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Abstract. We introduce the use of mimetic methods to the imaging community, for the

solution of the initial-value problems ubiquitous in the machine vision and image processing

and analysis fields. PDE-based image processing and analysis techniques comprise a host of ap-

plications such as noise removal and restoration, deblurring and enhancement, segmentation, edge

detection, inpainting, registration, motion analysis, etc. Because of their favorable stability and

efficiency properties, semi-implicit finite difference and finite element schemes have been the

methods of choice (in that order of preference). We propose a new approach for the numerical so-

lution of these problems based on mimetic methods. The mimetic discretization scheme preserves

the continuum properties of the mathematical operators often encountered in the image processing

and analysis equations. This is the main contributing factor to the improved performance of the

mimetic method approach, as compared to both of the aforementioned popular numerical solution

techniques. To assess the performance of the proposed approach, we employ the Catté-Lions-

Morel-Coll model to restore noisy images, by solving the PDE with the three numerical solution

schemes. For all of the benchmark images employed in our experiments, and for every level of

noise applied, we observe that the best image restored by using the mimetic method is closer to

the noise-free image than the best images restored by the other two methods tested. These results

motivate further studies of the application of the mimetic methods to other imaging problems.
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1 Introduction

The aim of this paper is to introduce the mimetic methods to the imaging com-

munity, for the solution of the initial-value problem ubiquitous in the machine

vision and image processing and analysis fields. PDE-based image processing

and analysis techniques comprise a host of applications such as noise removal

and restoration, deblurring and enhancement, segmentation, edge detection, in-

painting, registration, motion analysis, etc. In this context, a gray-scale image is

modeled as a real-valued function u0 (x), u0 → R, defined in a bounded domain

� ⊂ R
2, and with Lipschitz continuous boundary ∂�. Usually, the observed

image u0 (x) = u (x, 0) is associated with a sequence of images u (x, t), where

the evolution depends on the abstract parameter t > 0, called the scale. Hence

the name image multiscale analysis given to this approach [30]. The numerical

solution of this problem is normally based on semi-discretization in scale and on

finite difference or finite element discretization in space.

This paper is organized as follows: In Section 2, we briefly describe one of

the most popular nonlinear diffusion models applied in image processing for the

reduction of noise and the detection of edges. This serves as background for the

readers whomight not be familiar with PDE-based image processing techniques.

In Section 3, we describe the mimetic discretization formulation for the solution

of the initial-value problem. We also present the two most popular numerical

solutions to this problem, namely finite difference and finite element methods.

In Section 4, we present some computational examples of the performance of

the proposed method as compared to the other two methods described in the

previous section. We conclude the paper in Section 5 with a discussion of the

reasons for the improved results obtained by applying the mimetic method. We

also outline some possible future improvements to the this approach, and other

areas within the imaging field where the method can be applied successfully.

2 Nonlinear diffusion models in image processing

During the last two decades PDE-based models in the field of image processing

and analysis have become very popular [16]. Most of today’s nonlinear dif-

fusion models stem from the work of Perona and Malik [35], who introduced

an approach that allows for the reduction of the noise in images while retain-

ing and enhancing edges. In order to achieve these goals, the Perona-Malik’s
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nonlinear diffusion model aimed at avoiding the blurring of edges, and other

localization problems presented by linear diffusion models [9, 26, 29, 44]. Their

model accomplishes this by applying a process that reduces the diffusivity in

places having higher likelihood of belonging to edges. This likelihood is meas-

ured by a function of the local gradient, |∇u|. The Perona-Malik model can be

written as

ut − ∇ ∙
(

g
(

|∇u|2
)

∙ ∇u
)

= 0, on � × [0, ∞) ,

u (x, 0) = u0 (x) , on �,

〈g ∙ ∇u, n〉 = 0, on ∂� × (0, ∞) ,

(1)

where 〈g ∙ ∇u, n〉 = 0 denotes homogeneous Neumann boundary conditions. In

this model the diffusivity has to be such that g
(

|∇u|2
)

→ 0 when |∇u| → ∞

and g
(

|∇u|2
)

→ 1 when |∇u| → 0. One of the diffusivities that Perona and

Malik proposed is g
(

|∇u|2
)

=
(

1+ |∇u|2
/

λ2
)−1
, where λ > 0 is a threshold

(contrast) parameter that separates forward and backward diffusion [38]. The

model accomplishes the long sought effect of blurring small fluctuations (pos-

sible noise) while enhancing edges. The results obtained by Perona and Malik

were visually very impressive.

Notwithstanding the practical success of the Perona-Malik model, it presents

some serious theoretical problems: (i) none of the classical well-posedness

frameworks is applicable to the Perona-Malik model, i.e. we can not ensure

well-posedness results [34, 42]; (ii) uniqueness and stability with respect to the

initial image should not be expected, i.e. solvability is a difficult problem, in

general [15, 21, 22, 25, 36]; (iii) the regularizing effect of the discretization

plays too much of an important role in the solution [6, 17]. The latter is perhaps

the key element in the success or failure of the model. Most practical applica-

tions work very well provided that the numerical schemes stabilize the process

through some implicit (or explicit) regularization.

This observation motivated much research towards the introduction of the

regularization directly into the PDE to avoid the dependence on the numerical

schemes [15, 34]. A variety of spatial, spatio-temporal, and temporal regular-

ization procedures have been proposed over the years [5, 15, 28, 38, 40, 43].

The one that has attracted much attention is the mathematically sound formu-

lation due to Catté, Lions, Morel and Coll [15]. They proposed replacing the

diffusivity g
(

|∇u|2
)

of the Perona-Malik model by a slight variation g
(

|∇uσ |2
)
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with uσ = Gσ ∗ u, where Gσ is a smooth kernel (Gaussian of variance σ 2).

We should note that this spatial regularization model belongs to a class of well-

posed problems (existence and uniqueness were proven in [15]), and that its

successful implementation is contingent on the choosing of an appropriate value

for the additional regularization parameter σ . Whitaker and Pizer [43] and Li

and Chen [28] suggested making the parameters σ and λ time-dependent, while

Benhamouda [6] performed a systematic study of the influence of these param-

eters for the one-dimensional case.

3 Numerical solution to the nonlinear diffusion models

Digital images are given on discrete (regular) grids. This lends itself for dis-

cretizing the PDEs to obtain numerical schemes that can be solved on a com-

puter. Because of their favorable stability and efficiency properties, semi-im-

plicit schemes have been the methods of choice for the scale discretization

[3, 4, 15, 16, 18, 19, 20, 24, 27, 31, 32, 37, 39, 41]. As for the space dis-

cretization, the most popular choices are finite difference [15, 39, 41] and finite

element [3, 4, 16, 24, 37, 39, 41] methods (in that order of preference). We

propose a new approach in image processing based on mimetic discretization.

3.1 Finite difference implementation

The numerical solution to the Catté-Lions-Morel-Coll model proposed in [15]

is as follows. Given an N × M image we introduce the coordinates lattice

(ih, jh, n1t) where h is the pixel size, and 0 6 i 6 N + 1, 0 6 j 6 M + 1.

We consider uni, j as an approximation of u (ih, jh, n1t), and g
n
i, j as an approx-

imation of g (|∇uσ |) (ih, jh, n1t). Then we discretise g (|∇uσ |) ∂u
/

∂x by

gni, j∂u
/

∂x (ih, jh, (n + 1) 1t) and ∂
/

∂x
[

g (|∇uσ |) ∂u
/

∂x
]

by

(

gni−1, j + g
n
i, j

)

un+1i−1, j −
(

2gni, j + g
n
i−1, j + g

n
i+1, j

)

un+1i, j +

(

gni, j + g
n
i+1, j

)

un+1i+1, j

2h2
,

and similarly for ∂
/

∂y
[

g (|∇uσ |) ∂u
/

∂y
]

, by exchanging the roles of parame-

ters i and j ,
(

gni, j−1 + gni, j

)

un+1i, j−1 −

(

2gni, j + g
n
i, j−1 + gni, j+1

)

un+1i, j +

(

gni, j + g
n
i, j+1

)

un+1i, j+1

2h2
.
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The finite difference scheme will be given by

un+1i, j − uni, j

1t
−

1

2h2

[

(

gni−1, j + g
n
i, j

)

un+1i−1, j +
(

gni, j−1 + gni, j
)

un+1i, j−1+

+
(

gni, j + g
n
i+1, j

)

un+1i+1, j +
(

gni, j + g
n
i, j+1

)

un+1i, j+1+

−
(

4gni, j + g
n
i−1, j + g

n
i, j−1 + gni+1, j + g

n
i, j+1

)

un+1i, j

]

= 0,

u0i, j = u0 (ih, jh) , 1 6 i 6 N , 1 6 j 6 M,

un+1i,0 = un+1i,1 , un+1N , j = u
n+1
N+1, j , 1 6 i 6 N + 1, 1 6 j 6 M + 1,

un+10, j = un+11, j , u
n+1
i,N = un+1i,N+1, 1 6 i 6 N + 1, 1 6 j 6 M + 1.

(2)

Then, the discrete problem can be written as a system

un+1 − un

1t
+ Ah

(

un
)

un+1 = 0, n > 0, (3)

where the matrix of coefficients Ah is positive definite and block-tridiagonal.

3.2 Finite element implementation

The starting point for the finite element method is to partition the geometry

(domain) into small units (elements or cells) of simple shape joined together at

the vertices (nodes). This will constitute our finite element space (mesh or grid).

Once we have our mesh (see Fig. 1), the idea is to approximate the dependent

variables with functions that we can describe with a finite number of parameters

(degrees of freedom, DOF). Inserting this approximation into the weak form

of the equation for the Catté-Lions-Morel-Coll model generates a system of

equations for the degrees of freedom [1].

As mentioned above, we need to perform discretizations in scale and space.

We perform the semi-discretization in scale by letting Q ∈ N, and 1t = T
/

Q

be fixed numbers (here, T represents the last scale state we want to reach), and

letting u (x, 0) = u0 (x) in �. Then, we can look for a function un for every

n = 1, . . . , Q, such that it is a solution to the equation

un − un−1

1t
− ∇ ∙

(

g
(

∣

∣∇un−1σ

∣

∣

2
)

∙ ∇un
)

= 0. (4)
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Figure 1 – Zoomed-in detail of an image at the pixel level. The image was superimposed

with a finite elementmesh of triangular elements. Each node of an element has oneDOF,

the intensity value of that pixel.

It is shown in [4, 24] that there exist unique variational solutions un of Eq. (4)

at every discrete scale step, for which the following stability estimates hold:
∥

∥un
∥

∥

2
6 ‖u0‖2,

∥

∥un
∥

∥

∞
6 ‖u0‖∞, for n = 1, . . . , Q on �

Q
∑

n=1

∥

∥∇un
∥

∥

2

2
h 6 C,

Q
∑

n=1

∥

∥un − un−1
∥

∥

2

2
6 C, on �,

(5)

where C is a general (large) constant (here, h represents a typical element size).

To discretize the problem in space we can take advantage of the pixel structure of

the image. For this case, the finite element method assumes that the approxima-

tion of the solution to the PDE is continuous piecewise linear. This means that

the discrete intensity values are regarded as approximations of the continuous

intensity function in the center of the pixels (see Fig. 1). We can multiply Eq. (4)

by an arbitrary test function v ∈ V , where V is the Sobolev space W 1,2 (�) of

L2 (�) −functions with doubly integrable weak derivatives, and integrate (using

Green’s theorem and homogeneous Neumann boundary conditions) to obtain

the weak form [30]
∫

�

unv dx + 1t

∫

�

g
(

∣

∣∇un−1σ

∣

∣

2
)

∇un∇v dx =

∫

�

un−1v dx . (6)
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Then, for each scale step n, we look for a continuous piecewise linear function

unh ∈ Vh that satisfies

∫

�

unhvh dx + 1t

∫

�

g
(

∣

∣∇un−1h
∣

∣

2
)

∇unh∇vh dx =

∫

�

un−1h vh dx, (7)

for all vh ∈ Vh . Considering the standard Lagrangian base functions φq ∈ Vh ,

q = 1, . . . , L , given by φq
(

x p
)

= δqp (Kronecker delta) for all nodes, the

function unh is given by

unh =

L
∑

p=1

unpφp. (8)

Substituting Eq. (8) into Eq. (7) and considering as test functions vh = φq for

q = 1, . . . , L , we get the Ritz-Galerkin equation for the nodal values unp, of the

piecewise linear function unh:

L
∑

p=1

(∫

�

φpφq dx + 1t

∫

�

g
(

∣

∣∇unσ,h

∣

∣

2
)

∇φp∇φq dx

)

unp =

=

∫

�

unhφq dx, q = 1, . . . , L .

(9)

Then, in each scale step we need to assemble and solve a linear system of the

form
[

M+ 1tA
(

g
(

∣

∣ ∇un−1σ

∣

∣

2
))]

un = fn−1, (10)

for the vector of unknowns (DOF) un .

3.3 Mimetic discretization implementation

In the mimetic discretization approach, instead of discretizing the actual equa-

tion, we use the equivalent discrete version of its mathematical operators. The

majority of the PDE-based models in image processing can be written in terms

of gradient, divergence, and curl operators. The mimetic method, as its name

implies, mimics the properties of these operators in their continuous form and

thus preserve their continuum properties exactly, not approximately [2, 8, 7, 11,

13, 14]. In fact, Bohner and Castillo [8] have stated that “…a discretization of

the first derivative and the one-dimensional integral are mimetic if they are ana-

logous of the fundamental theorem and the integration by parts formula that are
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exact.” For this reason, the mimetic discretization method has shown to be more

stable and accurate than other numerical discretization methods [11, 12, 8, 23].

Here, we present only the second-order accuracy mimetic gradient and diver-

gence operators developed by Castillo and Grone [10, 14] that were used in our

numerical experiments. For a detailed explanation of how these operators were

developed we refer the reader to [10, 14] and the references therein.

The Catté-Lions-Morel-Coll variant to Eq. (1) can be written using mimetic

operators as

ut − D
(

g
(

|Guσ |2
)

Gu
)

= 0, (11)

where D is the mimetic divergence operator, ∇∙, and G is the mimetic gradient

operator, ∇. In one dimension and on a uniform staggered grid, the mimetic

gradient operator with second order accuracy is defined as

G =
1

h





























−8

3
3

−1

3
−1 1

−1 1

∙ ∙ ∙

−1 1

−1 1
8

3
−3

1

3





























, (12)

where h is the grid spacing. Likewise, the mimetic divergence is defined as

D =
1

h















−1 1

−1 1

∙ ∙ ∙

−1 1

−1 1















. (13)

The divergence matrix D satisfies some desired properties listed in [10]. These

properties are:

• D has zero row sums, i.e., De = 0, where e = (1, 1, . . . , 1)T.

• D has column sums −1, 0, . . . , 0, 1, i.e., eTD = (−1, 0, 0, . . . , 0, 1).

• D is banded.
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• D has a Toeplitz-type structure on the interior rows and is defined inde-

pendently of the number of grid points.

One of the mimetic method’s interesting properties is that the matrix D and

G are centro-skew-symmetric. It has to be noted that the gradient and the diver-

gence are not calculated at the same position. The gradient is calculated at the

edges of the cell, whereas the divergence is calculated at the center of the cell

(see Fig. 2).

Figure 2 – Positions where the one dimensional Gradient (G) and Divergence (D) are

calculated.

In two dimensions, the positions where the gradient is calculated is shown

in Fig. 3. Notice that the x-component and y-component of the gradient are

calculated separately and in different positions. This is important when design-

ing a parallel code. Similarly, the position where the divergence is calculated is

shown in Fig. 4. Notice that the mimetic gradient and mimetic divergence are

designed in such way that the output of the mimetic gradient is positioned

exactly where the mimetic divergence reads its input.

One of the advantages of the mimetic gradient and mimetic divergence de-

veloped by Castillo and Grone is the way in which they represent the boundary

conditions. The Neumann boundary conditions imposed in Eq. (1) dictate that

the flux through the boundaries is zero. This is equivalent to saying that the

normal component of the gradient to the boundary is zero. By referring to Fig. 3,

we can understand that, to impose this boundary condition, all we have to do is

set the gradient at the boundary to be zero. This has a great advantage. Usually

the boundary conditions and their implementation is a major source of errors

in numerical modeling and simulation. To implement the boundary conditions,

normally some type of interpolation, extrapolation, or the use of ghost/dummy

nodes is needed. Here, in this article, the boundary conditions dictate that the

normal component of the gradient at the edges of the image must be zero,

Eq. (1). To calculate the normal component of the gradient at the outer edges of

the image using the mimetic method, we need the value of u at the center of the

two cells adjacent to the edge and also its value on the edge itself, see Fig. 3 and

Eq. (12). But the u here refers to the value in the image, i.e., we have the value

Comp. Appl. Math., Vol. 30, N. 3, 2011
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Figure 3 – Two dimensional mimetic gradient operator. (circle) Positions whose values

are used to calculate the gradient. (cross) Positions where the gradient is calculated.

Figure 4 – Two dimensional mimetic divergence operator. (circle) Positions whose

values are used to calculate the divergence. (cross) Positions where the divergence is

calculated.

of u just at the cell centers and not the outer edges. To get the value of u at the

outer edges we have to use the extrapolation techniques. The value of u at the

outer edges are needed only to calculate the gradient.The value of the gradient at

the outer edges is given by the boundary condition exactly at the same position

Comp. Appl. Math., Vol. 30, N. 3, 2011
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and for the same component that our mimetic method calculates the gradient.

Hence, there is no need for any extrapolation or use of dummy nodes to imple-

ment the boundary conditions. Therefore, using Castillo Gronemimetic method,

one big source of error can be eliminated.

4 Numerical experiments and results

In order to compare the performance of the mimetic discretization we imple-

mented the Perona-Malik variant by Catté, Lions, Morel and Coll,

ut − ∇ ∙
(

g
(

|∇uσ |2
)

∙ ∇u
)

= 0, on � × [ 0, ∞) ,

u (x, 0) = u0 (x) , on �,

〈g ∙ ∇u, n〉 = 0, on ∂� × (0, ∞) ,

g
(

|∇uσ |2
)

=
1

1+ |∇uσ |2
/

λ2
, λ > 0,

uσ = Gσ ∗ u, σ = 1.

(14)

It has been shown [33] that σ = 1 is sufficient for a large interval of noise

variances, provided that the noise in neighboring pixels is uncorrelated and that

the grid size is one. There are several ways to set the parameter λ > 0. Perona

and Malik [35] suggested using the idea presented by Canny [9] and set λ as

a percentile, p, of the image gradient magnitudes at each iteration. (The rec-

ommended value is commonly p = 90%.) A by-product of this approach is a

decreasing λ, which has an stabilizing effect on the diffusion process [33]. A

time step of δt = 10−2 was chosen to update all the models. Weickert, Romeny,

and Viergever [41] have shown that, for explicit discretization schemes, the sta-

bility condition, assuming δx = 1 and ∀s : g (s) 6 1, is δt < 1
/

(2d), with d

being the number of dimensions of the data (which for a 2D image d = 2).

The experiment consisted in trying to restore the noise-free image f (x),

that has been perturbed by additive Gaussian noise of zero mean and variance

0.001 > ν > 0.02. Figure 1 shows the images of the Cameraman, the Baboon,

the Boats, and Barbara. These are the benchmark images that will be used in the

comparative experiments. The three solution methods, finite difference, finite

element, and mimetic discretization, were run for 50 iterations and the correla-

tion coefficient between the noise-free image and each of the filtered images was

computed at each iteration. This measure indicates how similar is the filtered
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image to the noise-free image after restoration. For every benchmark image and

for every level of noise, we observe that the best image restored by the mimetic

discretization is closer to the noise-free image than the best images restored by

the other two methods tested (see Figs. 2, 4, 6, and 8). The quality of the image

restoration after applying the three solution methods to the noisy benchmark

images is illustrated in Figs. 3, 5, 7, and 9.

Figure 5 – Noise-free images of the Cameraman, the Baboon, the Boats, and Barbara.

These are the benchmark images that will be used in the comparative experiments.

5 Conclusion

In this paper we introduced the mimetic discretization method for the numer-

ical solution of the PDE-based image processing and analysis models. The

mimetic discretization scheme preserves the continuum properties of the math-

ematical operators often encountered in the image processing and analysis equa-

tions. This contributes to the stability and accuracy of the numerical solution

which allows for the improved performance of the approach, as compared to the

two very popular numerical solution techniques employed in our experiments. In

these experiments, we applied a wide range of noise levels to benchmark images

commonly used in the imaging field. These images were restored by applying

the well stablished Catté-Lions-Morel-Coll model. Our results show that, for

each noise level, the best image that has been restored by solving the PDE with

the mimetic discretization scheme, outperforms the best images that have been

restored by solving the PDE with the other two methods.
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Figure 6 – (Left) Correlation coefficient between the noise-free image of the Camera-

man and the filtered image of the Cameraman. For every noise level, the best filtered

image restored by using the mimetic discretization is superior to the best filtered im-

ages restored by using the finite difference and the finite element methods, respec-

tively. (Right) Typical path of the quality of the image restoration. For a noise variance

ν = 0.01, the quality of restoration increases to a maximum value after which it de-

creases asymptotically as the image becomes ‘flat.’ The best filtered image for this level

of noise is obtained after 17 iterations by finite difference, 4 iterations by finite element,

and 6 iterations by mimetic discretization.

Figure 7 – (Left to Right) Noisy image of the Cameraman perturbed by Gaussian ad-

ditive noise of zero mean and variance ν = 0.01. Filtered image of the Cameraman

after 17 iterations by the finite difference method. Filtered image of the Cameraman

after 4 iterations by the finite element method. Filtered image of the Cameraman after

6 iterations by the mimetic discretization method.
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Figure 8 – (Left) Correlation coefficient between the noise-free image of the Baboon

and the filtered image of the Baboon. For every noise level, the best filtered image

restored by using the mimetic discretization is superior to the best filtered images re-

stored by using the finite difference and the finite element methods, respectively. (Right)

Typical path of the quality of the image restoration. For a noise variance ν = 0.01, the

quality of restoration increases to a maximum value after which it decreases asymp-

totically as the image becomes ‘flat.’ The best filtered image for this level of noise is

obtained after 10 iterations by finite difference, 3 iterations by finite element, and 4

iterations by mimetic discretization.

Figure 9 – (Left to Right) Noisy image of the Baboon perturbed by Gaussian addit-

ive noise of zero mean and variance ν = 0.01. Filtered image of the Baboon after

10 iterations by the finite difference method. Filtered image of the Baboon after 3

iterations by the finite element method. Filtered image of the Baboon after 4 iterations

by the mimetic discretization method.
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Figure 10 – (Left) Correlation coefficient between the noise-free image of the Boats

and the filtered image of the Boats. For every noise level, the best filtered image re-

stored by using the mimetic discretization is superior to the best filtered images re-

stored by using the finite difference and the finite element methods, respectively. (Right)

Typical path of the quality of the image restoration. For a noise variance ν = 0.01, the

quality of restoration increases to a maximum value after which it decreases asymp-

totically as the image becomes ‘flat.’ The best filtered image for this level of noise is

obtained after 17 iterations by finite difference, 5 iterations by finite element, and 7

iterations by mimetic discretization.

Figure 11 – (Left to Right) Noisy image of the Boats perturbed by Gaussian additive

noise of zero mean and variance ν = 0.01. Filtered image of the Boats after 17 itera-

tions by the finite difference method. Filtered image of the Boats after 5 iterations by

the finite element method. Filtered image of the Boats after 7 iterations by the mimetic

discretization method.
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Figure 12 – (Left) Correlation coefficient between the noise-free image of Barbara and

the filtered image of Barbara. For every noise level, the best filtered image restored

by using the mimetic discretization is superior to the best filtered images restored by

using the finite difference and the finite element methods, respectively. (Right) Typical

path of the quality of the image restoration. For a noise variance ν = 0.01, the quality

of restoration increases to a maximum value after which it decreases asymptotically

as the image becomes ‘flat.’ The best filtered image for this level of noise is obtained

after 24 iterations by finite difference, 9 iterations by finite element, and 10 iterations

by mimetic discretization.

Figure 13 – (Left to Right) Noisy image of Barbara perturbed by Gaussian additive

noise of zero mean and variance ν = 0.01. Filtered image of Barbara after 24 itera-

tions by the finite difference method. Filtered image of Barbara after 9 iterations

by the finite element method. Filtered image of Barbara after 10 iterations by the

mimetic discretization method.
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