i(li+x, ■ ■ ■ , /,+, _, : w,"1). The definition of A(/,, . . . , lp) implies that
mO'i. ■ ■ ■ ,Js '■ wi) = ° mod A(4> • • • . lp) for everv subsequence (jx, . . . ,js) of
(4+1, . . . , /,+/2-i)- Hence /¿(/„ . . . ,js : w,~l) = 0 mod A(/„ . . ., ¡p) for every sub-
sequence 0„ . . . ,js) of (//+„ . . ., /,+,2_,). In particular, /¿(/,+„ . . . , /(+,2_, : m^1)
= 0 mod A(/,,. . . , lp). Hence
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/¿(/,., ...,lj-.[wk, ak]) = /¿(/; : ak)n(li+x, . . . , lj : ak ')

mod A(/„ . . . , /,) = 0,
since not all of the //s, / < t < j, are the same. This completes the argument that
A(/„ . . . , lp) divides (/*("/,), - • - , /*("/,))• Since A(/„ . . . , lp) divides
(/*("/,)> • ■ • »/*(«/)) it follows from Theorem 2 that the Massey product
(f*(u,\ ■ ■ ■ ,/*(«;)) in the system {A',.}?., with coefficients Z^ ,> is defined
and contains the element

N

2 {-\fH},P : [w*. <*k]ak)rk-
k~i

The arguments used to show that A(/,, . . . , lp) divides (f*(u,\ . . . ,/*(«,)) imply
that

7(1,/» : [wk, ak]ak) = /¿(/„ . . . , lp : [wk, ak])

= /¿(/„ .. . ,L,_i : wk)n(lp : ak)

+ /¿(/, : ak)n(l2, ...,lp:wkl)    mod A(/„ . . . , lp).

Equivalently

>(/„ ..., /,_, : w¿   if/,**-/,
-/¿(/2, ...,lp:w,)   if /, = Ac =£ lp

/¿(/„ . . . , 4_, : wt) - /¿(/2, . . . , 4 /, : w,t)    if /, = k = 4
0   otherwise

7(1,/» : [w*, a*]) = •

So

2 (-iy/(l,F:[>v„a,]%K
k~ 1

= (-iy[r¿(4,...,4)rt-/¿(/2,...,4,4)r/i].
This completes the argument that </*(«/,), • • •, /*("/,)> is defined with coefficients
ZA(/„...,4.) and contains (-iy[/7(/„ . . ., L)^ - /7(/„ ... , lp, lx)r,l

This same reasoning shows that 0 is an element of each of the products
</*(«,), . . .,/*(«,)> in the systems {A^, . . . , Xfi with coefficients ZA(/)> ») and

j — i <p — 2. Similarly 0 is an element of each of the products of the form

</*(«<), . . . ,/*(«,,_,), A,/*KJ, • • • ,/*(",,)>
in the systems

{xh,.. .,xk_|fA^ n A,t+i,^4+2.A^ }

with coefficients ZA(/i       y and 1 < / <y" < /» (including / = l.y = />), any element
of77'(X4nx/t+i).

Lemma 4 together with an inductive argument on the order of the product
implies that 0 is the only element in each of the products above. This means that
the hypotheses of Lemma 4 are satisfied for the product </*(",,),. . . ,/*(«/)>•
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Hence   (-iy[/Z(/„ . . . , lp)r,   - fi(l2, . . . , lp, lx)r,]   is   the   only   element   of
(.f*(.ui), • • ■ > /*(«/)) an<i the proof of Statement 2 is complete.

Statement 1, naturality of Massey products and the fact that the hypotheses of
Lemma 4 are satisfied for </*(k/i), . . . ,/*(«/)>, imply that the hypotheses of
Lemma 4 are also satisfied for the product (u,t, . . ., u, > in the system {S3 —
L,)P_X. This proves Statement 3, and completes the proof of Theorem 3.
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