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Mimetic gravity is a Weyl-symmetric extension of General Relativity, related to the latter by a singular disformal transformation,
wherein the appearance of a dust-like perfect fluid can mimic cold dark matter at a cosmological level. Within this framework,
it is possible to provide a unified geometrical explanation for dark matter, the late-time acceleration, and inflation, making it a
very attractive theory. In this review, we summarize the main aspects of mimetic gravity, as well as extensions of the minimal
formulation of the model. We devote particular focus to the reconstruction technique, which allows the realization of any desired
expansionary history of the universe by an accurate choice of potential or other functions defined within the theory (as in the case
of mimetic f(R) gravity). We briefly discuss cosmological perturbation theory within mimetic gravity. As a case study within which
we apply the concepts previously discussed, we study a mimetic Hotava-like theory, of which we explore solutions and cosmological
perturbations in detail. Finally, we conclude the review by discussing static spherically symmetric solutions within mimetic gravity
and apply our findings to the problem of galactic rotation curves. Our review provides an introduction to mimetic gravity, as well
as a concise but self-contained summary of recent findings, progress, open questions, and outlooks on future research directions.

1. Introduction

The past decade has seen the astounding confirmation of the
“dark universe” picture, wherein the energy budget of our
universe is dominated by two dark components: dark matter
and dark energy [1-50]. The race to determine the nature
and origin of these components is in progress on both the
observational and theoretical fronts. Theories of modified
gravity appear quite promising in this respect, particularly
given that gravity remains the least understood of the four
fundamental forces. For an incomplete list of comprehensive
reviews, as well as seminal works on the subject, we refer the
reader to [51-68] and references therein.

A particularly interesting theory of modified gravity
which has emerged in the past few years is mimetic gravity
[69]. In mimetic gravity, as well as minimal modifications
thereof, it is possible to describe the dark components of the
universe as a purely geometrical effect, without the need of
introducing additional matter fields. In the past three years,

interest in this theory has grown rapidly, with over 90 papers
following up on the original idea or at least touching on it
in some way [70-161]. For this reason, we believe it is timely
to present a review on the progress achieved thus far in the
field of mimetic gravity. This review is not intended to provide
a detailed pedagogical introduction to mimetic gravity but
rather summarize the main findings and directions in current
research on the theory, as well as providing useful directions
to the reader, should she/he wish to deepen a given topic
in mimetic gravity. For this reason, this review should not
be seen as a complete introduction to mimetic gravity, nor
should it substitute consultation of the original papers. No
prior knowledge on the subject is assumed.

This review is structured as follows: in this section we will
provide a historical and technical introduction to modified
gravity, which shall justify our subsequent endeavour in
mimetic gravity. In Section 2, we will introduce mimetic
gravity. Given that understanding the reason behind the
equations of motion of mimetic gravity differing from those
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of General Relativity is not obvious, a major goal of the
section will be to provide a clear and concise explanation
for this fact. Subsequently, in Section 3 we will explore a
few solutions of mimetic gravity and correspondingly some
extensions of the theory, as well as correspondences with
related theories of modified gravity. Section 4 will provide a
brief interlude focusing on perturbations in mimetic gravity.
In Section 5 we will present a case study of a mimetic-like
model, namely, mimetic covariant Hofava-like gravity, with
a focus on its solutions and cosmological perturbations, and
the need to extend the model beyond its basic formulation.
Section 6 will be devoted to studying spherically symmetric
solutions in mimetic gravity. In Section 7 we will touch upon
the issue of rotation curves in mimetic gravity and how this
issue is addressed. Finally, we will conclude in Section 8.

1.1. Why Modify General Relativity? General Relativity (GR
henceforth), first formulated by Einstein in 1915 [162-166]
(for a pedagogical review, see, e.g., [167]), is an extremely
successful and predictive theory, and together with Quantum
Field Theory forms one of the pillars of modern physics. The
traditional picture of GR is a geometrical one, with the theory
being one of space-time and its metric. A more modern view
is free of geometrical concepts and sees GR as the unique
theory of massless spin-2 particles.

Confirmations of GR abound (see, e.g., [168] for a
complete review), ranging from gravitational lensing [169]
to the precession of Mercury’s orbit [165]. Shortly after its
centennial in 2015 one of the pillars of GR, the existence of
gravitational waves, was grandiosely confirmed by the detec-
tion of GW150914 [170] and GW151226 [171] by LIGO (see
also [172]). Before we even embark on a review of mimetic
gravity, then, it is worth reminding the reader why one should
even consider questioning a theory as successful as GR.
Aside from the philosophical perspective that questioning
theories and exploring other approaches are a sensible route
in science, provided of course that there is agreement with
observations, hints persist in the literature that complicating
the gravitational action may indeed have its merits. In fact,
the reader should be reminded that as early as 1919 (four years
after GR had been formulated), proposals started to be put
forward as to how to extend this theory, notably, in the form of
Weyl’s scale independent theory [173] and Eddington’s theory
of connections [174]. These early attempts to modify GR were
driven solely by scientific curiosity with no formal theoretical,
or let alone experimental, motivation.

Nonetheless, theoretical motivation for modifying the
gravitational action came quite soon. The underlying reason
is that GR is nonrenormalizable and thus not quantizable in
the way conventional Quantum Field Theories are quantized.
However, it was proven that 1-loop renormalization requires
the addition of higher order curvature terms to the Einstein-
Hilbert action. In fact, it was later demonstrated that, while
actions constructed from invariants quadratic in curvature
are renormalizable [175], the addition of higher order time
derivatives which follows from the addition of terms higher
order in the curvature leads to the appearance of ghost
degrees of freedom, which entail a loss of unitarity. More
recent results show that when quantum corrections or string
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theory are taken into account, the effective low-energy
gravitational action admits higher order curvature invariants
(see, e.g., [176] for a general review). However, all these early
attempts to modify GR had a common denominator in the
fact that terms which modified the gravitational action were
only considered to be relevant in proximity of the Planck
scale, thus not affecting the late universe.

With the emergence of the “dark universe” picture in
recent years, the limits of GR have been fully exposed, and
further motivations to modify this theory have emerged.
A series of experiments and surveys, including but not
limited to CMB experiments, galaxy redshift surveys, clus-
ter surveys, supernovae surveys, lensing experiments, and
quasar surveys, have depicted a peculiar picture of our
universe [1-50]. This scenario suggests that our néive picture
of the world we live in being described by the Standard
Model of Particle Physics (SM) supplemented by General
Relativity is, at best, incomplete. The concordance cosmology
model suggests a scenario where only ~4% of the energy
budget of the universe consists of baryonic matter, whereas
~24% consists of nonbaryonic dark matter (DM), and the
remaining ~76% consists of dark energy (DE). Of the last
two extra components, dark matter is (presumably) the one
with properties most similar to ordinary matter. It shares the
clustering properties of ordinary matter, but not its couplings
to SM gauge bosons (e.g., electromagnetic ones), and is
believed to be responsible for structure formation during
the matter domination era of the cosmological history. As
ordinary matter, DM satisfies the strong energy condition.
Dark energy, instead, is more peculiar still, given that it
does not share the clustering properties of ordinary matter
or DM, as it violates the strong energy condition. It is
believed to be responsible for the late-time speed-up of
the universe, which has been inferred from a variety of
cosmological and astrophysical observations, ranging from
type Ia-supernovae to the CMB. Whereas evidence for DE
is somewhat indirect and exclusively of cosmological origin,
clues as to the existence of DM are instead present on a wide
variety of scales, from cosmological to astrophysical (galactic
and subgalactic) ones. For technical reviews on DM, see,
for instance, [177-181]; for similar reviews on DE, see, for
instance, [182-186].

The late-time acceleration of our universe, however, is
most likely not the only period of accelerated expansion
that our universe has experienced. A period of accelerated
(exponential) expansion during the very early universe, prior
to the conventional radiation and matter domination epochs,
is required to solve the horizon, flatness, and monopole prob-
lems. This period of accelerated expansion is known as infla-
tion (see, e.g., [187-196] for pioneering work), and a vast class
of models attempting to reproduce such period exists in the
literature (for an incomplete list, see, e.g., [197-206] and ref-
erences therein, see also, e.g., [207-231] for more recent infla-
tionary model-building which is extremely closely relevant to
mimetic gravity and variations of it). For reviews on inflation,
see, for instance, [232-236]. Inflation also purports to be the
mechanism generating primordial inhomogeneities which
are quantum in origin [237, 238], providing the seeds which
grow under gravitational instability to form the large-scale
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structure of the universe. The fact that the universe presum-
ably undergoes acceleration at both early and late times or,
equivalently, at high and low curvature is very puzzling and
might be hinting to a more profound structure.

It thus appears that concordance cosmology requires at
least three extra (possibly dark) cosmological components:
one or more dark matter components, some form of dark
energy, and one or more inflaton fields. There is no shortage
of ideas as to what might be the nature of each of these
components. Nonetheless, adding these three or more com-
ponents opens another set of questions, which include but
are not limited to the compatibility with the current SM and
the consistency of formulation. On the other hand, gravity
is the least understood of the four fundamental interactions
and the most relevant one on cosmological and astrophysical
scales. If so, it could be that our understanding of gravity
on these scales is inadequate or incomplete, and modifying
our theory of gravitation could indeed be the answer to the
dark components of the universe. One could argue that this
solution is indeed more economical and possibly the one
to pursue in the spirit of Occam’s razor. In other words,
modifications to Einstein’s theory of General Relativity might
provide a consistent description of early and late-time accel-
eration and of the dark matter which appears to pervade the
universe. Modified theories of gravity not only can provide
a solution to the “dark universe riddle” but also possess a
number of alluring features such as unification of the various
epochs of acceleration and deceleration (matter domination)
of the universe’s evolution, transition from nonphantom to
phantom phase being transient (and thus without Big Rip),
solution to the coincidence problem, and also interesting
connections to string theory.

Having presented some motivation to modify our theory
of gravitation, we now proceed to briefly discuss systematic
ways by means of which this purpose can be achieved.

1.2. How to Modify General Relativity? Essentially all attempts
to modify General Relativity are guided by Lovelock’s theo-
rem [239]. Lovelock’s theorem states that the only possible
second-order Euler-Lagrange expression obtainable in 4D
space from a scalar Lagrangian density of the form & =
Z(gy,)> where g, is the metric tensor, is given by the
following:

E¥ = B+-g <R’” - %g’”R) +x/-g99", 0y

where $and  are constants and R*” and R are the Ricci tensor
and scalar, respectively. It follows that constructing metric
theories of gravity whose equations differ from those of GR
requires at least one of the following to be satisfied:

(i) Presence of other fields apart from or in lieu of the
metric tensor
(i) Work in a number of dimensions different from 4

(iii) Accept metric derivatives of degree higher than 2 in
the field equations

(iv) Giving up locality or Lorentz invariance

Therefore, we can imagine broadly classifying the plethora
of modified gravity theories according to which of the above
assumptions is broken.

1.2.1. New Degrees of Freedom. Relaxing the first assumption
leads to what is probably the largest class of modified gravity
theories. Theories corresponding to the addition of scalar
degrees of freedom include quintessence (e.g., [240-242])
and coupled quintessence (e.g., [243]) theories, the Chern-
Simons theory (e.g., [244]), Cuscuton cosmology (e.g., [245—
247]), Chaplygin gases (e.g., [248, 249]), torsion theories such
as f(T') theories (e.g., [250-253], see also, e.g., [254-264] for
recent work) or the Einstein-Cartan-Sciama-Kibble theory
(e.g., [265-268]), scalar-tensor theories (e.g., [269]) such as
the Brans-Dicke theory [270], ghost condensates (e.g., [271]),
galileons (e.g., [272, 273]), KGB [274], Horndeski’s theory
[275], and many others.

One can instead choose to add vector degrees of freedom,
as in the case of the Einstein-aether theory (e.g., [276-280]).
The addition of a vector field leads to the introduction of
a preferred direction in space-time, which entails breaking
Lorentz invariance.

Theories where tensor degrees of freedom are added
include Eddington-Born-Infeld gravity (e.g., [281-284]) and
bimetric MOND (e.g., [285, 286]) among others. TeVeS
(tensor vector scalar gravity, [287]) is instead a theory which
features the addition of all three types of degrees of freedom
together.

Broadly speaking, mimetic gravity belongs to the class
of theories of modified gravity where an additional scalar
degree of freedom is added. Caution is needed with this
identification though because, as we shall see later, mimetic
gravity does not possess a proper scalar degree of freedom,
but rather a constrained one.

1.2.2. Extra Dimensions. Relaxing the second assumption
instead brings us to consider models with extra dimensions,
the prototype of which is constituted by Kaluza-Klein models
(e.g., [288-290]). Models of modified gravity with extra
dimensions abound when considering string theory, includ-
ing Randall-Sundrum I [291] and II [292] models, Einstein-
Dilaton-Gauss-Bonnet gravity (e.g., [293, 294]), cascading
gravity (e.g., [295-298]), and Dvali-Gabadadze-Porrati grav-
ity (e.g., [299, 300]). Another interesting theory that falls
within the extra dimension category is represented by 2T
gravity [301].

1.2.3. Higher Order. The most famous and studied example
of a theory falling within this category is undoubtedly
represented by f(R) gravity ([302], see also, e.g., [60, 65-
67, 303-309] or [310] for black holes phenomenology). In
fact, unification of inflation and late-time acceleration was
proposed in the context of f(R) gravity in [303, 305, 311-
313]. Belonging to the same family are also variations of the
former such as f(RWR‘“’), f(@R), f(R,T), f(RT, R’”Tw)
gravity (see, e.g., [132, 314-323]), but also Gauss-Bonnet (see,
e.g., [324-334]) and conformal gravity (see, e.g., [335-337]).
Another well-known theory which lies within this family is



represented by Horava-Lifshitz gravity ([338], see also [339-
363], which also violates Lorentz invariance explicitly), and
correspondingly the vast category of Hofava-like theories,
including those which break Lorentz invariance dynamically
(e.g., [356, 361, 362, 364-372]).

1.2.4. Nonlocal. If we choose to relax the assumption of
locality (we have already seen cases where the assumption
of Lorentz invariance is relaxed above), we can consider
nonlocal gravity models whose action contains the inverse
of differential operators of curvature invariants, such as
f(R/O) and f(RWEI_lRW) gravity (e.g., [373-377]). Some
degravitation scenarios belong to this family as well (e.g.,
[378, 379]).

Broadly speaking, mimetic gravity belongs to the class of
theories of modified gravity where an additional scalar degree
of freedom is added. Caution is needed with this identifi-
cation though because mimetic gravity does not possess a
proper scalar degree of freedom. Instead, the would-be scalar
degree of freedom is constrained by a Lagrange multiplier,
which kills all higher derivatives. As such, the mimetic field
cannot have oscillating solutions and the sound speed satis-
fies ¢, = 0, confirming that there is no propagation of scalar
degrees of freedom (however, this is true only in the original
mimetic model but does not necessarily hold in extensions
thereof). Furthermore, the same Lagrange multiplier term
introduced a preferred foliation of space-time, which breaks
Lorentz invariance (although this is preserved at the level of
the action). These aspects of mimetic gravity will be discussed
in more detail in the following section.

2. Mimetic Gravity

The expression “mimetic dark matter” was first coined in a
2013 paper by Chamseddine and Mukhanov [69] although,
as we shall see later, the foundation for mimetic theories
had actually been developed a few years earlier in three
independent papers [380-382]. In [69], the proposed idea
is to isolate the conformal degree of freedom of gravity by
introducing a parametrization of the physical metric g, in
terms of an auxiliary metric g, and a scalar field ¢, dubbed
mimetic field, as follows:

G = _g,uvg{xﬁaoc(paﬁ(/)' 2)

From (2) it is clear that, in such a way, the physical metric is
invariant under conformal transformations of the auxiliary
metric of the type g,, — Q(, x)zjjw, Q(t,x) being a
function of the space-time coordinates. It is also clear that,
as a consistency condition, the mimetic field must satisfy the
following constraint:

gwap.gbav(/) =-L 3)

Thus, the gravitational action, taking into account the
reparametrization given by (2) now takes the form:

I= % j/% d4x\/m [R (gyv’¢) + zgm] ,  (4)
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where ./ is the space-time manifold, R = R(g,,,¢) is the
Ricci scalar, &, is the matter Lagrangian, and g = g(g,,,, $)
is the determinant of the physical metric.

By varying the action with respect to the physical metric
one obtains the equations for the gravitational field. However,
this process must be done with care, for the (variation of the)
physical metric can be written in terms of the (variation of
the) auxiliary metric and the (variation of the) mimetic field.
Taking this dependency into account, variation of the action
with respect to the physical metric yields [69]

G;w - T[w + (G - T) ay¢av¢ =0, (5)

where G, R,, — gu,,R/2 is the Einstein tensor, with
R, being the Ricci tensor, while G (= —R) and T are the
trace of Einsteins tensor and the stress-energy tensor of
matter, respectively. Notice that the auxiliary metric does
not enter the gravitational field equation explicitly, but only
through the physical metric, whereas the mimetic field enters
explicitly. In fact, the mimetic field contributes to the right-
hand side of Einstein’s equation through an additional stress-
energy tensor component:

T,, =—(G-T)0,$0,$. (6)

We note that both energy-momentum tensors, T}, and Tw,
are covariantly conserved, that is, V¥T,,, = V“Tw = 0 (with
V¥ the covariant derivative), whereas the continuity equation

for Tw with the mimetic constraint (3) leads to

V(G- T) o) = %axw——gm- T) 43, 9)

(7)
=0.
Finally, the trace of (5) is found to be
(G-T)(1+g"9,¢40,9) = 0. (8)

It is clear that the above is automatically satisfied if one takes
into account (3) even if G # T. Thus, the theory admits
nontrivial solutions and the conformal degree of freedom
becomes dynamical even in the absence of matter (T' = 0 but
G #0) [69].

Let us examine the structure of the mimetic stress-energy
tensor. Recall that the stress-energy tensor of a perfect fluid
whose energy density is p and pressure p is given by

Tyv = (P + P) U,y + PGy
)
u,ut = ~1.

Notice that the mimetic stress-energy tensor in (6) assumes
the same form of the one of a perfect fluid with pressure
p = 0 and energy density p = —(G - T), while the gradient
of the mimetic field, d,¢, plays the role of 4-velocity. Thus,
the mimetic fluid is pressureless, suggesting it could play the
role of dust in a cosmological setting. To confirm whether the
mimetic fluid can indeed play the role of dust, it is necessary
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to investigate cosmological solutions. In fact, this is easy
to do on a Friedmann-Lemaitre-Robertson-Walker (FLRW)
setting, with a metric of the form:

ds* = —dt* + a (t)* dx*, (10)

where a = a(t) is the scale factor. If we take the hyper-
surfaces of constant time to be equal to those of constant
¢, we immediately see that the constraint equation (3) is
automatically satisfied if the mimetic field is identified with
time up to an integration constant (which we arbitrarily set
to 0). Thus, the mimetic field plays the role of “clock” on an
FLRW background. It is then easy to show that (7) implies
that (G — T'), which corresponds to the energy density of
the mimetic stress-energy tensor, decays with the scale factor
of the FLRW universe as (G — T) o 1/a’. Recall that the
energy density of a component with equation of constant state
parameter w evolves as a>®* in an FLRW universe, and
hence the evolution in the energy density of the mimetic field
corresponds to w = 0, namely, the equation of state for dust.
In other words, the conformal degree of freedom of gravity
can mimic the behaviour of dark matter at a cosmological
level, hence the name “mimetic dark matter” [69].

Lagrange Multiplier Formulation. Before further discussing
some fundamental aspects of mimetic dark matter (or
mimetic gravity henceforth), such as the reason behind the
different solutions from GR despite the seemingly innocuous
parametrization given by (2), let us discuss an alternative
but equivalent formulation of mimetic gravity. The equations
of motion obtained from the action written in terms of
the auxiliary metric § are equivalent to those one would
conventionally obtain from the action expressed in terms of
the physical metric with the imposition of an additional con-
straint on the mimetic field. This suggests that the mimetic
constraint given by (3) can actually be implemented at the
level of the action by using a Lagrange multiplier. That is, the
action for mimetic gravity (4) can be written as

1

I==> I d'x\=g[R+A(g"0,40,4 + 1) +2Z,,]. )
2

Variation of the Lagrangian with respect to the Lagrange

multiplier field A leads to (3), while variation with respect to

the physical metric g,,, yields

G,y =T, +10,40,¢ = 0, (12)
whose trace, when one takes into account (3), is given by
A=(G-T). (13)

Thus, one recovers (5) again. In this review, we will always
make use of the action given by (11) to introduce the mimetic
field.

A remarkisin order here. Actions such as (11) had actually
been introduced three years before the term “mimetic dark
matter” was first coined. Three independent papers in 2010, by
Lim et al. [380], Gao et al. [381], and Capozziello et al. [382],
respectively, presented models with two additional scalar

fields, one of which playing the role of Lagrange multiplier
enforcing a constraint on the derivative of the other (see
also [383] for recent work on the role of Lagrange multiplier
constrained terms in cosmology). In fact, it was shown that
these types of models can produce a unified theory describing
dark energy and dark matter, because the term inside the
Lagrange multiplier can always be arranged in such a way
to reproduce the conventional expansion history of ACDM.
Thus, it is fair to state that mimetic theories had actually seen
birth prior to the 2013 paper by Chamseddine and Mukhanow.

2.1. Understanding Mimetic Gravity. Before we can make
further progress in exploring solutions in mimetic gravity,
generalizing the theory, or studying connections to other
theories, we need to touch on two very important points:
first, why the seemingly innocuous parametrization given
by (5) has led to a completely new class of solutions not
contemplated by GR, and second, whether the theory is stable
or not. As we shall see, the first point can ultimately be
explained in terms of singular disformal transformations.

It might appear puzzling at first that, only by rearranging
parts of the metric, one is faced with a different model alto-
gether. A first explanation appeared in [70], which explained
this property in terms of variation of the action taking
place over a restricted class of functions. This is the case in
mimetic gravity, precisely because the consistency equation
(3) enforces an additional condition for any admissible
variation of the action, in particular demanding that

tfin
[ VOt = (5 -t). 0= 79090 (14)
Thus, for a spatially homogeneous mimetic field ¢ = ¢,
¢ = Q. Varying over a restricted class of functions now
provides less conditions for the stationarity of the action and
hence more freedom in the dynamics. This is a well-known
property relevant when one makes derivative substitutions
x = f(p) into an action I(x,t): the class of functions over
which the variation is admissible does not only comprise
those for which the variation of x is vanishing at the boundary
but also those where the integral of the variation of x is zero.
This extra restriction leads to less conditions for stationarity
of the action and the appearance of additional dynamics with
respect to the original case.

Another explanation was presented in [71], which iden-
tified mimetic gravity as a conformal (Weyl-symmetric)
extension of GR. The first important point to notice is that
the parametrization g*” = g""(g"”, ¢) is noninvertible even
for fixed ¢, owing to the fact that the map g — g, ¢ is a map
from ten variables to eleven. With this parametrization, the
theory is manifestly conformally invariant, that is, invariant
with respect to transformations of the auxiliary metric (and
correspondingly the action I) of the form:

0uTy () = 6 (%) g (),
a[xI [g;w (gyw ¢)] =0,

where a(x) is a function of the space-time coordinates. Two
immediate corollaries of the theory’s conformal invariance

(15)



are its yielding of identically traceless equations of motion for
the gravitational field and requiring conformal gauge fixing.
In fact, recall that the equation of motion for the gravitational
field (5) is automatically traceless if the consistency condition
given by (3) is satisfied. Therefore, we can identify (3) with
the conformal gauge condition in the locally gauge-invariant
theory with action I[g,,,(g,,,» ¢)]. Mimetic gravity can thus be
seen as a conformal extension of GR which is Weyl-invariant
in terms of the auxiliary metric g,,. However, this theory
is quite different from the oft-shell conformal extensions of
GR proposed in [384] (which preserves GR on-shell but
modifies its effective action off-shell); here the gravitational
action is already modified at a classical level, by adding an
extra degree of freedom provided by a collisionless perfect
fluid. This additional degree of freedom, which can mimic
collisionless cold dark matter for cosmological purposes,
arises from gauging out local Weyl invariance.

2.1.1. Singular Disformal Transformations. As we anticipated
above, mimetic gravity and the appearance of the extra
degree of freedom which can mimic cosmological dark
matter are rooted into the role played by singular disformal
transformations. As was shown by Bekenstein [385], because
GR enjoys invariance under diffeomorphisms, one is free to
parametrize a metric g, in terms of a fiducial metric g,
and a scalar field ¢. The map between the two is defined as
a “disformal transformation,” or a “disformation,” and takes
the following form:

Gy = 4 (¢’ X) g/w + % (¢’ X) aﬂ¢av¢’ (16)

where X = §0,¢0,¢. The functions o/ and 9 are referred
to as conformal factor and disformal factor, respectively. In
general the functions o/(¢, X), %B(¢, X) are arbitrary, with
o # 0.1t is easy to show that, provided the transformation is
invertible, the equations of motion for the theory (obtained
by variation of the action with respect to g, and ¢) reduce
to those of obtained by varying with respect to the metric g,,,
[79].

To make progress, it is useful to contract the two equa-
tions of motion with g,, and 0,¢0,¢. Although we will not
perform the steps explicitly, it is easy to show that this leads
to the following two equations of motion:

(o2}
0X 0X

w22 g
0X ’

17)

szaﬂ _
0X

where the two quantities () and w are defined as

Q= (le - le) g;w’
(18)
w=(G" =T")0,$0,¢.

The determinant of system (17) is given by

det = ngzri (,93’ + 52_7>. (19)
X X
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If the above is nonzero, it is trivial to obtain that the resulting
set of equations consists of Einstein’s equation (G, = T,,)
and a second empty equation. Therefore, the theory does not
feature new solutions with respect to GR [79].

The situation is quite different if the determinant in
(19) is zero, which corresponds to the physical case when
the disformal transformation given by (16) is noninvertible
or singular. In this case, being the function & + 0, this
immediately determines 98, which is of the form:

axe--LEY @), @
where &(¢) # 0 is an arbitrary function. We will not show
the steps explicitly, which are instead discussed in detail in
Section IV of [79], but it is not hard to obtain the equations
of motion and notice that they differ from those of GR,
due to the presence of an extra term on the right-hand
side of Einsteins equation (i.e., an additional contribution
to the stress-energy tensor). Therefore, when the disformal
transformation is singular, one is faced with the appearance of
extra degrees of freedom which result in equations of motion
differing from those of GR [79].

The parametrization (5) defining mimetic gravity can be
identified with a singular disformal transformation, with o =
X and % = 0in (16), and correspondingly & = 1 in (20). In
general, when the relation defined by (20) exists between the
conformal factor & and the disformal factor 9, the resulting
disformal transformation is singular and, as a result, the
system possesses additional degrees of freedom, explaining
the origin of the extra degree of freedom in mimetic gravity
which mimics a dust component. This aspect has been at
the center of a number of studies recently; see, for instance,
[79, 90, 96, 102, 104, 107, 128, 140, 142, 386-389]. Moreover,
[104] has shown that the two approaches towards mimetic
gravity (and further extensions to be discussed later, such
as mimetic Horndeski theories), namely, Lagrange multiplier
(11) and singular disformal transformation (16), are in fact
equivalent.

2.1.2. Mimetic Gravity from the Brans-Dicke Theory. There
actually exists a third route to mimetic gravity, apart from
disformal transformations and Lagrange multiplier, whose
starting point is the singular Brans-Dicke theory. Namely, by
starting from the action (4) (neglecting matter terms) and by
performing the conformal transformation given by (5), we
end up with the action [129]:

g"'0,Xo0,X
1g.0) - [atna(xr@+ 37200 @

X

where we have defined X = §"'0,¢0,¢/2. One immediately
sees that (21) corresponds to the singular/conformal Brans-
Dicke action [270] with density parameter w = —3/2. Thus,
we conclude that a third way of obtaining mimetic gravity is
by substituting the kinetic term in lieu of the scalar field in
the singular Brans-Dicke action [129]. In case matter fields are
included, the substitution has to be performed on the matter
part of the Lagrangian as well, which means that matter will
not be coupled to g, but to 2Xg,,, [129].
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2.2. Stability. Is mimetic gravity stable? In other words, does
its spectrum contemplate the presence of states with negative
norm, or fields whose kinetic term has the wrong sign (cor-
responding to negative energy states), which could possibly
destabilize the theory? This is an important question which
has yet to find a definitive answer. Recall that the original
mimetic theories formulated in 2010 were found to suffer
from a tachyonic instability [390]; therefore, the question of
whether mimetic gravity is stable is totally pertinent.

If we formulate the theory of mimetic gravity using the
physical metric g,,, we inevitably incur into the risk of
the appearance of higher derivatives of the mimetic field,
which could entail the emergence of ghosts. Addressing this
question requires performing a Hamiltonian analysis of the
theory, identifying all constraints and counting the local
degrees of freedom. A preliminary analysis of this problem
was conducted in [71], which concluded that the theory is
stable if the energy density of the mimetic field e = T -
G = T + R is positive. This condition is, of course, easy
to understand physically. Moreover, it indicates a preference
for de Sitter-type backgrounds with a positive cosmological
constant, since in that case both contributions to the energy
density, given by curvature and trace of the matter stress-
energy tensor, are positive. Therefore, it is presumed that
mimetic is gravity is stable provided the time evolution of the
system preserves the positivity of the energy density stored
in the mimetic degree of freedom. The work of [71] also
identified another possible instability issue, namely, caustic
singularities (which are not dangerous at the quantum level,
unlike ghost instabilities). These are presumably due to the
pressureless nature of the mimetic field and can possibly
be circumvented if one modifies the theory with higher
derivative terms, as we will discuss later.

The analysis of [71] imposed the conformal gauge con-
dition (3) prior to proceeding to the canonical formulation.
A proper analysis should instead take place in full generality
and has been conducted in [75]. This analysis finds that the
Hamiltonian constraint depends linearly on the momentum,
which in most cases signals that the Hamiltonian density
of the theory is unbounded from below, a classical sign of
instability. As anticipated, this occurs frequently for higher
derivative theories, which are prone to the Ostrogradski
instability. The work in [75] concluded, as [71], that mimetic
gravity is stable as long as the energy density in the dust
degree of freedom in the theory remains positive. However,
this is not always consistent with the dynamics of the theory,
given that for some initial configurations, the energy density
could start its evolution with a positive value but then end
up with a negative value, which would cause instability. In
fact, [75] finds that the requirement that the theory be stable
correspond to the requirement that initial configurations do
not cross the surface for which the momentum conjugate to
the mimetic field, p, satisfies pg = 0.

A possible solution to these instability issues was pre-
sented in [71] and studied in [75]. The idea is to modify the
parametrization (5) by making use, instead of the gradient of
a scalar field, of a dynamical vector (Proca) field:

I = _gyvg“ﬁucxuﬁ- (22)

The Proca field is made dynamical by adding a Maxwell
kinetic term F? to the action, where F is the field-strength
tensor of the vector field. It is beyond the scope of our
review to provide details of the analysis, conducted in [75]
which finds that the Hamiltonian in the Proca mimetic model
shows no sign of instability. Furthermore, [75] proposes an
interesting extension of mimetic gravity to a mimetic tensor
vector scalar model, by generalizing (2) to

G = _f ((/5) gyvgaﬁuauﬁ’ (23)

where now both the scalar and vector degrees of freedom
contribute to mimetic matter. It is furthermore demonstrated
that the theory is free of ghosts [75].

Another recent work confirmed in all generality that the
original mimetic gravity theory suffers from ghost insta-
bility [140], in the following way. It is immediate to show
that mimetic gravity is invariant under the local symmetry
defined by

8¢ =0,

oo 3B (24)
6.9[41/ =€ <a_Xg;w + a_Xay(pav(p) >

where as usual & and % correspond to the conformal and
disformal factors. Being &/ = X and # = 0 for mimetic
gravity, (24) corresponds as expected to invariance of the
physical metric under conformal transformations of the aux-
iliary metric. In the Hamiltonian description, this symmetry
is associated with a first class constraint. In fact, one can
show that the primary constraint, which corresponds to the
generator of infinitesimal conformal transformations, is first
class, with its Poisson commuting with the Hamiltonian and
momentum constraints. This leaves no place for a secondary
constraint which could eliminate the Ostrogradski ghost.
Thus, this result confirms indeed that the original mimetic
gravity proposal suffers from a ghost instability.

3. Solutions and Extensions of Mimetic Gravity

Having discussed the underlying physical foundation of
mimetic gravity, and its stability, we can now proceed to study
solutions and extensions of this theory.

3.1. Potential for Mimetic Gravity. Recall that, in a cosmolog-
ical setting, the mimetic field plays the role of “clock.” There-
fore, one can imagine making the mimetic field dynamical
by adding a potential for such field to the action. A field-
dependent potential corresponds to a time-dependent poten-
tial which, by virtue of the Friedmann equation, corresponds
to a time-varying Hubble parameter (and correspondingly
scale factor). Therefore, by adding an appropriate potential
for the mimetic field, one can in principle reconstruct any
desired expansion history of the universe. This is the idea
behind the minimal extension of mimetic gravity first pro-
posed in [73]. The action of mimetic gravity (in the Lagrange



multiplier formulation) is thus extended to include a potential
for the mimetic field:

I= % J/% d'x\—g
[R+A(g"0,40,¢+1) -V (¢) +2Z,,].
The equations of motion of the theory are then given by
Gy = 240,80,¢ = g,uV ($) = Ty» (26)

which, by taking the trace, can be used to determine the
Lagrange multiplier:

(25)

A:%(G—T—4V). (27)

When plugged into (26), (27) yields
G,y = (G—T —4V)0,40,¢ + g,V (¢) + T, (28)

Of course, variation with respect to the Lagrange multiplier as
usual yields the constraint (3). Thus, when a potential is added
to the action, the mimetic field contributes a pressure and
energy density of p = =V and p = G-T-3V, respectively [73].
One further equation of motion can be derived by varying the
action with respect to the mimetic field, which gives

VIG-T-4V)a,¢) = -2, (29)
¢
when taking into account the expression for the Lagrange
multiplier (27).

To study cosmological solutions, it is useful to consider a
flat FLRW background (10), since therein the mimetic field
can be identified with time. In this case, it is not hard to show
that (29) reduces to [73]

1dy;

S le (p-V)] = (30)
which can be integrated to give
p= % Jda a’v, (31)
a
whereas the pressure remains p = -V. The Friedmann

equation can instead be manipulated to the form:
2H+3H> =V (1), (32)

where as usual the Hubble parameter is defined as H = d/a.
Further progress can be made by performing the substitution

y = a*?, which yields the following equation [73]:

y- ZV t)y=0. (33)

It should be noticed that the equations of motion simplify
greatly because of the identification of the mimetic field with
time on an FLRW background. In this way, the pressure
becomes a known function of time and y satisfies a linear dif-
ferential equation. We now proceed to study a few interesting
potentials and the corresponding solutions.
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311 Vxl1/ (/52 . Let us consider the following potential [73]:

a o«
Ve =G = (34)
Solving the corresponding (33) and substituting for the scale

2/3

factor, a = y*~, yield the following solution for o > —1/3:

_ 2/3
a(t) = (1/3)(1+V1430) (1 + Bt \/1+3a> i (35)
where 3 is an integration constant. For « < -1/3 the

solution describes an oscillating flat universe with amplitude
of oscillations which grows with time; however, the solution
presents singularities and for this reason we will not write
it down explicitly [73]. We can furthermore determine the
equation of state parameter (EoS) w = p/p if we recall that
the energy density is given by (31) whereas the pressure reads
p = —V. Explicit calculation gives the following:

1- ﬁt—\/1+306 B
w=-3a| 1+ V] +3a0——— (36)
1+ﬁt—\/1+3(x

It is interesting to note that, for « > 1, the EoS approaches
w = —1, that is, a cosmological constant, at late times.

We can consider the case where mimetic matter is a
subdominant energy component in the universe, which is
instead dominated by another form of matter with EoS w.
The scale factor in this situation evolves as

a o t2/3(1+ﬁ), (37)

and hence (31) can be used to deduce the evolution of the
energy density of mimetic matter, which decays as

(38)

Given that the pressure of mimetic matter reads p = -V,
we immediately see that the EoS for mimetic matter is w =
w, demonstrating that mimetic matter, when subdominant,
can imitate the EoS of the dominant energy component [73].
A comment is in order here. Mimetic matter can only be
subdominant if «/w < 1. If this condition is not satisfied,
mimetic matter will only start imitating the dominant matter
component at late times, while acting as a cosmological
constant at earlier times.

3.1.2. Power-Law Potential. We can consider an arbitrary
power-law potential:

V(¢) = ag” = at”, (39)

for which the solution of (33) can be written in terms of the
Bessel functions [73]:

1/2 -3« (n+2)/2
=t""Z t . 40
y 1/(n+2) ( — ) (40)
For n < -2 (with n = -2 corresponding to the case we

have studied previously) the limiting behaviour of the scale
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factor is that of a dust-dominated universe, with EoS w = 0.
For n > -2 and & < 0 (which corresponds to a positive
pressure), the corresponding solution is a singular oscillating
universe. For n > -2 and « > 0 instead, the pressure
is negative and hence we expect accelerating solutions [73].
In fact, n = 0 corresponds to a cosmological constant as
expected (the potential is simply a constant), whereas n = 2
gives an inflationary expansion solution with scale factor:

2
a o t—1/3e af12t (41)

>

which resembles that of chaotic inflation sourced by a
quadratic potential [73].

3.1.3. Inflation in Mimetic Gravity. One can always recon-
struct the appropriate potential for the mimetic field which
can provide an inflationary solution. The method is very
simple: choose a desired expansion history of the universe
[encoded in the Hubble parameter H or equivalently in
the scale factor a(t)], find the corresponding y-parameter
througha = y**, and then invert (33) to find the correspond-
ing potential which can provide the desired expansion:

4y
\%4 =V(t) ==
(@) =ve =5 (42)
As an example, we can consider the following potential [73]:
ag’
Vi(¢) = , (43)
() e$+1

whose corresponding solution for the scale factor is exponen-
tial (a oc eitz) for large negative times and corresponding
to EoS w = 0 (i.e., dust, a o t2/3) at late times. Thus, we
see that with this potential mimetic gravity can provide us
with an inflationary solution with graceful exit to the matter
dominated era [73].

Another interesting possibility is given by an exponential
potential [83]:

V(¢) = ae ™ = ae™. (44)

In this case, the scale factor can be expressed in terms of
Bessel functions of the first and second kinds [83]:

a(t)
— — 2/3 (45)
_ [ﬁ]o < . 3oce_k¢/2) Y, ( V K3oce_kt/z>] ’

K

where f and y are integration constants and ], and Y, are
the modified Bessel functions of order zero, of the first and
second kinds, respectively. At late times, the behaviour of the
scale factor is that of a matter dominated universe, that is,
with EoSw = 0 (a o t¥3). At early times the behaviour
of the scale factor depends on the sign of «, in particular
providing us with an inflationary solution for & > 0, whereas
the solution is a bouncing nonsingular universe for a <
0. A similar behaviour can be obtained if one chooses the
potential:

0“/)211 (thn

il el

v(9)- (46)

that is, a solution with inflation at early times and matter
domination at late times. More complicated potentials which
can reproduce qualitatively similar behaviours were studied
in [103].

3.1.4. Bouncing Universes in Mimetic Gravity. As we have
already seen in previous cases, one can easily construct
bouncing solutions in mimetic gravity. Let us work through
one further example here. Consider a potential of the form:

4 1 4 1

Vi) =+ =3 : 47

Sy 2wy W
As usual, the scale factor can be determined by solving (33),
which yields [73]

a(t) = [\/t2 +1(1 + Barctan t)]

If we set the integration constant f3 to 0, the corresponding
energy density and pressure (one again, refer to (31) and recall
that p = —V) are given by

7 (48)

2

_4
Po3se)
(49)
g1
3(1 +t2)2.

At very early times (large negative t) the EoS approaches
w — 0; the universe is dominated by dust and contracts. At
a certain time corresponding to [f| ~ 1, the energy density
drops suddenly to zero, after which the universe begins
expanding. During the first instants of the expansion (within
one Planckian time), the energy density of the universe is
Planckian but subsequently drops as the expansion proceeds
as a conventional expansion in a dust-dominated universe.
The interesting feature of this potential is that the EoS crosses
the phantom divide without singularity. This remains true
even in the general case where the integration constant f3 is
nonzero, provided || < 2/m [73].

In the case we have just examined, the bounce occurs at
the Planck scale, and hence the classical analysis we provided
might not be valid as quantum gravity effects would be
playing an important role. However, a minimal modification
allows lowering the scale of the bounce and correspondingly
increases the duration of the bounce (which now lasts more
than a Planckian time). The corresponding potential which
can provide this behaviour is given by [73]

4 a 4 «
4 (¢) 3o 237, 2
(e +¢7) (g +1?)
Although we will not show the solution explicitly, in this case

the scale of the bounce is reduced to o/ t(z) and the duration of
the bounce is now t,, [73].

(50)

3.2. Mimetic F(R) Gravity. The next step which was per-
formed by Nojiri and Odintsov is to generalize mimetic
gravity to mimetic F(R) gravity [81]. In this theory we expect
to have two additional degrees of freedom compared to GR:
the constrained (nonpropagating) scalar degree of freedom of
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mimetic gravity and the additional scalar degree of freedom
arising from the F(R) term. The action of the theory is given
by [81]

I_de\/ 9 (G ®) [F(R(G,00)) + Z0], 5D

where as usual the relation between the physical and auxiliary
metric and the mimetic field is given by (2), and the constraint
equation (3) has to be satisfied. Because of this, the action
of mimetic F(R) gravity can be equally written employing a
Lagrange multiplier field analogously to (11) [81]:

1= [dxy=5[F (R (gn)) -V (9)

+1(g"0,90,6+1)+ Z,,],

where the Lagrange multiplier enforces the constraint on the
gradient of the mimetic field and in addition we have added
a potential for the mimetic field.

The equations of motion of the theory are slightly more
complicated than that of conventional mimetic gravity. Vary-
ing with respect to the metric gives the gravitational field
equations [81]:

(52)

1
0=>gF (R - R, F' (R) +V,V,F' (R)

- g0 R+ 3, [V (9) +1(672999)] 59

- A0,¢0,¢ + 5 T,
Variation with respect to the mimetic field instead yields the
following equation [81]:
dv
2V#(A0,¢) + —— = 0. 54
As usual, by construction, variation with respect to the
Lagrange multiplier gives the mimetic constraint:

gway(pav(/) =-L (55)

As we have mentioned previously, in mimetic F(R)
gravity one has two additional degrees of freedom. Therefore,
by appropriately tuning either or both the potential for
the mimetic field, or the form of the F(R) function, one
can reconstruct basically any desired expansion history of
the universe. On the other hand, the interpretation of the
cosmological role played by mimetic dark matter remains the
same as in mimetic gravity [81].

Let us proceed to study some of the properties of mimetic
F(R) gravity in a cosmological setting. As usual, we consider
a flat FLRW universe, and we model the matter contribution
as that of a perfect fluid with energy density p and pressure p.
Assuming that the mimetic field depends only on time, (53),
(54), and (55) can be expressed as follows [81]:

dF' (R)
dt (56)

0=-F(R)+6(H+H")F (R) - 6H

~AM(P+1)+V () +ps
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~ . d*F' (R) dF' (R)
0=F(R)-2(H+3H)+2—5— +4H— -
~A($ 1) -V (¢)+p,
d dv
0=2—(Ag) + 6HA$ - 0’ (58)
0=¢"-1. (59)

The last equation shows that up to an integration constant,
which we can set to zero, the mimetic field can be identified
with time just as in ordinary mimetic gravity. Thus, (58) can
be expressed as follows:
250 '
2(H+3H)+ Pl Z(R) cag TR
dt dt (60)

0=F(R) -

-Vi(®)+p,

which, if we assume that the contribution of ordinary matter
is negligible (p = p = 0), reduces to
sz (R)

dt*

V(t)=F([R)-2(H+3H)+2
(61)
dF' (R)
dt

On the other hand, (57) can be solved for A as follows:

+4H

A(t) = —%F (R)+3(H+H*)F (R) - 3H@, (62)

which shows that (59) is automatically satisfied.

The above equations put on a quantitative footing the
statement we previously made: namely, that by tuning the
behaviour of either or both the two additional scalar degrees
of freedom, we can reconstruct any possible expansion
history of the universe [81]. For instance, one can imagine
fixing the form of the scalar potential and then reconstruct
the form of F(R) which gives the wanted evolution [encoded
in H(t) or, equivalently, a(t)]. Alternatively, one can start
from a given form of F(R) which might not admit the wanted
evolution (e.g., matter dominated-like expansion followed
by accelerated expansion) and reconstruct the form of the
scalar potential which can allow for such expansion. It should
also be remarked that any solution in conventional F(R)
gravity is also a solution in mimetic F(R) gravity, but the
converse is not true. In [81] specific solutions which allow
unification of early-time inflation and late-time acceleration
with intermediate matter domination era, as well as bouncing
Universes, are studied and it is shown that they can be
implemented in mimetic F(R) gravity. Of course, the exact
forms of the mimetic potential or the F(R) function in these
cases are quite complicated; nonetheless, the study serves as
a proof of principle that, in such theories, one can realize any
given expansion history of the universe without the need for
dark components, which remains the main goal of modified
theories of gravity.

Three further recent studies by Odintsov and Oikonomou
[112, 120, 130] have demonstrated how one can, in mimetic
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F(R) gravity, realize inflationary cosmologies which are
compatible with Planck and BICEP2/Keck Array constraints
on the scalar spectral index and on the tensor-to-scalar ratio,
ng and r, respectively. Both the reconstruction (determination
of the potential once the form of F(R) and the evolutionary
history of the universe are given) and the inverse reconstruc-
tion (determination of the form of F(R) once the potential
and the evolutionary history of the universe are given) are
studied in detail and it is demonstrated that several viable
options for realizing inflation compatibly with observational
constraints are possible. However, the studies also point out
a possible weakness of mimetic F(R) gravity in this respect:
namely, the forms of both the mimetic potential and the
F(R) function can become extremely complicated. The forms
of both the mimetic potential and the Lagrange multiplier
increase in complexity as the complexity of the F(R) form
increases. Therefore, these and other studies on mimetic
F(R) gravity and extensions thereof should not be viewed as
the ultimate cosmological theory of everything, but rather
as a proof of principle that within these theories one can
reproduce basically any cosmological scenario and thus solve
the “dark universe” problems, although this might come at
the cost of sacrificing simplicity.

In addition, [112, 120, 130] also remarked that, although
in principle the forms of the mimetic potential and the
F(R) function can be arbitrary, it must be kept in mind
that, in order to realize viable inflation, a mechanism for
graceful exit to the conventional radiation dominated era
must be achieved. This entails ensuring that the theory
contains unstable de Sitter vacua, which eventually becomes
the cosmological attractor of the dynamical system. It is
precisely the functional form of F(R) which has to ensure
that graceful exit takes place. Therefore, in mimetic gravity,
although in principle the form of the potential is arbitrary,
the same cannot be said about the functional form of
F(R), which has to be such as to ensure graceful exit from
inflation. Therefore, in the interest of simplicity, a practical
approach to constructing a minimal model of mimetic F(R)
gravity with the desired inflationary properties would be
to choose the simplest possible functional form of F(R)
which ensures graceful exit from inflation, then performing
the reconstruction technique to determine the form of the
mimetic potential which allows the desired expansion history
following inflation to be realized. Another possible solution,
which we will discuss shortly, is to consider F(R, ¢) inflation
[95,116], where a dynamical scalar field ¢ is coupled to gravity.

3.2.1. Late-Time Evolution in Mimetic Gravity. So far we have
discussed mimetic gravity and variants thereof at early times,
that is, at the epoch when primordial curvature perturbations
were generated. However, it is also interesting to consider
late-time evolution in mimetic gravity. The equations of
motion are incredibly complex and in principle do not allow
for analytical solutions. However, this complexity can be
bypassed by means of the method of dynamical analysis (see,
e.g., [391-394]), which gives information about the global
behaviour of solutions. In particular, one proceeds by trans-
forming the equations of motion into their autonomous form

1

and extract the critical points. Subsequently perturbations
are linearized around these critical points and expressed in
terms of the perturbation matrix, the eigenvalues of which
determine the type and stability of the critical points.

A detailed dynamical analysis of mimetic F(R) gravity
was presented in [86]. This type of analysis allows us to bypass
the complexity of the equations of motion by extracting crit-
ical points and studying the corresponding observables, such
as the energy densities of the various energy components,
the corresponding EoS, and the deceleration parameter. In
particular, the analysis finds that the only stable critical
points, that is, those that can play the role of attractors at
late times, are those that exist in F(R) gravity as well. In
other words, stable solutions in mimetic F(R) gravity can
only affect the expansion history of the universe at early
and intermediate times, whereas at late times the expansion
history has to coincide with that driven by conventional
F(R) gravity. An immediate implication of this finding is
that, although mimetic F(R) gravity could drive inflation
differently from F(R) gravity, the late-time acceleration of
the universe in these theories has to coincide with the usual
F(R) gravity one [86]. However, these conclusions have been
reached only by studying the theory at the level of the
background. It is expected that different conclusions would
be reached if the same study would be performed at the
level of perturbations. This is true because the new terms
present in the equations of motion of mimetic F(R) gravity
compared to conventional F(R) gravity can contribute to
the perturbation equations, although they do not contribute
at the background level [86]. Finally, the energy conditions
required to avoid the Dolgov-Kawasaki instability in mimetic
gravity were studied in [108], which found that these are the
same as in conventional F(R) gravity.

As we mentioned above, the conclusions reached about
the late-time evolution in mimetic F(R) gravity hold only at
the background level. However, in conventional F(R) gravity,
there exists a serious problem during the late-time evolution
at the perturbation level, namely, that of dark energy oscilla-
tions [395] (see also, e.g., [396-399]). The degree of freedom
associated with the modification of GR (that is, dF(R)/dR)
leads to high frequency oscillations of the dark energy around
the line of the phantom divide during matter era. As a
consequence, some derivatives of the Hubble parameter may
diverge and become singular, and the solution is unphysical.
Usually in conventional F(R) gravity the problem is solved by
adding power-law modifications by hand.

In [153], it was instead argued that in mimetic F(R) gravity
it is possible to overcome the problem by a suitable choice
of the potential. By appropriately choosing the potential and
the Lagrange multiplier, it is possible to damp the oscillations
within a mimetic F(R) model whose corresponding conven-
tional F(R) model suffered from the oscillations problems.
The oscillations die out for redshifts z < 3, so there is no issue
with dark energy oscillations at our current epoch. Moreover,
the values of the dark energy equation of state and the
total equation of state are very close to the observed values.
The model can in principle be discerned from F(R) gravity
in that the predicted growth factor is lower in magnitude,
a very testable prediction in view of future experiments,
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further supporting the viability of mimetic F(R) gravity as a
cosmological framework.

3.2.2. Mimetic F(R, ) Gravity. The question of constructing
a theoretically motivated but at the same time simple model
for mimetic F(R) gravity which provides an early-time
inflation epoch, but at the same time graceful exit from the
latter, was addressed in [95]. Here, a model of mimetic F(R, ¢)
gravity was considered, where ¢ is a scalar field coupled to
gravity. We will not go into the details of the work, for which
we refer the reader to the original paper [95]. The basic idea is
to use the F(R) sector to reproduce a variety of cosmological
scenarios: among the ones considered in the paper were
accelerated cosmologies at high and low curvatures (thus
unifying inflation and late-time acceleration), with Einstein
gravity at intermediate curvatures. In particular, the acceler-
ated cosmologies are realized by making use of a “switching-
on” cosmological constant. The dynamical field ¢ evolves in
such a way to allow for graceful exit from the inflationary
period, thus making the vacua of the first de Sitter period
(corresponding to inflation) unstable. Entry into the late-time
accelerated epoch, represented by a stable de Sitter attractor,
is also made possible by the dynamical field, which thus
links all epochs of the expansion history of the universe
in a unified way. In the minimal case studied in [95], the
mimetic component ensures the presence of cosmological
nonbaryonic dark matter although, as we have extensively
discussed, it is possible by adding a suitable potential for the
mimetic field to obtain similar solutions, but with a different
form of F(R).

3.2.3. Nonlocal Mimetic F(R) Gravity. A further extension of
mimetic F(R) gravity was presented in [133], which embeds
the theory into the framework of nonlocal theories of gravity.
Recall that these theories were first presented in [373],
inspired by quantum loop corrections. These theories feature
nonlocal operators (i.e., inverse of differential operators) of
the curvature invariants. The prototype of nonlocal mimetic
F(R) gravity is given by the action [133]:

1= [axy=g[R(1+ £ (57'R))

+1(g"9,40,6+1)-V(¢)],

where as usual ¢ is the mimetic field and the Lagrange
multiplier term enforces the constraint on its gradient. It is
actually more useful to introduce an additional scalar field y,
which allows us to translate the action given by (63) to a local
scalar-tensor form, as follows [133]:

1= [a'x=g[R(+ 7 (¥) + By - B)
+1(g"9,40,6+1)-V(¢)],

where & is an additional Lagrange multiplier which enforces
the constraint on the scalar field y:

(63)

(64)

oy = R. (65)
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Aside from the two constraint equations obtained by varying
the action with respect to the Lagrange multipliers, variation
of the action with respect to the yields the gravitational field
equations [133]:

Ry (14 £ (1) =8) = 5 9,0R (1+ £ (¥) - §)
- 0,80y
- % 9,60,y +8,y0,¢) (66)

~ (900 -YY) (f () - €) - 13,40,¢
- gyvv (¢) .

Instead, variation with respect to the two scalar fields leads to
the following equations of motion [133]:

o¢+ f (y)R=0,

1 1dv (67)
3, (gd) = = 2L

In [133], this model was studied in detail making use of the
reconstruction technique. In particular, two forms for the
f(y) function have been studied: exponential and power-
law. It was shown that appropriate choices for the mimetic
potential, as expected, can give the desired expansion history
of the universe, which in the cases studied included viable
inflation unified with late-time acceleration with intermedi-
ate epoch compatible with Einstein’s gravity and cosmological
dark matter provided by the mimetic field, as well as solutions
with cosmological bounces.

3.3. Unimodular Mimetic Gravity. As we have seen, mimetic
gravity provides a geometric explanation for dark matter in
the universe, with dark matter emerging as an integration
constant as a result of gauging local Weyl invariance, without
the need for additional fluids. An older theory, known as
unimodular gravity [400] (see also [98, 401-419]), had instead
been proposed much earlier to solve, in a geometrical fashion
as well, one more of the conundrums of modern cosmology:
the dark energy problem. In this framework, dark energy
emerges in the form of a cosmological constant from the
trace-free part of Einstein’s field equations, with the trace-free
part which results in turn by enforcing the condition that the
square root of (minus) the determinant of the metric is equal
to 1, or in general a constant. It would therefore be interesting
to combine the two different approaches of mimetic gravity
and unimodular gravity into a single framework which could
geometrically explain both dark matter and dark energy by a
vacuum theory, without need for additional fluids. This is the
proposal of Nojiri et al. in [136].

In order to combine mimetic gravity and unimodular
gravity it is necessary to enforce two constraints. The first
is the constraint on the gradient of the mimetic field (3),
whereas the second is the unimodular constraint:

V-9=1 (68)
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In order to enforce these two constraints, it is conceptu-
ally simple to make use of two Lagrange multipliers. This
approach has two advantages. First, it keeps the two concepts
of mimetic and unimodular gravity separate and facilitates
the extraction of physical information. Second, it is as usual
more convenient to have the two constraints emerge from
the equations of motion. The action for unimodular mimetic
gravity thus reads [136]

= | d'x
I J (69)
(V=g (R-V(¢) -n(g"0,$0,6 +1) - 1) + 4],

where variation with respect to the Lagrange multiplier #
enforces the mimetic constraint (3), whereas variation with
respect to the Lagrange multiplier A enforces the unimodular
constraint (68).

The equations of motion for the gravitational field are
obtained by varying the action with respect to the metric and
are given by [136]:

0= 30 (R=V (9)-n(s0,05 +1) - 1)
(70)

1
- R;w + ’15#‘/’81/‘/5 + ET//W’

whereas variation with respect to the mimetic field yields the
usual equation of motion:
av
0=2V*(10,¢) - —. 71
(A9,9) -~ s (71)
Although we do not show the steps explicitly, for which we
refer the reader to the original paper [136], in the usual FLRW
setting it is possible to manipulate the Einstein equations in
order to get the following reconstruction equation for the
mimetic potential V(¢) = V(¢) (as usual, the mimetic field
can be identified with time):

2 r¢
Vg =v© =25 [ ara? et
dp (t)

2
+2 (—18H (t)° = 6H (t) dH®) | 4 H® )] )

dt dt?

The content of the above equation is clear: as in all exten-
sions so far discussed of mimetic gravity, one can always
reconstruct the potential for the mimetic field which can
provide the desired expansion encoded in H(t) or a(t). The
reconstruction technique is very powerful although, as we
have seen, the corresponding potentials are complicated and
somewhat hard to justify from first principles, although the
reconstruction technique serves in this case as a proof of
principle tool.

Having made this consideration, let us consider a few
examples where the reconstruction technique is applied. Let
us consider the following simple potential [136]:

V (¢) = 120 H ¢, (73)
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It can be easily shown that it leads to the following solution
for the scale factor a(t) and the Hubble parameter H(t):

a(t) = et

H(t) = H,

that is, a de Sitter cosmology. The functional forms of the
Lagrange multiplier are also quite simple and are given by the
following:

(74)

A(t) = 6Hy (1+ 2" Hyt),
(75)
n(t) = 3H;.

Another choice for the potential which leads to a physically
interesting solution is the following [136]:

gp2Ha3W) (1 + 5w+ 2w2)
V(¢) == 3
9(1+w)

for which the scale factor and the Hubble parameter read

(76)

>

a(t) — t2/3(1+w)’
2 (77)
Ht)= —> .
3t(1+w)

The above solution is that corresponding to an universe dom-
inated by a fluid with EoS w. The two Lagrange multipliers are
given by

8 (—3w(1 +w) + 0 (1 +5w + 2w2))
92 (1 + w)®

A(t) = ;

(78)
n() = M.

3t2 (1 + w)

Thus, we see that with two relatively simple choices of
potential it is possible to reconstruct two important expan-
sion histories of the universe: the late-time de Sitter phase
and the expansion dominated by a perfect fluid with arbi-
trary EoS. Although we will not discuss this case explicitly
here, for which instead we redirect the reader to [136], it
is possible by a choice of a more complicated potential,
to realize a viable inflationary model within unimodular
mimetic gravity, which is compatible with bounds from
Planck and BICEP2/Keck Array. Moreover, it has been shown
that graceful exit from these types of inflationary periods
can be achieved by ensuring that the corresponding de Sitter
vacua which drives the period of accelerated expansion is
unstable.

Two further comments are in order here. First, it is pos-
sible to provide an effective fluid description of unimodular
mimetic gravity [136]. Namely, manipulation of the Einstein
equations shows that the contribution of the unimodular and
mimetic parts of the action can be interpreted as that of a
perfect fluid carrying energy density p and pressure p as
follows:

p=G-T-4V,
- (79)
p=-V,

where V is defined as

V=-A({t)-V(t). (80)
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Furthermore, the effective energy density and pressure
defined as per above satisfy the continuity equation.

The second comment is related to the fact that the
unimodular constraint is enforced in a noncovariant way (cf.
the action given by (69), where one of the terms in A is not
multiplied by /=g). It is nonetheless possible to present a
covariant formulation of unimodular mimetic gravity via the
following action:

1= [ [y=g (R-n(g"3,90,6 +1) - 1)

uvpo
+ e aﬂavpg] ,

(81)

where a,,, is a three-form field, variation of which gives the
constraint d,A = 0, implying that the Lagrange multiplier A
is constant. On the other hand, the covariant version of the
unimodular constraint is obtained by variation with respect
to A, from which one is left with

V=g =€""70,a,,,. (82)

Further manipulation, for which we refer the reader to
[136], shows that the Friedmann equations one obtains from
the covariant version of unimodular mimetic gravity are
equivalent to those of the noncovariant version, and thus one
can reproduce precisely the same cosmological scenarios in
both theories.

3.3.1. Unimodular Mimetic F(R) Gravity. A minimal exten-
sion of the unimodular mimetic gravity framework we have
discussed so far is to consider unimodular mimetic F(R)
gravity, which is described by the action [138]:

I:Jd4x

V=g (FR) -V (¢) -n(g9,00,¢+1) - 1) (83
+/\].

As expected, the equations of motion are slightly more
complicated than in the unimodular mimetic case, but no
conceptual difficulty is added. Specifically, variation with
respect to the two Lagrange multipliers enforces the usual
unimodular and mimetic constraints, whereas variation with
respect to the metric gives rise to the equations for the
gravitational field [138]:

2 (P @ -V (9) +1(52.999+1) - 1)

— R‘m,F’ (R) — ﬂaﬂgbav(l) + VMV‘VF, (R) (84)
- gvaF, (R) =0.

Finally, variation with respect to the mimetic field yields the
following equation:

av

0=2V*(13,¢) - s (85)
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The more complex structure of the equations of motion com-
plicates the reconstruction procedure, that is, the equivalent
of (72), which now reads [138]

3/2
V(t) = a®”” Jdta O F @), (86)
2
where the function f(t) is given by
: : dF' (R)
ft)=- [18H (t)(H+H*)F' (R) - 6H’ 7
3/
_18HH® 1 6H Z t3(R) +(6H +2HH) F' (R)
(87)
.dF' (R) ,dF' (R) d*F' (R)
+ HH—dt +6H I -2H 2
d*F' (R)

2(H+6HH) +2 7
Despite the increased complexity of the equations of motion,
the same considerations apply as for unimodular mimetic
gravity, as well as all extensions of mimetic gravity hereto
considered. Namely, it is always possible to reconstruct any
viable cosmological expansion scenario, including unifica-
tion of inflation and late-time acceleration with intermediate
radiation and matter domination, with graceful exit from
inflation triggered by unstable de Sitter vacua. This can be
achieved by appropriately choosing either or both the form
of the mimetic potential or the function F(R). The price to
pay would eventually be a considerable complexity in the
functional form of both, which of course does not represent
a first principle obstacle [138].

3.4. Mimetic Horndeski Gravity. One can further consider
more general scalar-tensor theories, which can be “mime-
tized” according to the procedures we have described so
far, namely, through a singular disformal transformation or
through a Lagrange multiplier term in the action enforcing
the mimetic constraint. In fact, analogously to GR, one can
show that the most general scalar-tensor model is invari-
ant under disformal transformations, provided the latter is
invertible. This has been shown in all generality in [104].
One can then “mimetize” such theories by considering the
following action [104]:

I= J d4X\/—_g [g (gpw’ a)tlg;w’ cee a)tl e a)tpgpw’ (/)’
(88)

Oy, 0y 8) + A (90,90, +1)],

where p,q > 2 are integers and & is the Lagrangian density
which is a function of the metric and the mimetic field. In
general, the constraint enforced by the Lagrange multiplier
can be generalized to b(¢)g"”9,$0,¢ = —1, but for the sake of
simplicity we will set b(¢) = 1 here and redirect the reader
to the work of [104] for more general discussions, and for
the explicit form of the equations of motion. In fact, setting
b(¢) # 1 is basically equivalent to assigning a potential to the
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mimetic field. In [104] it was shown that the two approaches
to mimetic Horndeski gravity, namely, singular disformal
transformation and Lagrange multiplier, are equivalent.

Of course, the considerations made above can be applied
in the case of a specific scalar-tensor model, namely, Horn-
deski gravity [275] (see, e.g., [420-438] for further recent
work on the topic of Horndeski gravity and theories beyond
Horndeski). Recall that Horndeski gravity is the most general
4D local scalar-tensor theory with equations of motion no
higher than second order. The Horndeski action can be
written as a sum of four terms:

I= J dx\~gZy = j d'x\—g Zgw (89)
where &, s read

Zy=K (X’ ¢) >
Z) =-G;(X,¢)0¢,
%5 = Gox (%,9)[(09) - (V9,9) ] + RG, (X.9),

1 (90)
L5 = _gGs,X (X’ ‘/5)
(@) - 306 (V%) +2(V,9,9)’|
+ GV, V,4Gs (X, ¢),
where X = -g""V,¢V,4/2, (V,V,¢) = V,V,¢V,V'¢,
V9 = V(/SV"VPgbV V,¢, the functions K(X,¢),

G5(X, ), G4(X, ¢), G5(X, ¢) are free, and X denotes differ-
entiation with respect to X.

The mimetic version of the above Horndeski model has
been studied in a variety of papers recently (e.g., [104, 114,
128]). We report some particular cases taken into considera-
tion. We remark that the freedom in the free functions K, G,
G,, and Gs, as well as in the function b(¢) (which, when # 1,
is equivalent to providing a potential for the mimetic field),
results in the possibility of reproducing basically any given
expansion scenario of the universe. A specific model studied
in [104] is one where the functions take the form:

K (X, ) =
G; (X,¢) =0,

! )
G, (X ‘/5) E
Gs (X, ¢) = 0.

In this case, on a flat FLRW background the solution is given
by
a(t) = P

¢(t)—+\j:ln<t0> (92)
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with t, and integration constant and « = —8w/3(1 +w)?. Thus,
we see that the scenario under consideration has reproduced
the expansion history of a universe filled with a perfect fluid
with EoS w [104]. Another case considered in [104] is the
mimetic cubic Galileon model, where the functions take the
following form:

K (X, ¢) = o X,
G (X.¢) = ==
A3X
X (93)
Gy (X’ ‘/5) = 5
Gs (X, ¢) =0,

where the cut-off scale is subsequently set to A = 1. It is then
found that the model can reproduce the expansion history
of a universe filled with nonrelativistic matter, followed by
a cosmological constant dominated expansion analogous to
the late-time acceleration we are experiencing [104]. The case
of a nonminimal coupling to the auxiliary metric, g,, was
examined as well, which we will not report on here and for
which we will redirect the reader to the original paper [104].
To conclude, we report on the following specific case of
mimetic Horndeski model which was studied in [114]. The
Horndeski part of the action of the theory is given by

= J d*x\=g [« (XR + (09)’ - V,V,¢V*V'¢)
(94)
+ Y9G, V'V - Bprig |,

which corresponds to the following choice for the functions
discussed previously:

K

Il
(=}

>

$)
- $)
¢>)

>

Gs ¢,

1
=

(95)

<< X

Gy (X,
A number of solutions, 1nc1ud1ng cosmological bounces,
inflation unified with late-time acceleration, and future sin-
gularities, have been discussed. As a specific example, on a

flat FLRW background, the following choice of potential for
the mimetic field [114],

5

3V7 2
V(p)=-B+2V,+ _c (- )" (96)
1
gives rise to the following solution:

\%
H®) == (t-t), (97)
1
which represents a regular bounce solution. Another bounce
solution can be obtained by considering the following poten-
tial [114]:

» sinh® bep

—_— 98
a cosh® b¢p ©8)

V(¢) =
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for which the scale factor and correspondingly the Hubble
parameter read:

a(t) = aycosh bt,

sinh bt (99)

H@)=b .
® cosh bt

In Section 5 we will present a detailed discussion on a specific
mimetic Horndeski model, constructed as an extension of a
covariant Horava-like theory of gravity.

3.5. Einstein-Aether Theories, Hotava-Lifshitz Gravity, and
Covariant Renormalizable Gravity. In closing, we comment
on some connections between mimetic gravity and other
theories of modified gravity, such connections having been
identified recently: namely, the scalar Einstein-aether theory,
Horava-Lifshitz gravity, and a covariant realization of the
latter, that is, covariant renormalizable gravity.

3.5.1. Einstein-Aether Theories. An interesting connection
which can be identified is that between mimetic gravity
and Einstein-aether theories [276, 277] (see also [278-280,
439-444]). These are a class of Lorentz-violating generally
covariant extensions of GR. By Lorentz-violating generally
covariant we mean that Lorentz invariance is preserved at the
level of the action, only to be broken dynamically. In fact, the
theory contains a unit time-like vector u# (which is called
the aether) whose norm is fixed by a Lagrange multiplier
term in the action. This entails the fixing of a preferred rest
frame at each space-time point. In fact, mimetic gravity itself
dynamically violates Lorentz symmetry because the gradient
of the mimetic field fixes a preferred direction in space-time.

To be precise, mimetic gravity is in correspondence with
a particular version of the Einstein-aether theory, namely, the
scalar Einstein-aether theory [77, 145]. In this theory, the role
of aether is played by the gradient of a scalar field, precisely
as occurs in mimetic gravity: the role of aether is played by
the four-velocity vector which in turn is the gradient of the
mimetic field. It should be noted that the scalar Einstein-
aether theory is quite different from the original vector
theory. Moreover, in the case where the potential for the
potential for the scalar field in such theories (corresponding
to the potential for the mimetic field in mimetic gravity) is
constant, the model corresponds to the IR limit of projectable
Horava-Lifshitz gravity, which we will comment on further in
Section 3.5.2.

3.5.2. Hotava-Lifshitz Gravity. Recall that Hotava-Lifshitz
gravity [338] (HLG hereafter) is a framework and candidate
theory of quantum gravity, wherein gravity is made power-
counting renormalizable by altering the graviton propagator
in the UV. This is achieved by abandoning Lorentz symmetry
as a fundamental symmetry of nature, in favour of a Lifshitz
anisotropic scaling in the UV. For an incomplete list of ref-
erences concerning further work in Hofava-Lifshitz gravity,
see, for instance, [339-363] and references therein. If the lapse
function in HLG is only a function of time, that is, N = N(t),
the theory takes the name of projectable Horava-Lifshitz
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gravity. Recall that in the Arnowitt-Deser-Misner decompo-
sition of space-time [445]:

ds’ = -N*’c*dt’ + g,; (dx' + Nidt) (dx’ + N’dt), (100)

the function N takes the name of lapse.

Previous work has shown that the IR limit of the nonpro-
jectable version of Hotava-Lifshitz gravity can be obtained
from the Einstein-aether theory (the vector version) by
requiring that the aether be hypersurface orthogonal: that is,
u, = N VMT, where T is a scalar field and N is chosen in such
away to ensure 1, has unit norm. In this case T is responsible
for the preferred foliation in Horava gravity, and N is the lapse
function. If T is set equal to coordinate time, the resulting
action is that of nonprojectable Hotava gravity [357, 443].

Further requiring that NdT = S, where S is a scalar
field, reduces the vector Einstein-aether theory to the scalar
Einstein-aether theory [446]. This condition implies that N =
N(T), which upon identification of T with coordinate time
corresponds exactly to the defining condition for projectable
Horava gravity. In this case, the unit norm constraint cannot
be solved for a generic N but has to be imposed at the level
of the action, for instance, via a Lagrange multiplier term
o< )L(VMSVMS — 1). Therefore, the condition under which
dS = NdT is invariant is that S be invariant under a shift
symmetry: S — S + dS, which shows why the equivalence
between scalar Einstein-aether theory and mimetic gravity
fails if a nonzero potential for the mimetic field is included
[446]. Notice also that, as is known, dark matter emerges as
an integration constant in the IR limit of projectable Hotfava-
Lifshitz gravity [354]. Given the correspondence between this
theory and mimetic gravity, then, it should not come as a
surprise that dark matter emerges in a similar fashion within
the framework of mimetic gravity, as a purely geometrical
effect.

A complete proof of the equivalence between mimetic
gravity and the IR limit of projectable Horava-Lifshitz gravity
was presented in [135]. In particular, it was shown that the
action for the IR limit of projectable Hotava-Lifshitz 