
MILP Based Task Mapping for Heterogeneous Multiprocessor Systems

Armin Bender

Faculty for Mathematics and Computer Science (Prof. Dr. W. Grass)
University of Passau, D-94030 Passau, Germany

e-mail: bender@fmi.uni-passau.de

Abstract

CAD-systems supporting hardware/software codesign
map different tasks of an algorithm onto processors. Some
of the processors are programmable and others are appli-
cation specific. We propose a new MILP (mixed integer
linear program) model that allows to determine a
mapping optimizing a trade off function between execution
time, processor and communication cost. The mapping
also guarantees that all specified execution deadlines are
met. We demonstrate the efficiency with practical
examples.

1. Introduction

The purpose of this paper is to present a new mapping
approach to find optimal designs of real-time systems
composed of hardware and software components for
implementing a given algorithm. The result of such a
codesign is an application specific real-time system, which
is composed of standard processors (e.g. microprocessor,
signal processor) and several application specific proces-
sors (ASICs). The hardware and software components are
designed in such a way that no timing constraints are
violated by performing the algorithm on the real-time
system determined for this algorithm. The partitioning of
the algorithm into tasks executable on components is per-
formed in a preprocessing step.

A good mapping of tasks (allocation and scheduling)
into hardware and software implementations depends on
many factors like performance, timing constraints, hard-
ware cost, etc. It is desirable to have a mapping approach
that optimizes a function depending on such factors [1].
For some tasks it is obvious which task has to be imple-
mented in hardware and which one in software. For exam-
ple, a high speed packet manipulation should be imple-
mented in hardware while recursive searching is always
implemented in software. However, there are tasks, which
may be implemented either in hardware or in software or
should be further splitted into subtasks.

The hardware/software codesign process consists of
several steps that are run through iteratively until the
design goals are met. First of all, the algorithm has to be
specified using a formal language [2, 3]. In a second step
the algorithm is partitioned into tasks that are possibly
processed on different processors. Now, the set of
available processors of the generic multiprocessor target
architecture has to be defined. The time for executing a
task on an ASIC can be guessed by synthesizing the task
using a high level synthesis system [4, 5]. For each other
task one has to determine the execution time for at least

one processor. The result is an annotated task-graph where
each task node may have assigned several execution times
for running the task on different processors. For each pair
of tasks that communicate, an edge is introduced annotated
with the communication time. We restrict our approach to
those applications the processing time is independent on
the values that are processed. We also assume that the
amount of data to be communicated between the different
tasks has been determined. Although the restrictions seem
to be hard there are many signal and image processing
applications we can cope with. The result of the mapping
procedure is the decision which task runs on which
processor(s) at which time.

We can classify the different approaches for hardware
/software codesign as software and hardware oriented. In
the software oriented approaches specifications are given
in a programming language, like C, and the tasks are nor-
mally implemented on programmable processors. Only
those tasks that do not meet real-time constraints are map-
ped onto hardware processors [6, 7]. For these applications
one needs a high level synthesis system starting from C
like algorithms to support the design process. Hardware
oriented approaches normally take VHDL as a speci-
fication language and implement most tasks in hardware.
Tasks that are not on the critical path may now be selected
for a software implementation [8, 9, 10, 11].

As in all codesign proposals we only consider mappings
onto a set containing one standard processor and some
additional dedicated processors. The design decision is
therefore restricted to hardware or software implementa-
tion. For cost reasons it seems to be better to allow also
different types and several instances of standard proces-
sors. Universal microprocessors, signal processors and
transputers are examples for the types we have in mind.
We therefore consider a loosely coupled heterogeneous
multiprocessor system as target architecture with global
and local memories.

The focus of this paper is on modeling the task mapping
problem as a MILP (mixed integer linear program)
allowing the use of standard tools for solving it. The paper
is organized as follows. In section 2, we give a more detai-
led description of the problem addressed in this paper. In
section 3 we introduce the formal model described as
MILP. The MILP is solved with a standard software tool.
In section 4 we show the practicability of our mapping ap-
proach by applying it on several typical signal and image
processing algorithms. A more powerful model based on
the model presented her cannot be presented in this paper
because of the limited space. In this extension we can also
optimize the latency between two successive runs of the
algorithm for overlapped executions (pipelining) [12].

EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

ASIC

...

ASIC

global
memory

bus system ...

micro-
processor

signal
processor

transputer

...

...

local
memory

Fig. 1: Target architecture

with
(extended model)

without
(basic model)

MILP model

multiple compuation of tasks

Constraint
library

modifying the
constraint library

No

violated
time

condition?

Yes

™CPLEX

Result

 heuristic prepro-
cessing procedure

Fig. 2: Mapping approach

2. Mapping Approach - Overview

In this paper we consider a task-graph as a high level
specification no matter what kind of implementation is
intended for the different tasks. The mapping of tasks to
processors under real-time conditions is a well known dis-
cipline in real time processing [13]. Our approach is
restricted to those applications where the execution time of
an algorithm is constant, that means it is also independent
of specific input values. Many signal and image pro-
cessing algorithms have this property. We can therefore
statically allocate and schedule the tasks and there is no
need to interrupt any task. Clearly, this makes things much
simpler and allows the use of a mapping procedure
resulting in an application specific real-time system with
optimal allocation and schedule of the tasks.

The generic target architecture of this system is shown
in Fig. 1. Normally it consists of one general purpose
standard processor (e.g. microprocessor), different applica-
tion specific components (ASICs) and application oriented
standard processors (e.g. signal processors). In this paper
we denote all these working units as processors. We as-
sume that each processor has its own local memory and
only one task can be executed at a time by one processor.
Tasks on different processors can be executed in parallel.
An execution of a task on a processor cannot be inter-
rupted. Additionally we model a global memory as a pro-
cessor with zero execution time. In this case we only have
to consider the communication time between the memory
and the other processors. We assume a multibus system
for the communication between processors where each bus
has the same transmission rate. For communication each
processor has its own communication processor.

The steps of a task mapping are shown in Fig. 2. The
constraint library contains the annotated task-graph, pro-
cessor and bus costs and timing constraints. The gran-
ularity of the task-graph is crucial for the quality of the re-
sult of applying the mapping procedure. The finer the
granularity is the more parallelism can be exploited. On
the other hand, the complexity of the mapping problem
grows with the number of tasks. The process of splitting
an algorithm into tasks must still be left to a designer who
will normally start with defining each small procedure or
just basic-block as a task. For the whole algorithm and
sometimes for special task-regions we have to regard time
constraints. The determination of execution times for each
task is not easy since the implemented code or hardware
structure has to be optimized by using optimizing compi-

lers for software or
hardware. Clearly, the
process will be started
by using only few
hardware processors
for those tasks that are
assumed time critical.
If the mapping proce-
dure ends up by pre-
senting no acceptable
solution (i.e. some
real-time constraints
are not met) the num-
ber of tasks that are
possibly assigned to

hardware processors is enlarged in an iterative way.
The usual goal is to meet the timing constraints of the

underlying algorithm with respect to factors as mentioned
above. To reach this goal we have introduced two MILP
models (see Fig. 2). The first model [14] is our basic
model for single computation of tasks (each task is per-
formed once on one processor) and the second one is an
extension dealing with multiple computation of tasks (a
task may be performed on several processors to avoid the
need for (time expensive) communications and to exploit
more parallelism). In this paper we describe our second
MILP model with multiple computation of tasks. In
general, the designer can select one of these two MILPs
depending on the task-graph complexity and the given
real-time conditions. MILPs are automatically generated
from the constraint library. For solving the MILP we use
the standard software tool CPLEX™ [15]. For large map-
ping problems we have developed a heuristic for prepro-
cessing [16]. As a result the domain (range of possible
values) of the variables in the MILP is reduced and there-
fore the complexity of the MILP is decreased.

For practical examples some mapping iterations (see
Fig. 2) may be necessary in order to meet the timing con-
straints. In each iteration step we have two choices. First,
we can introduce more resources in our constraint library.
Then we update the nodes of the annotated task-graph for
those tasks, which can be executed on additional proces-
sors. Finally, a new MILP is generated with the updated
information. Another choice is to switch to the second
MILP model that supports multiple computations. If the
value of the objective function for the solution of a MILP
with single computation does not satisfy the demands of
the user the solution can be used as a start solution of the
MILP with multiple computations. This may result in a
better value of the objective function. In any case, the start
solution reduces the complexity of the more sophisticated
MILP. If the previous problem was already based on the
model with multiple computations we have only the first
choice. Introducing new resources normally means to im-
plement more and more tasks in hardware. The mapping
procedure succeeds when all tasks from a given task-graph
are mapped onto the processors so that the underlying al-
gorithm does not violate any time conditions. Tasks, which
are mapped on the microprocessor are called "imple-
mented in software". Tasks, which need special hardware
(ASICs or signal processors) are called "implemented in
hardware". In our mapping approach a real-time system is
a composition of units executing tasks either implemented

in hardware or in software. The communication structure
is based on multiple buses.

3. MILP model for multiple computation

We have described our basic model (each task is per-
formed once on one processor) in [14, 17]. In section 3.3
we describe the MILP model that supports multiple com-
putation of tasks. In [18] also a MILP is described but
without multiple computation of tasks. First, we introduce
notations used to formulate the MILP. Second, we explain
how multiple computation can help to meet real-time con-
straints. We illustrate this by means of a small example.

3.1. Notation

Now, a short summary of the abbreviations used in a
MILP-formulation is given. N represents the number of
tasks, M + 1 the number of available processors, and L
the number of available buses. With processor P0 we indi-
cate the universal microprocessor.

 T set of tasks T = { }T TN1, ...,
 B set of buses B = { }B BL1, ...,
 P set of processors P = { }P PM0 , ...,
G directed acyclic task-graph.

G ,= ()V E where

each vertex i ∈V represents one task Ti ; a direc-
ted arc i j,() ∈E from task Ti to Tj represents a
precedence constraint between these tasks. For all

 i j,() ∈E it holds i j< .
ρ T() set of all processors able to execute task T ∈T
RE i() set of all vertices reachable from vertex i ∈V in

the given task-graph G

 p3 order relation with:

 i j i j, , ,() ′ ′() ∈E and m m, P′ ∈ :

i m j i m j m m
m m i i m m i i j j
, , , ,() ′ ′ ′() ⇔ < ′() ∨

= ′() ∧ < ′()() ∨ = ′() ∧ = ′() ∧ < ′()()
p3

i m j, ,() represents a communication between task Ti
and task Tj were data is sent to processor Pm , which is the
processor Tj is allocated on. RE i() represents the set of
tasks data dependent from task Ti . Nodes i with RE i()
= { } are leaf nodes of the task-graph. The corresponding
tasks are called leaf tasks. Each task T ∈T can be execu-
ted on at least one processor, i.e. ρ T() ≠ { } . A MILP for-
mulation needs the definition of variables and constraints.

Variables used in the MILP formulation:

d
T P

mi
i m= 

1
0

task is executed on processor
otherwise

y
T T

Pmij

i j

m=





1

0

task starts execution before task ;
both tasks are allocated on processor
otherwise

h
B T

P T
limj

l i
m j=






1

0

on bus data produced by task are
sent to processor for executing task
otherwise

x

P T
T

ki

k i

j= () ∈






1

0

the processor that executes the task
providing data for any task with i, j the
two tasks are allocated on different processors
otherwise

E;

w
i m j

i m jimj i m j() ′ ′ ′() =
()

′ ′ ′()





1

0

the communication , starts
before communication ,
otherwise

,
,

smi start time of task Ti on processor Pm
bimj start time of communication between task Ti and

Tj ; task Tj is allocated on processor Pm
Variables d are only introduced for tasks T ∈T which

can be performed on the processor P ∈P . For P Tm i∉ ()ρ
we introduce no variable.

Constants used in the MILP formulation (given in the
constraint library):

tmi execution time of task Ti on processor Pm
cij communication time for sending data computed by

Ti to Tj ; it holds i j,() ∈E
A communication time is only considered when the two

tasks are allocated on different processors. cij is indepen-
dent of the actual bus allocation because each bus has the
same transmission rate. Therefore, the communication
time only depends on the tasks. In this manner, we can ob-
serve the amount of data to be transferred but we cannot
model the kind of the transfer, which may be processor de-
pendent (e.g. protocol type). For communication each pro-
cessor has its own communication processor.

3.2. Motivation for multiple computation

In our basic model [14] multiple computation of tasks
cannot be modeled since the constraints only allow to allo-
cate a task on one processor at one time. Multiple compu-
tation means that a task may be performed on several pro-
cessors in order to save communication overhead and to
exploit more parallelism. In this manner we sometimes can
meet real-time requirements, which cannot be met by just
allowing single computation without introducing additio-
nal processors in our constraint library.

Example:

In Fig. 3b) we present a valid mapping of the tasks
T T Ti j j, , ′ on processors P Pk m, without multiple computa-
tion and in c) with multiple computation for the underlying
task-graph (see Fig. 3a).

Tj

Ti Tj´Pk

Pm Ti

processor

time
(*)

c)b)

Fig. 3: Advantage of multiple computation

Tj´

Tj

Pk

Pm

processor

time

tki

cij

Ti

Ti

Tj Tj´

a) task-graph

In Fig. 3b) let P Pk m, ∈P with P Pk m≠ and the tasks
T Ti j, ′ are mapped on processor Pk and task Tj on pro-
cessor Pm . Although t tmi ki> may hold, if task Ti is addi-
tionally mapped on processor Pm (Fig. 3c) and is fulfilled

s s t cmj ki ki ij− +() <

()*

1 244 344

then the multiple computation of task Ti is better be-
cause the resulting execution time of the real-time system
is reduced. u

If Ti is allocated on processor Pk a start time ski is de-
termined. Ti can only be allocated once on processor Pk .
Since we are dealing with multiple computation, Ti can be
allocated on several processors P Tk i∈ ()ρ . We therefore
may have n instances of Ti executed on n processors. For
data dependent tasks T Ti j→() we have to observe that
for each instance of Tj at least one instance of Ti must
have finished before the instance of Ti can start in order to
provide data for Tj . Furthermore, we have to observe
communication time if no Ti is allocated on the processor
Tj is allocated on.

With respect to the quality of a solution of a task map-
ping problem with time constraints an approach supporting
multiple computation is superior to the basic model. On
the other hand, the number of variables and therefore the
complexity for the MILP for the extended model is much
higher than for the basic model. Therefore, it is useful to
solve at first the MILP without multiple computation (see
Fig. 2). If there are some time restrictions violated in the
solution we have two ways to proceed. If we can change
our constraint library by including faster processors then
we can update the annotated task-graph as described above
and then we generate with these new information another
MILP for the basic model. Alternatively, we formulate a
modified MILP supporting multiple computation based on
information of the MILP solution already computed. One
modification e.g. is a reduction of the domain of variables.
Another advantage is that the generated optimal solution
for the basic model can be used as an initial solution for
the extended model. In this way the computation time of
the modified MILP with multiple computation is reduced.

3.3. Model with multiple computation

Now, we formulate the MILP for the model supporting
multiple computation. The solution of a MILP determines
on which hardware unit (allocation) and at which time the
task is started (schedule). Allocation involves the decision
for each task whether it should be implemented in hard-
ware (e.g. on ASICs) or in software (e.g. on microproces-
sor). We want to minimize an objective function depen-
ding on the total execution time (TET), the total processor
costs (TPC), and the total communication costs (TCC).
The weights k1, k2 and k3 of the costs TET, TPC and
TCC have to be tuned by the designer.

Objective function (with: k k k IR1 2 3 0, , ∈ +):

minimize k TET k TPC k TCC1 2 3⋅ + ⋅ + ⋅() (MOF)

subject to objective function constraints, data depen-
dency constraints, and resource conflict constraints:

objective function constraints

The finishing time of each leaf task is less than or equal
to the TET. Constraints for bounding the TET have only to
be introduced for each leaf task (RE i() = { }).

∀ ≤ ≤
∀ ≤ ≤

0
1

m M P
i N T

m
i

processor
 task :

RE i d s t TETmi mi mi() = { } ∧ = ⇒ + ≤1

d s t TETmi mi mi= ⇒ + ≤1 has to be represented by a
linear inequation. Therefore, this condition is translated
into:

s t TET d
dmi mi

mi
m i

+ ≤ + ∞ =
={ if

 if
0

0 1

Instead of ∞ we choose a sufficiently big number C .
The resulting constraint is:

s t TET d Cmi mi mi+ ≤ + −() ⋅1 (MOFC1)

For internal reasons of the MILP solver C should be as
small as possible. The sum s tmi mi+ in (MOFC1) repre-
sents the end time of the execution time of task Ti on pro-
cessor Pm . For each computation of a leaf task we need an
inequation.

The costs for processors and buses are taken from the
constraint library. (MOFC2) models the total processor
costs and (MOFC3) models the total communication costs.

TPC m
m

i N d

M

mi

=
=

∃ ≤ ≤ =

∑ costs of processor
0

1 1:

(MOFC2)

TCC l
l

i j h

L

m

M

limj

=
=

∃()∈ =
=

∑∑ costs of bus
1

1
0

, :E

(MOFC3)

Conditions with existential quantification can be
modeled in the MILP by introducing 0/1 variables. Be-
cause of the limited space the resulting constraints are pre-
sented elsewhere [16].

We now introduce the constraints ensuring that an as-
signment to the variables determine a valid allocation and
schedule of the tasks. We have to observe data dependen-
cies and have to avoid resource conflicts. First, we model
data dependency constraints.

Data dependency constraints

If two tasks Ti and Tj in the task-graph are connected
by an arc i j,() ∈E then the execution of task Ti on pro-
cessor P Tm i∈ ()ρ with execution time tmi has to be fin-
ished before the execution of task Tj can start (modeled
with M1a for execution of Tj on the same processor Pm).
When the tasks are allocated on different processors
P Pk m≠ then we additionally have to observe communica-
tion time cij , i. e. Tj can start cij time units after Ti has
finished (modeled with M1b).
task execution times

∀ ≤ ≤
∀() ∈

∧ ∈ () ∩ ()

0 m M P

i j

P T T P
T T

m

m i j m

i j

 processor
consider all tasks with

 precedence constraint

 processor can execute
 the two tasks and

,

:

E
ρ ρ

⇒ + ≤ + − −() ⋅

+ =

s t s d d C

d d

mi mi mj mi mj

mi mj

(*) (**)

(M1a)

(*) This part of the inequation need only to be
observed if

(**) Therefore, this term is zero if to be observed
and at least C if not to be observed.

124 34 1 2444 3444
2

2.

∀ ≤ ≤ ∀() ∈ ∧ ≠ ∧ ∈ ()
∧ ∈ ()

+ + ≤ + − + −() ⋅⇒
()

0

2

m k M i j k m P T

P T

s t c s d d x C

k i

m j

ki ki ij mj mj mi ki

, ,

:

E ρ
ρ (M1b)

1 24444 34444

The term ***() is zero iff task Ti is allocated on processor
Pk , Ti is not allocated on processor Pm , and processor Pm
receives the computed data for task Tj from processor Pk .

Because we are supporting multiple computation a task
 T ∈T can be allocated on several processors. We have to
consider all possible multiple allocations of a task T on
all processors P T∈ ()ρ . Therefore, we have to introduce
processor specific start times. Additionally, we have to
know which processor provides the data for task Tj . This
is done by variable xki . xki = 1 iff processor Pk provides
data computed by task Ti for each task Tj with T Ti j→ .
This is one reason why the complexity in our extended
model is much higher than in the basic model (much more
variables and constraints).

In hardware/software codesign the communication costs
have a great influence on the quality of a modular imple-
mentation. Therefore, communications on buses are also
considered. For the allocation of tasks with direct prece-
dence constraint allocated on different processors we have
to consider the communication time. We assume that each
processor that has to communicate has its own communi-
cation processor, i.e. communication involving Pk can
take place in parallel with executing a task on Pk . Inequa-
tions related with the beginning of a communication on
bus B ∈B are modeled in (M2). The duration of a com-
munication is observed in (M3).
beginning of communication

∀ ≤ ≤ ∀() ∈ ∧ ≠ ∧ ∈ ()
∧ ∈ ()

+ ≤ + −() ⋅⇒

0

1

m k M i j m k P T
P T

s t b x C

m j

k i

ki ki imj ki

, ,
:

E ρ
ρ

observation condition

(M2)
1 24 34

In the extended model, there may be several processors

 PP P di m mi= ∈ ={ }P 1 executing Ti and several proces-
sors PPj executing task Tj . The processor P PPk i∈ that
provides data for each P PPm j∈ is identified by xki = 1,
where xmi = 0 for m k≠ holds. Therefore, we need for
each processors Pm , Pk and for each i j,() ∈E an inequa-
tion. In the basic model there is only one processor Pk
executing task Ti . Therefore, we need only one inequation
of this type for every i j,() ∈E in our basic model. bimj
denotes the start of the communication from processor Pk
already executed task Ti to processor Pm going to execute
task Tj . In this manner, the inequation (M2) is only ob-
served if task Ti is allocated on processor Pk and task Ti
provides data for each task Tj with i j,() ∈E and Tj is al-
located on processor Pm . In this case xki = 1 holds. Any
other processor executing an instance of Ti does not have
to communicate despite data dependencies T Ti j→ . The
constraints for consistent xki are modeled in (M8a) and
(M8b) (will be given later).

The observation condition in (M3) is zero if there is a
communication between task Ti and Tj on some bus Bl
and Tj is allocated on processor Pm . In inequation (M7´)
(will be given later) we force that hlimj = 1 holds for at
most one l . If the sum in (****) is zero, Ti and Tj are
executed on the same processor Pm .

duration of communication

∀ ≤ ≤ ∀() ∈ ∧ ∈ ()0 m M i j P Tm j, :E ρ

⇒ + ≤ + −








 ⋅

=
∑b c s h C

T T
T P

T T
T P

imj ij mj

l

L

i j

j m

i j

j m

(*) (**)

(*****)

(***)

(****)

(**)

(***)

(****)

;

} }

1 24 34

}
6 744 844

(M3)

start of communication between and
 allocated on processor

duration of communication between and
start of task on processor

1
1

limj

(*)

observation conditionobservation condition
end of communication between and (*****) T Ti j

We now have introduced the constraints that observe
data dependencies. In the next section we introduce the
constraints that avoid resource conflicts.

Resource conflict constraints

Two tasks must not be executed on the same processor
at the same time. For data dependent tasks, this is ensured
by (M1a). For all other pairs of tasks, we have to introduce
nonoverlapping constraints (M4). With the first inequation
type (M4a) we describe the possibility that task Ti will be
executed after task Tj on processor Pm (i. e. ymij = 1). In
(M4b) we formulate the other possibility (i. e. ymji = 1).
nonoverlapping constraints for executions on processors

∀ ≤ ≤ ∀ ≤ ≤ ∧ ∈ () ∩ ()
∧ ∉ () ∧ ∉ ()

0 0m M i j N P T T
i RE j j RE i

m i j,
:

(*)

ρ ρ

1 24 34

⇒ + ≤ + − − −() ⋅s t s d d y Cmi mi mj mi mj mij3 (M4a)

s t s d d y Cmj mj mi mi mj mji+ ≤ + − − −() ⋅3 (M4b)

(*) T Tj i has not been executed after completion of
because of data dependencies;This avoids inequa-
tions which would be implied by (M1a) and (M1b).

ymij and ymji are only relevant for d dmi mj= ∧ =1 1. In
this case we can assume y ymji mij= ⇔ =0 1 and ymji = 1
⇔ =ymij 0 .This allows to save some y variables. There-
fore, we add i j< to the premise and can omit i RE j∉ ()
because of i j i RE j< ⇒ ∉ (). The observation condition
in (M4b) indicating the relevance of the inequation (see
notes for M1a) has to be replaced by
2 − − +() ⋅d d y Cmi mj mij . In this manner, the value of ymij

decides which of (M4a) or (M4b) is relevant for
d dmi mj= ∧ =1 1. For dmi = ∧1 dmj = 1 the value of ymij
is irrelevant, because (M4a) and (M4b) are relevant in any
case.

There is a need for communication when two tasks are
allocated on different processors and when there is a pre-
cedence constraint between these tasks. With the objective
function (MOFC3) introduced above we also consider the
number of buses. Similar to the scheduling of tasks we
need a constraint that prevents an overlapping of two com-
munications on the same bus at the same time. Therefore,
we introduce the following inequations as nonoverlapping
constraints on buses:

∀ ≤ ′ ≤ ∀() ′ ′() ∈ ∧ () ′ ′ ′()
∧ ∈ () ∧ ∈ () ∀ ≤ ≤′ ′

0

1
5

3m m M i j i j i m j i m j

P T P T l L
Mm j m j

, , , , , , , ,

:
()

E p

ρ ρ

⇒ + ≤ + − − −() ⋅

+ ≤ + − − +() ⋅
′ ′ ′ ′ ′ ′ () ′ ′ ′()

′ ′ ′ ′ ′ ′ ′ ′ () ′ ′ ′()

b c b h h w C

b c b h h w C

imj ij i m j li m j limj imj i m j

i m j i j imj li m j limj imj i m j

3

2

The inequations in (M5) are defined according to (M4a)
and (M4b). In addition, to the observation of data depen-
dencies and to the avoidance of resource conflicts we need
the constraints (M6) to (M9b). We have to ensure that
each task will be computed:

∀ ≤ ≤1 i N : dmi

m
P T

M

m i

=
∈ ()

∑ ≥
0

1

ρ

(M6)

The following condition ensures that each communi-
cation will be allocated only on one bus:

 ∀ ≤ ≤ ∀() ∈0 m M i j, :E h d dlimj
l

L

mj mi

=
∑ = ∧ ¬()

1

(M7)

This condition models that we need exactly one bus if
dmj = 1 (task Tj is allocated on processor Pm) and
dmi = 0 holds. In this case it holds hlimj = 1. A possible
formulation of this condition in a MILP is given in (M7´).
Because multiple computation of tasks is possible we have
to determine for the formulation of the beginning of a
communication (see M2) what task instance can provide
the data. (M8a) models that xki is 1 for exactly one k . We
have to ensure that x dki ki= ⇒ =1 1 holds. This ensures
that we only can send the computed data from processor
Pk if task Ti is allocated on this processor. This is formu-
lated in inequation (M8b). To keep all start times positive
we need inequations (M9a) and (M9b).

 ∀ ≤ ≤ ∀() ∈0 m M i j, :E

d d h d dmj mi limj
l

L

mj mi−() ≤ ⋅ ≤ −() +
=
∑2 1

1

(M7´)

∀ ≤ ≤1 i N : xki
k

M

=
∑ =

0

1 (M8a)

∀ ≤ ≤ ∀ ≤ ≤ ∧ ∈ ()0 1k M i N P Tk iρ : x dki ki≤ (M8b)

∀ ≤ ≤ ∀ ≤ ≤ ∧ ∈ ()0 1m M i N P Tm iρ : smi ≥ 0 (M9a)

∀ ≤ ≤ ∀() ∈ ∈ ()∧0 m M i j P Tm j, :E ρ bimj ≥ 0 (M9b)

Now the formalization of the MILP model with mul-
tiple computation is complete. The inequations (M2), (M3)
and (M7´) imply the inequation (M1b). Therefore, we do
not have to regard this restriction in our MILP. In this
manner, the complexity of our overall MILP can be
handled.

4. Experimental Results

In this section we first consider an image processing
application, which is a practicable example of reasonable
size. We illustrate the advantage of models supporting
multiple computation. Then we present statistics for four
other task-graphs.

Fig. 4: Task-graph

IN
IN: 0

256

384

FB1
FB1: 0

384

BMA

384

FIR
FIR_SEQ: 3461

FIR_PIPE: 1170

FIR_ARRAY: 510

UNIVERSAL: 7234
384

384

PRAE

384

DCT

384

Q

384

384

IQ

384

IDCT

384

REK

384

C FB2
FB2: 0

BMA_PIPE: 3617

BMA_ARRAY: 484

UNIVERSAL: 7234

DCT_SEQ: 6156

DCT_PIPE: 474

DCT_ARRAY: 132

Q: 0

SIG_PROC: 0

DCT_ARRAY: 0

PAR1: 128
UNIVERSAL: 1280

IQ: 0

SIG_PROC: 0

DCT_ARRAY: 0

PAR1: 256

UNIVERSAL: 1536

UNIVERSAL: 132

SIG_PROC: 132

2212

UNIVERSAL: 12312

SIG_PROC: 180

DCT_SEQ: 6156

DCT_PIPE: 474

DCT_ARRAY: 132

UNIVERSAL: 12312

4.1. Results of a typical application

Our example is a typical complex image processing
application based on the CCITT recommendation H.261
[19]. This application consists of several tasks with execu-
tion times independent of the input values. Each of the
tasks have different demands on the hardware components
to be used.

4.1.1. The underlying algorithm

Fig. 4 shows the corresponding task-graph derived from
the video coding algorithm H.261. Vertices are labeled
with the set of processors able to execute the correspon-
ding task and the individual execution time. Arcs are
labeled with the communication time between two tasks if
they are allocated on different processors. Times are given
in terms of clock cycles.

The constraint library contains one microprocessor
(UNIVERSAL), one signal processor (SIG_PROC) and 9
different ASIC´s (BMA_PIPE, ...) on which we can
allocate the tasks. The vertex label uses a mnemonic
abbreviation for the tasks. For example DCT denotes the
Discrete Cosine Transformation. We have supplemented
the original description by adding for each task the
execution time if the task would be executed on the micro-
processor. Furthermore, we assume that the tasks DCT, Q,
IQ and C can be executed on the signal processor. Tasks
IN, FB1 and FB2 model access to external memories. We
model the FB access to memory with FB1 for read and
FB2 for write in order to avoid cycles in the task-graph.
These tasks as well as the tasks Q and IQ are used only to
model the interaction with the environment. Therefore, the
execution times are set to zero.

4.1.2. Mapping - Results

A timing requirement
s tC C+ ≤ 4800 , where
sC denotes the start time
of task C on the alloca-
ted processor and tC de-
notes the execution time
of C on this processor,
represents the constraint
that the execution of task
C has to be finished
before 4800 clocks. This
is a typical timing con-
straint for the design of
real-time systems. Such
constraints are contained
in our constraint library.

Because a complex
MILP can be expected,
we first apply a heuristic
preprocessing, which is
based on the metropolis
algorithm [20] for com-
puting the ASAP- (as
soon as possible) and
ALAP-times (as late as
possible) for each task
and communication. We
computed 7100 clocks
as an upper bound for
the total execution time.

Fig. 5: Supporting multiple computation

processor /
bus

time
(clocks)0 965 1930 2895 3860

384 384 384 384 384

384 384

4486
DCT

976

2212 484
BMA

3078

3974 1032

4486
DCT 1024

3080 510
FIR

2184

TET = 5774

2212

384384 256

PRAE

C

384

IDCT

4798

REK

B1

B0

SIG_PROC

BMA_ARRAY

PAR1

DCT_ARRAY

FIR_ARRAY

SIG_PROC

FIR
ARRAY

DCT
ARRAY

bus system

PAR1

BMA
ARRAY

B0
B1

Fig. 6: Designed system

Fig. 7: Without multiple computation

0 1100 2200 3300 4798

2212 384 384 384

256 384 384 384 384 384 384 384

484
BMA

510
FIR

processor /
bus TET = 6590

4486 1792

2212 3894

3974 1848

5434 1024

3080 3000

DCT
C

PRAE REK

IDCT

time (clocks)

B1

B0

SIG_PROC

BMA_ARRAY

PAR1

DCT_ARRAY

FIR_ARRAY

These bounds are used to reduce the computation time of
the MILP solver. A feasible solution could be computed,
which determines a real-time system for which all tasks
could be allocated and scheduled without violating timing
constraints. We have chosen a cost function for mini-
mizing the total execution time (TET) and the total com-
munication costs (TCC).

The MILP generated for the model supporting multiple
computation consists of 718 (147) inequations with 249
(86) variables. The values in parentheses refer to the MILP
without multiple computation (i. e. basic model). Both
MILPs were solved using CPLEX™ [15]. The CPU time
on a SPARCstation 20 was 84 (0.36) seconds. The weights
k1 and k3 in the objective function were 0.5 (k2 0=).

The results from scheduling and allocation are shown in
Fig. 5 and 7 using automatically generated Gantt dia-
grams, which are standard illustrations for tasks executed
in parallel on several processors. The new designed real-
time system consists in both cases of two buses (B0,B1)
and five different processors. For example the tasks PRAE
and REK are allocated on processor PAR1. The task
PRAE starts after 3974 clocks and its execution time is
128 clocks (see Fig. 4) on the processor PAR1. At the be-
ginning we have a data transfer FB1 from the memory to
the BMA_ARRAY, which needs 2212 clocks for the com-
munication on bus B1. The architecture for the designed
real-time system corresponding to Fig. 5 is shown in
Fig. 6. For the other model corresponding to Fig. 7 we
need the same components but a different bus structure.
For both real-time systems, the allocation and the sche-
duling is optimal for the given task-graph (Fig. 4) with

respect to TET, TCC and
the given constraint libra-
ry.

The total execution time
of the video coding algo-
rithm H.261 on this real-
time system is 5774 clocks
when we use the MILP
model supporting multiple
computation. Without
multiple computation the
total execution time is
6590 clocks. With the
multiple computation of

task DCT (see Fig. 5) we can avoid the communications
between the tasks DCT-IQ-IDCT. This is the reason why
the total execution time is reduced by about 816 clocks
without introducing additional hardware components. In
both cases the timing constraint for task C is met, because
the execution of C is finished after 4798 clocks.

In Fig. 6 it can also be seen that we have to realize six
tasks on four different ASIC´s and only one task (C) is
software implemented on the signal processor
(SIG_PROC). Therefore, we have six hardware implemen-
ted tasks and only one software implemented task. Tasks
with execution time zero are omitted. Task DCT is com-
puted twice on two processors (DCT_ARRAY, SIG_
PROC, see Fig. 5).

4.2. Further results

In this section we present the results of applying our
mapping approach on four typical task-graphs. In Table 1
we present statistics for each annotated task-graph. Each
task can be performed on the microprocessor. Normally,
we have at least one additional processor (ASIC) for each
task. In example 1 and 3 the communication times are less
than the execution times of the tasks on the processors. In
example 2 and 4 the communication times are much
greater. For each example we provide two buses. In Table
2 we show statistics for the automatically generated
MILPs, the time for solving the MILPs with CPLEX™ and
the resulting total execution time. We present results for
our basic model [14] (run 1) and the model supporting
multiple computation (run 2).

#
arcs

#
tasks

max. of
parallelism

available
processors

example 1 12 8 3 5

example 2 17 12 4 4

example 3 10 8 4 3

example 4 7 8 2 4

Table 1: Structure of the annotated task-graphs

For these annotated task-graphs we obtained a real-time
systems, allocation, and scheduling optimal and feasible
with respect to the corresponding constraint library. In

example 1 we could not reduce the total execution time by
allowing multiple computation. In example 2, 3 and 4 we
could reduce the total execution time without introducing
additional hardware components. To achieve this
reduction it was sufficient to switch to the model with
multiple computation. For solving the MILPs we have
used ASAP- and ALAP-times obtained in the preproces-
sing step mentioned above. The results show that an auto-
matic and optimal hardware/software codesign for real-
time systems is supported in a reasonable way.

#
const.

#
var.

CPU
sec.

TET

example1 / run 1 190 87 1.10 341.2

example1 / run 2 200 90 0.2 341.2

example2 / run 1 665 238 115.56 320

example2 / run 2 719 250 9374.28 260

example3 / run 1 209 98 0.4 198

example3 / run 2 342 137 0.7 174

example4 / run 1 162 82 7.69 240

example4 / run 2 254 143 27.03 210

Table 2: Further results

6. Conclusion

We have presented an approach for automatically
designing an application specific real-time system that can
perform an image or signal processing algorithm
observing real-time constraints. In our mapping approach,
tasks obtained by splitting the algorithm are mapped to
hardware units (e.g. ASICs) or software units (e.g. micro-
processors) available from a constraint library. We have
allowed that a task may be performed on several proces-
sors. A Mixed Integer Linear Programming (MILP) model
has been developed that defines correct allocations, i.e.
correct assignments of tasks to units that have to perform
the task, and correct schedules, i.e. correct assignments of
start times to tasks. The model also observes communi-
cation overhead that arises with data exchange between
tasks executed on different processors. Solving the MILPs
leads to designs optimal with respect to given resources.
The cost functions can be tuned by the designer in order to
determine the weights of hardware costs and execution
time. The practicability of our approach has been turned
out by solving MILPs for several image and signal
processing algorithms. For these reasons, this paper has
presented a powerful model that supports an automatic and
optimal hardware/software codesign for real-time systems
for image and signal processing applications. A main topic
for future research is to implement a variant of a MILP
solver, which is especially designed for solving the des-
cribed type of MILPs.

Acknowledgments
I am very grateful to Matthias Mutz for his inspiring

and indeed very valuable comments and ideas on this
work. I also acknowledge Peter Scholz and Erwin Harbeck
for their help by formulating the model and by computing
experimental results, respectively.

References
[1] N. Woo, W. Wolf, A. Dunlop: Compilation of a single spe-

cification into hardware and software, Handouts of the 1st
International Workshop on Hardware/Software Codesign,
Estes Park, Colorado, 1992.

[2] S. Som, R. Mielke, W. Stoughton: Prediction of Perfor-
mance and Processor Requirements in Real-Time Data
Flow Architectures, IEEE Trans. on Parallel and Dis-
tributed Systems, Vol. 4, No. 11, 1993, pp.1205-1216.

[3] E. Barrows, et. al.: Hardware/Software Partitioning with
UNITY, Handouts of the 2nd International Workshop on
Hardware/Software Codesign, Cambridge, 1993.

[4] H. Achatz: Extended 0/1 LP Formulation for the
Scheduling Problem in High-Level Synthesis, EURO-DAC,
Hamburg, 1993, pp. 226 - 231.

[5] W. Grass, M. Mutz, W. Tiedemann: High Level Synthesis
based on Formal Methods, Proceedings of the 20th EURO-
MICRO conference, Liverpool, 1994, pp. 83-91.

[6] R. Ernst, J. Henkel, T. Benner: Hardware-Software Cosyn-
thesis for Microcontrollers, IEEE Design & Test of Com-
puters, Vol. 10, No. 4, 1993, pp. 64-75.

[7] W. Hardt, et. al.: Specification Analysis for HW/SW-Parti-
tioning, 3th GI/ITG Workshop Anwendung formaler Me-
thoden beim Entwurf von Hardwaresystemen (eds. W.
Grass, M. Mutz; Passau), Shaker , Aachen, 1994, pp.1-10.

[8] R. Gupta, C. Coelho, G. De Micheli: Program Implemen-
tation Schemes for Hardware-Software Systems, Com-
puter, Vol. 27, No. 1, 1994, pp. 48-55.

[9] G. Koch, U. Kebschull, W. Rosenstiel: A Prototyping
Environment for Hardware/Software Codesign in the CO-
BRA Project, Proceedings of the 3rd International Work-
shop on Hardware/Software Codesign, Grenoble, 1994, pp.
10-16.

[10] J. Buck, et. al.: Ptolemy: A Framework for Simulating and
Prototyping Heterogeneous Systems, Int. Journal in
Computer Simulation, Vol.4, No. 2, 1994, pp.155-182.

[11] A. Kalavade, A. Lee: A Hardware-Software Codesign
Methodology for DSP Applications; IEEE Design & Test
of Computers, Vol. 10, No. 3, 1993, pp. 16-28.

[12] A. Bender: Design of an Optimal Loosely Coupled Hetero-
geneous Multiprocessor System, European Design & Test
Conference, Paris, 1996, pp. 275-281.

[13] W. A. Halang, A. D. Stoyenko: Real Time Computing,
Springer, 1994.

[14] A. Bender: Optimal Task Mapping in a Hardware/ Soft-
ware Codesign Environment, Proceedings of the Workshop
on Design Methodologies for Microelectronics, Slovakia
1995, pp. 177-186.

[15] Using the CPLEX™ Callable Library, User Guide,
CPLEX Optimization Inc., Incline Village, U.S.A., 1994.

[16] E. Harbeck: Extension and improvement of several map-
ping procedures for the design of multiprocessor systems
with hard real-time constraints (In German.), diploma
thesis, University of Passau, 1995.

[17] P. Scholz: Static mapping of program tasks onto multipro-
cessor systems for real-time applications (In German.).,
diploma thesis, University of Passau, 1994.

[18] R. Niemann, P. Marwedel: Hardware/Software Partition-
ing using Integer Programming, European Design & Test
Conference, Paris. 1996, pp. 473-479.

[19] M. Schwiegershausen, M. Schönfeld, P. Pirsch: Mapping
Complex Image Processing Algorithms onto Hetero-
geneous Multiprocessors Regarding Architecture Depen-
dent Performance Parameters, Proceedings of the 3rd Int.
Workshop on Algorithms and Parallel VLSI architectures,
Leuven, Belgium, 1994.

[20] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller,
E. Teller: Equation of State Calculations for Fast Com-
puting Machines, Journal of Chemical Physics, Vol. 21,
1953.

