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Abstract

We present a flexible and efficient framework for multiscale modeling in computa-

tional chemistry (MiMiC). It is based on a multiple-program multiple-data (MPMD)
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model with loosely coupled programs. Fast data exchange between programs is achieved

through the use of MPI intercommunicators. This allows exploiting the existing par-

allelization strategies used by the coupled programs while maintaining a high degree

of flexibility. MiMiC has been used in a new electrostatic embedding quantum me-

chanics/molecular mechanics (QM/MM) implementation coupling the highly efficient

CPMD and GROMACS programs but it can also be extended to use other programs.

The framework can also be utilized to extend the partitioning of the system into sev-

eral domains that can be treated using different models, such as models based on

wave function or density functional theory as well as coarse-graining and continuum

models. The new QM/MM implementation treats long-range electrostatic QM–MM

interactions through the multipoles of the QM subsystem which substantially reduces

the computational cost without loss of accuracy compared to an exact treatment. This

enables QM/MM molecular dynamics (MD) simulations of very large systems.

1 Introduction

Multiscale simulations have become important tools in many fields of chemistry, physics, and

biology. In particular, quantum mechanics / molecular mechanics (QM/MM) approaches are

widely used to investigate large and complex molecular systems where quantum effects of a

subdomain play a key role.1–4 Examples include (bio)chemical reactions5–8 and light–matter

interactions9–11 that require explicit modeling of the electronic structure of the active parts of

the total system. The rest of the system is modeled using a molecular mechanics description,

in which the effect of changes in the electronic structure is taken into account via an effective

potential depending only on the atomic positions. However, depending on the physical

or chemical phenomena being studied and the level of accuracy that is needed, different

levels of approximation may be employed, ranging from a fully quantum mechanical (QM)

description, over atomistic molecular mechanics (MM) and coarse-grained (CG) modeling,

to continuum mechanics (CM). Multiscale approaches take advantage of the fact that it is
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often sufficient to use the more fine-grained and accurate models on a smaller subsystem of a

complete molecular system while the remainder can be modeled using coarser, less accurate,

but computationally efficient models.

The implementation of multiscale methods follows different strategies, each with their

own advantages and limitations. The addition of multiscale modeling capabilities to existing

programs can follow two principal strategies for coupling the methods, which can be cate-

gorized in terms of tight and loose coupling approaches. In their extreme versions, a tight

coupling strategy has the methods integrated in a single monolithic program with a high

degree of interdependency, whereas a loose coupling strategy avoids interdependencies as far

as possible by implementing the individual methods in separate programs or by providing

either part in a library.

Using the tight coupling strategy has the immediate advantage that it is, in some respects,

more straightforward and easier to optimize compared to loose coupling. For example,

data exchange between the parts of the program that treat different subsystems becomes

simple and efficient. However, it can lead to considerably higher long-term maintenance

efforts because of the larger code base. Extending the multiscale capabilities of a tightly

coupled implementation, e.g. adding support for new QM methods or MM force fields, can

involve substantial implementation effort and often results in duplicated functionality that

is already present in other programs. Moreover, multiscale capability is often added to

existing programs that are otherwise dedicated to a specific model and thus also optimized

with that model in mind.12–19 This, combined with the fact that the best parallelization

strategy for different models can be different, can complicate the parallel optimization of

multiscale methods in monolithic programs. The advent of massively parallel computers,

with millions of cores, and hybrid architectures (e.g. hybrid CPU/GPU computers) makes it

even more challenging to achieve high performance in the tight coupling strategy. Exploiting

the evolution of computer architectures within the monolithic tight coupling paradigm may

prove particularly challenging in such a context.
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Loose coupling has the implicit advantage of providing great flexibility and low mainte-

nance efforts but typically requires more efforts in the planning stage. Using this approach, it

is relatively easy to couple independent programs, thus giving access to new features as they

become available in a program, potentially without requiring any modifications in the other

coupled programs. This substantially accelerates the availability of new methodological and

technical developments. Moreover, the increased flexibility also facilitates the development

of new multiscale approaches that go beyond QM/MM. One limiting factor, however, is

that computational efficiency can be hampered by the communication between the coupled

programs. For example, in the file-based approach, in which the communication between

programs is handled by writing/reading files, there is computational overhead stemming from

file input/output operations and initialization/termination of external programs.20 This is

the general path taken by several popular classical MD packages, such as AMBER,21 GRO-

MACS,22 and NAMD,23 as well as the PUPIL system24 and ChemShell environment.25,26

However, AMBER also provides a more efficient interface based on message passing interface

(MPI), and ChemShell has the option to directly link certain external programs in order to

increase computational efficiency.

In this work, we present a pilot implementation of a new framework for multiscale model-

ing in computational chemistry (MiMiC), with the goal to combine the best of both worlds:

flexibility and efficiency. To this end, we have designed a strategy based on a multiple-

program multiple-data (MPMD) model with loose coupling between programs (see illustra-

tion in Figure 1). In this strategy, MiMiC couples a main driver, which runs the molecular

dynamics (MD) simulation, to a set of external programs, each of which concurrently com-

putes the contributions that are relevant to a specific subsystem using their own optimal

parallelization strategy. The aim is to support a wide range of models, such as QM, MM,

CG, and CM, and also to provide the necessary functionality to compute the subsystem inter-

action terms when needed. Efficient communication between programs is achieved through

the use of a lightweight communication library (CommLib), which was developed in the

4



context of this work. CommLib uses MPI intercommunicators and thus gives access to

high-speed interconnects, such as InfiniBand and Omni-Path Architecture.

Main Driver
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Figure 1: Illustration of the strategy used in the MiMiC framework.

We demonstrate the prowess of the MiMiC framework in a new efficient implementation

of electrostatic embedding QM/MM by combining the highly efficient CPMD27 and GRO-

MACS28,29 programs. This new QM/MM implementation features a generalized version of

the electrostatic coupling scheme by Laio et al. 30 which greatly accelerates the computation

of QM–MM interaction terms potentially without any loss of accuracy. In the following, we

provide a theoretical description of the QM/MM approach used in this work followed by an

overview of the MiMiC framework. Finally, we present results from illustrative applications

of the methodology before concluding with an outlook.

2 QM/MM Methodology

In the following, we will consider a system that is composed of two separable subsystems:

a QM subsystem, where the electronic and nuclear interactions are described by Kohn–

Sham density functional theory (KS-DFT), and an MM subsystem, in which atoms interact

according to an MM force field. We use an electrostatic embedding QM/MM formalism

in which the KS equations must be solved including the external field that is generated by

the MM atoms. Typically, the electrostatic force field parameters consist of point charges

but can also include higher-order multipoles. The electron density of the QM subsystem is

5



thus directly polarized by the atoms in the MM subsystem. The nuclei in the QM domain

are propagated as classical point particles by using either the Born–Oppenheimer (BO) or

Car–Parrinello (CP)31 approach. The Hamiltonian for this system can be written as

Htot[ρ
QM](RQM,RMM) = HQM[ρ

QM](RQM) +HMM(R
MM) +HQM/MM[ρ

QM](RQM,RMM) (1)

where RQM and RMM are the positions of the nuclei in the QM subsystem and the atoms in

the MM subsystem, respectively, and ρQM(r) is the electron density of the QM subsystem.

The Hamiltonian of the QM subsystem, HQM[ρ
QM](RQM), is the sum of the kinetic energy

of the nuclei and the KS energy, i.e. HQM[ρ
QM](RQM) =

∑NQM

i=1
P

2
i

2Mi
+ EQM

KS [ρQM](RQM).

The QM KS energy, EQM
KS [ρQM](RQM), contains the same terms as conventional KS-DFT,

i.e. kinetic, nuclear–electron interaction, Coulomb, and exchange–correlation energy. The

total KS energy contains, in addition, the potential from the MM atoms that arises from

the QM/MM Hamiltonian which is detailed further below. The Hamiltonian describing

the MM subsystem, HMM(R
MM), is the sum of the kinetic energy of the MM atoms and

the force field energy, which depends on the specifics of the force field. Typically, it con-

sists of bonded (b) energy terms (associated with bond stretching, angle bending, torsions,

etc.) and nonbonded (nb) energy terms (describing electrostatic and van der Waals inter-

actions), i.e. HMM(R
MM) =

∑NMM

i=1
P

2
i

2Mi
+ V b

MM(R
MM) + V nb

MM(R
MM). The QM/MM Hamil-

tonian, HQM/MM[ρ
QM](RQM,RMM), describes bonded and nonbonded interactions between

the particles of the two subsystems, i.e.HQM/MM[ρ
QM](RQM,RMM) = V b

QM/MM(R
QM,RMM)+

V nb
QM/MM[ρ

QM](RQM,RMM). The nonbonded term consists of electrostatic interactions, which

are fully detailed further below, and van der Waals interactions, which are treated using the

same force field that is used for the MM subsystem. The bonded QM–MM interactions

are only present when there are covalent bonds that cross the QM–MM interface. In such

cases, the undercoordinated QM atoms are saturated by adding boundary atoms that are

characterized by monovalent pseudopotentials32 and contribute a single electron to the QM
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subsystem. The only bonded terms that are included are those not described through the

QM subsystem. Consider a string of bonded atoms that cross the QM–MM interface, i.e.

M3–M2–M1–B–Q1–Q2, where M is an MM atom, Q is a QM atom, and B is a boundary atom.

Then the following bonded terms are kept: the M1–B bond, the M1–B–Q1 and M2–M1–B

angles, and the M1–B–Q1–Q2, M2–M1–B–Q1, and M3–M2–M1–B dihedrals.

In this work, we use the Hamiltonian electrostatic coupling scheme developed by Laio

et al. 30 where the electrostatic interactions between the QM and MM subsystems are split

into a short-range (sr) and a long-range (lr) contribution

V es
QM/MM[ρ

QM](RQM,RMM) = V es,sr
QM/MM[ρ

QM](RQM,RMM) + V es,lr
QM/MM[ρ

QM](RQM,RMM) (2)

The short-range contribution consists of the interaction between the electron density and

nuclear (or core) charges of the QM subsystem and the effective point charges (or multipoles)

in the short-range domain. The latter includes all MM atoms within a given distance from

the QM subsystem. The long-range interaction is computed using a multipole expansion

of the electrostatic potential originating from the QM subsystem. This greatly reduces the

computational cost of the evaluation of electrostatic QM–MM interactions for large molecular

systems (which can be of the order of 105 atoms or more). MiMiC supports a generalized

version of the approach by Laio et al. allowing, in principle, any order of multipoles to be

used. This can potentially increase the precision of the long-range interactions and thus

allow for a reduction of the number of atoms in the short-range domain. The original

implementation by Laio et al. was later extended to three coupling regions to achieve a similar

reduction, using dynamically generated restrained electrostatic potential (D-RESP) charges

to describe interactions with MM atoms in an intermediate domain.33 This extension is

especially useful for elongated QM subsystems which we will address in a further development

of our implementation.

In the following, we will use a multi-index notation which facilitates compact and open-
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ended expressions of the QM/MM terms. A multi-index, denoted by α, β, γ, etc., is a 3-tuple

consisting of three non-negative integers (e.g., α = (αx, αy, αz)) that are associated with the

x, y, and z Cartesian components, respectively. For instance, α = (0, 0, 0) denotes zeroth

order with respect to all Cartesian components, α = (1, 0, 0) is first order with respect to

the x component, α = (0, 0, 2) is second order with respect to the z component, etc. The

short-range electrostatic QM–MM interaction energy can then be written as

V es,sr
QM/MM[ρ

QM](RQM,RMM) =

Nsr
MM
∑

i=1

Ai
∑

|α|=0

(−1)|α|

α!
M

[α]
i

(

∫

T
[α]
mod(R

MM
i , r)ρQM(r) dr

+

NQM
∑

j=1

T
[α]
mod(R

MM
i ,RQM

j )ZQM
j

)

(3)

where M
[α]
i is a component of the multipole associated with the ith MM atom, ZQM

j is

the nuclear (or core) charge of the jth QM atom, ρQM(r) is the QM electron density, and

T
[α]
mod(Ri,Rj) is a component of a modified interaction tensor, which is defined further below.

The Cartesian component of the multipole and interaction tensor is indicated by a multi-

index in square brackets. For example, M [0,0,0] is a charge, M [1,0,0] is the x-component of a

dipole, M [1,0,1] is the xz-component of a quadrupole, and so on. Moreover, eq 3 introduces

the multi-index norm, which is defined as the sum of the elements, i.e. |α| = αx + αy + αz,

and the multi-index factorial, which is defined by the product of factorials of the elements,

i.e. α! = αx! · αy! · αz!. The sum over multi-indices includes all multi-indices whose norm

is less than or equal to the upper summation limit, so that for Ai = 1 it includes (0, 0, 0),

(1, 0, 0), (0, 1, 0), and (0, 0, 1). The maximum order of the multipoles is thus defined by Ai.

An interaction tensor is generally defined as

T [α](Ra,Rb) = ∂α
Rb

1

|Rb −Ra|
(4)

where we have used the definition of the multi-index partial derivative, i.e. ∂α
Rb

= ∂|α|

∂R
αx
b,x

∂R
αy

b,y
∂R

αz
b,z

.

To avoid electron spill-out, we use a modified form of the interaction tensor for the short-
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range interactions which is defined as30

T
[α]
mod(Ra,Rb) = ∂α

Rb

r4c,a − |Rb −Ra|
4

r5c,a − |Rb −Ra|5
(5)

where rc,a is the covalent radius of the ath atom. This form of the interaction tensor models

charge penetration effects and, importantly, avoids 1/rn singularities by ensuring that the

potential remains finite as |Rb −Ra| → 0.

The interactions between the electrons and nuclei of the QM subsystem and the atoms

in the MM subsystem that are farther away than the short-range cutoff distance are ap-

proximated using a multipole expansion of the electrostatic potential due to the QM charge

density. With this approximation, the long-range electrostatic QM–MM interaction energy

can be written as

V es,lr
QM/MM[ρ

QM](RQM,RMM) =

N lr
MM
∑

i=1

Ai
∑

|α|=0

BQM
∑

|β|=0

(−1)|α+β|

α!β!
M

[α]
i T [α+β](RMM

i , R̄QM)M
[β]
QM[ρ

QM](RQM)

(6)

where R̄QM is the origin of the multipole expansion, which in our implementation is the

centroid of the QM subsystem (i.e., R̄QM =
∑NQM

j=1 RQM
j /NQM), BQM is the maximum order

of the multipole expansion, and the QM multipoles are computed as

M
[β]
QM[ρ

QM](RQM) =

∫

ρQM(r)(r− R̄QM)β dr+

NQM
∑

j=1

ZQM
j (RQM

j − R̄QM)β (7)

Equation 6 also introduces multi-index addition that is defined through α ± β = (αx ±

βx, αy ± βy, αz ± βz), i.e. the addition/subtraction is performed element-wise.

The polarizing potential due to the multipoles in the MM subsystem that acts on the

electrons in the QM subsystem is needed to solve the KS equations. The potential is the

functional derivative of the QM–MM interaction energy with respect to the electron density.

Since only the electrostatic part of the QM/MM energy depends on the electron density (see
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eqs 3 and 6), it is only these terms that are added to the KS equations. For the short-range

part, the potential is thus given by

ves,srQM/MM(r) =

Nsr
MM
∑

i=1

Ai
∑

|α|=0

(−1)|α|

α!
M

[α]
i T

[α]
mod(R

MM
i , r) (8)

whereas the potential from MM multipoles in the long-range part is

ves,lrQM/MM(r) =

N lr
MM
∑

i=1

Ai
∑

|α|=0

BQM
∑

|β|=0

(−1)|α+β|

α!β!
M

[α]
i T [α+β](RMM

i , R̄QM)(r− R̄QM)β (9)

The QM–MM interactions also lead to contributions to the forces acting on the QM and

MM atoms. The additional forces are given by the derivative of the QM–MM interaction

energy with respect to the positions. Here, we will only show the contributions originating

from the electrostatic QM–MM interactions. Considering first the contributions from the

short-range interactions (eq 3), we can write a component of the force acting on a QM

nucleus as

F es,sr

R
QM
j

[γ] = −

Nsr
MM
∑

i=1

Ai
∑

|α|=0

(−1)|α|

α!
M

[α]
i T

[α+γ]
mod (RMM

i ,RQM
j )ZQM

j (10)

where γ can be (1, 0, 0), (0, 1, 0), or (0, 0, 1) corresponding to the x, y, and z component,

respectively. The short-range contributions to the force acting on an MM atom are given by

F es,sr

RMM
i

[γ] = −

Ai
∑

|α|=0

(−1)|α+γ|

α!
M

[α]
i

(

∫

T
[α+γ]
mod (RMM

i , r)ρQM(r) dr

+

NQM
∑

j=1

T
[α+γ]
mod (RMM

i ,RQM
j )ZQM

j

)

(11)

The contributions to the force on a QM nucleus due the long-range interactions (eq 6) are

somewhat more complicated because of the dependency on the nuclear positions through the

nuclear part of the QMmultipoles and the multipole expansion center. Successive application
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of the chain rule yields

F es,lr

R
QM
j

[γ]
=−

N lr
MM
∑

i=1

Ai
∑

|α|=0

BQM
∑

|β|=1

(−1)|α+β|

α!(β − γ)!
M

[α]
i T [α+β](RMM

i , R̄QM)ZQM
j (RQM

j − R̄QM)β−γ

−
1

NQM

N lr
MM
∑

i=1

Ai
∑

|α|=0

( BQM
∑

|β|=0

(−1)|α+β|

α!β!
M

[α]
i T [α+β+γ](RMM

i , R̄QM)M
[β]
QM[ρ

QM](RQM)

+

BQM
∑

|β|=1

(−1)|α+β|

α!(β − γ)!
M

[α]
i T [α+β](RMM

i , R̄QM)M
[β−γ]
QM [ρQM](RQM)

)

(12)

where the summation over the β multi-indices is restricted to only include those where β−γ

has elements that are ≥ 0. The long-range contribution to the force on an MM atom is given

by

F es,lr

RMM
i

[γ]
= −

Ai
∑

|α|=0

BQM
∑

|β|=0

(−1)|α+β+γ|

α!β!
M

[α]
i T [α+β+γ](RMM

i , R̄QM)M
[β]
QM[ρ

QM](RQM) (13)

The equations are written in an open-ended form and are therefore also valid for higher-order

derivatives (i.e., when |γ| > 1). Finally, there are also indirect force contributions on the

QM nuclei (and the electronic degrees of freedom in case of CP dynamics) that stem from

the polarization of the electron density due to the electrostatic potentials given in eqs 8 and

9.

The described QM/MM methodology has been implemented using a plane wave (PW)

basis where the computationally most expensive part is the calculation of the potential

and forces originating from the short-range interactions. These contributions are expensive

because they require integration of the electron density over the entire real space grid for

each MM atom in the short-range part. The corresponding long-range interactions involve

only one integration of the electron density, which is performed when determining the QM

multipoles, and can thus lead to a substantially reduced computational cost compared to the
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full explicit coupling used for the short-range part. In section 5, we investigate the effect of

the long-range coupling with respect to the short-range cutoff distance and the order of the

multipole expansion in detail.

3 MiMiC Framework

MiMiC is a multiscale modeling framework aimed at supporting a wide range of models, e.g.

QM, MM, CG, and CM, and at coupling, in principle, any number of these models, which

can either be used for different spatial regions or within the same subsystem. To achieve this

flexibility while at the same time retaining a high degree of computational efficiency, MiMiC

uses a strategy based on the MPMD model with a loose coupling between programs. This

implies that instead of creating program-specific interfaces, i.e. tight coupling, the commu-

nication between programs goes through a well-defined application programming interface

(API). Specifically, MiMiC has a two-sided API, where on one side MiMiC interfaces to a

host program, which is the main driver evolving the system in time, while on the other side

it can connect to multiple external programs in a plugin-like fashion (see illustration in Fig-

ure 1). The communication between external programs and MiMiC goes through a separate,

lightweight communication library that has a simple C API which avoids major intervention

in the source code of the external programs. The intention is to keep the setup and execution

of the external programs as close as possible to the original. This is convenient for users

who are already familiar with a given program and also allows existing documentation and

tutorials to be used. The communication library uses MPI intercommunicators, which gives

access to high-speed interconnects, such as InfiniBand and Omni-Path Architecture, but it

can be extended to include other protocols without affecting the API. This approach allows

us to achieve better use of computational resources by letting the external programs run con-

currently with efficient exchange of data and by exploiting the fact that different programs

have been optimized for their own specific use case. In this work, we have implemented
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the QM/MM method described in the previous section within the MiMiC framework. Here,

the QM and MM programs use separately allocated resources where they can apply their

own parallelization strategies, including multithread/multiprocess and CPU/GPU-hybrid

approaches, and thus obtain the highest possible efficiency for the individual subsystems.

The data structure of the MiMiC framework is general and allows modeling of subsystems

at different levels of theory and resolution. A subsystem can contain a set of objects, such

as fragments (used to describe, e.g., molecules or amino acid residues) and particles (used to

describe, e.g., QM nuclei, MM atoms, or CG beads). Properties, such as electron densities,

nuclear charges, point charges, masses, etc., are associated to the appropriate object. MiMiC

supports both additive and subtractive subsystem schemes. In an additive scheme, the total

system is divided into a number of subsystems in such a way that the total energy can

be written as sums of (embedded) subsystem energies and interaction energies. This is the

scheme we used for the present QM/MM implementation. A subtractive scheme, on the other

hand, uses overlapping subsystems such that the total energy can be written as additions

and differences of overlapping subsystem energies, which is the approach used, for example,

in the ONIOM method.34

The MiMiC framework provides embedding capabilities which are currently limited to

electrostatic embedding for QM/MM. The embedding functionality will be extended in fu-

ture work, e.g., to support polarized embedding and QM/QM-type embedding. The elec-

trostatic embedding supports a generalized version of the electrostatic coupling scheme by

Laio et al. 30 in which long-range electrostatic QM–MM interactions are computed using the

multipoles of the QM subsystem. MiMiC provides two schemes to partition the MM subsys-

tem into short- and long-range parts, namely fragment-based and atom-based partitioning.

The fragment-based scheme uses the distances between the centroids of the fragments in the

MM subsystem and the centroid of the QM subsystem while the atom-based scheme uses the

distance between the centroid of the QM subsystem and the individual MM atoms. When

fragment information is available from the external MM program, e.g. as charge groups or
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molecules, it is generally advisable to use the fragment-based partitioning scheme, because

this will usually ensure neutral charge of the short- and long-range parts. It is not a require-

ment that the short- and long-range parts are neutral but it can potentially improve the

convergence with respect to cutoff distance and the order of the multipole expansion needed

to achieve a given accuracy.

For our first application of the MiMiC framework, we have coupled the CPMD27 and

GROMACS28,29 programs to enable electrostatic embedding QM/MM-MD. GROMACS was

chosen based on its high performance, versatility, and the availability of different force fields,

as well as its active development community which ensures long-term support. The use

of the CPMD program as the main driver enables MD within the CP and BO variants,

with efficient orbital extrapolation schemes to improve the computational efficiency for the

latter, using a plane wave/pseudopotential implementation of KS-DFT. Density functional

perturbation theory calculations can be performed,35 and electronically excited states can

be accessed within the linear response36 or real-time37,38 time-dependent DFT (TDDFT)

frameworks as well as the restricted open-shell KS (ROKS) formalism.39 Nonadiabatic ef-

fects40 can be included either within an Ehrenfest scheme38 or by virtue of trajectory surface

hopping (TSH),41,42 while nuclear quantum effects can be taken into account within a path

integral (PI) formalism.43 The program is highly parallelized,17,44 offers access to a large num-

ber of state-of-the-art exchange–correlation functionals45,46 and a computationally efficient

treatment of hybrid functionals,44,47 and allows for long time scale simulations by virtue of

efficient multiple time step (MTS) acceleration algorithms.48 The choice of CPMD therefore

allows for optimal flexibility and high efficiency in the description of the QM subsystem.

The workflow of a simulation employing the MiMiC framework is not predetermined

but can be adapted to the multiscale implementation being implemented and to the chosen

external programs. In the QM/MM implementation of this work, we use the workflow

illustrated in Figure 2. Here the CPMD program is the main simulation driver and QM

engine, while GROMACS is the MM engine. Both programs are executed independently and
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Figure 2: Schematic illustration of a QM/MM-MD workflow using the MiMiC framework
where the CPMD program is the main simulation driver and QM engine, GROMACS is the
MM engine, and MiMiC handles communication and computes QM/MM contributions.
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run simultaneously using MiMiC to communicate and to compute QM/MM contributions.

In the initialization phase, the programs read their respective input files, and MiMiC collects

data from GROMACS and CPMD and sends the necessary data to CPMD, e.g. coordinates,

atom types, etc., to allow setup of data structures. Once CPMD is initialized, the QM/MM-

MD loop is entered. The loop consists of several stages. The first one involves the sending

of coordinates to GROMACS which then proceeds to compute the MM energy and forces.

At the same time as GROMACS computes the MM energy and forces, CPMD computes the

corresponding QM contributions subject to the electrostatic potential computed by MiMiC

on the QM grid. MiMiC also computes the QM/MM energy and forces. Finally, all force

contributions are collected, and CPMD integrates the equations of motion and continues to

the next iteration of the MD loop.

A MiMiC-based QM/MM simulation using CPMD and GROMACS runs one instance

of each program. GROMACS computes all contributions related to the MM subsystem as

well as the classical nonbonded van der Waals QM–MM interactions and, if present, bonded

QM–MM interactions. The GROMACS input thus includes the entire system, i.e. the QM

subsystem is also described by the MM force field. The atoms belonging to the QM subsystem

are added to a special index group within GROMACS which will have the following effect: a)

point charges of the atoms belonging to the group are zeroed, b) nonbonded van der Waals

interactions between atoms in the group are excluded, and c) bonds between atoms in the

group are deleted. This avoids treating interactions twice, i.e. at the MM level and at the

QM level. In cases where the MM engine does not allow such operations intrinsically, MiMiC

can follow a different approach where two instances of the MM engine run simultaneously.

The first instance runs an MM calculation of the entire system, while the second instance

runs an MM calculation only including atoms belonging to the QM subsystem. The point

charges of QM atoms are set to zero in both instances. The energies and forces computed by

the second instance are then subtracted from those computed by the first one. This approach

has a minor computational overhead since the cost of the additional MM calculation of the
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(typically small) QM subsystem is negligible. Moreover, it allows us to use virtually any

external MM program in the MiMiC-based QM/MM implementation.

The MiMiC framework will be made freely available under the terms of the GNU Lesser

General Public License (LGPL) version 3, or any later version, as published by the Free

Software Foundation (FSF). The interface in CPMD will be part of a forthcoming release of

CPMD, but patches for the current release can be obtained from the corresponding author,

while the interface in GROMACS is part of the 2019 release.49

4 Computational Details

We used four different systems of varying size and composition to validate the MiMiC frame-

work for QM/MM-MD and to analyze the performance of the long-range coupling scheme.

Three of the systems are solute–solvent systems, of which two are relatively small and one

is large. The small systems consist of a water in water solution (Wat(aq)) and an acetone

in water solution (Ace(aq)), while the large system is an n-butanol dissolved in acetone

(BuOH(ace)). The QM subsystem in each case consists of a single solvated molecule, i.e.

one water, acetone, or n-butanol molecule, respectively, and the MM subsystem is made up

of all the solvent molecules, which is 981 water molecules in the Wat(aq) system, 978 water

molecules in the Ace(aq) system, and 13,948 acetone molecules in the BuOH(ace) system. In

addition to the solute–solvent systems, we also used a zinc-binding GB1 mutant50,51 (shown

in Figure 3) as a representative of more complex and biologically relevant systems and one

that also involves bonded QM–MM interactions. The QM subsystem of the GB1 system

consists of the zinc ion, together with three coordinating histidine side chains and one coor-

dinated water molecule, while the MM subsystem contains the remainder of the protein and

8,372 water molecules.

The QM/MM-MD simulations were performed using the MiMiC framework, coupling a

locally modified version of the CPMD development trunk and a locally modified GROMACS
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Figure 3: Zinc-binding site of the GB1 mutant. The QM subsystem consists of the atoms
shown as ball-and-stick. Boundary atoms are shown in yellow. Bulk water is not shown for
clarity.

2019 development version compiled using double precision. All systems were pre-equillibrated

through MM-MD simulations before they were equilibrated using QM/MM-MD simulations.

We refer to the Supporting Information (SI) for the details of the pre-equillibration procedure.

The first set of QM/MM-MD simulations used the BO approach for the QM subsystem

and was performed in the NVT ensemble, running for ∼19.35 ps, corresponding to 40,000

steps using a time step of ∼0.48 fs (20.0 a.u.). The first half is considered part of the equili-

bration, while the remainder was used for further analysis. While this was adequate for the

solute–solvent systems, it was not enough to fully equilibrate the GB1 system. The latter

half was used regardless since it does not affect the analyses performed in this work. In

these simulations, the short-range coupling was used for all MM atoms in the Wat(aq) and

Ace(aq) systems, while the long-range coupling was employed for the BuOH(ace) and GB1

systems. The BuOH(ace) system was partitioned into short- and long-range domains using

the fragment-based scheme with a cutoff distance of 32 a.u. and using a fifth-order multipole
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expansion for the long-range coupling. For the GB1 system, we used an atom-based par-

titioning with a cutoff distance of 36 a.u. and a seventh-order multipole expansion for the

long-range coupling. In both cases, the list of short- and long-range atoms was updated every

50th step. The temperature was initialized at 300 K and was subsequently maintained with

a Nosé–Hoover chain thermostat52 using a chain length of 4 and a frequency of 3500 cm−1

for the Wat(aq) system and 3000 cm−1 for the Ace(aq), BuOH(ace), and GB1 systems. In

the case of the solute–solvent systems, the MM subsystem was modeled using the optimized

potential for liquid simulations all-atom (OPLS/AA) force field,53 employing the transferable

intermolecular potential with three points (TIP3P)54 water model and topologies of acetone

and n-butanol that were downloaded from the GROMACS Molecule & Liquid Database

(http://virtualchemistry.org).55,56 The MM subsystem of GB1 was modeled using the

AMBER ff14SB57 force field. The bonds of all classical water molecules in the Wat(aq),

Ace(aq), and GB1 systems were constrained using the RATTLE algorithm.58,59 The simula-

tion cell dimensions were set according to the final dimensions obtained from NPT MM-MD

simulations in the pre-equillibration procedure (see details in the SI). We thus used cubic

cells with lengths of 58.67, 58.66, and 225.8 a.u. for Wat(aq), Ace(aq), and BuOH(ace),

respectively, and an orthorhombic cell for GB1 with lengths of 121.3, 120.4, and 121.2 a.u.

The QM subsystem was in all cases modeled using the BLYP60,61 exchange–correlation func-

tional, employing the new driver by Bircher and Rothlisberger,45 and Troullier–Martins

norm-conserving pseudopotentials.62 For GB1 the bonds between the Cα and Cβ of the zinc-

coordinating histidines were cut and the Cα’s were replaced by boundary atoms described by

an analytic monovalent pseudopotential32 (boundary atoms are shown in yellow in Figure 3).

Periodic boundary conditions were applied to the purely classical interactions, employing a

28.3 a.u. (26.5 a.u. for GB1) cutoff on the short-range nonbonded interactions, and using

the smooth particle mesh Ewald (SPME)63 method for the long-range electrostatic interac-

tions. The electrostatic QM–MM interactions were computed within the minimum image

convention without periodic repetition. Isolated system conditions for the QM subsystem
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were enforced using the Martyna–Tuckerman64 method to solve Poisson’s equation. The QM

cell sizes and PW cutoffs were determined based on convergence analyses shown in the SI

(see Figs. S1–S3) and taking into consideration the requirements of the Martyna–Tuckerman

method. Thus, we chose a cell size of 30 a.u. for the Wat(aq) system and 40 a.u. for the other

three systems, and PW cutoffs of 100, 80, 85, and 85 Ry for Wat(aq), Ace(aq), BuOH(ace),

and GB1, respectively. The DIIS method65–67 was used in the self-consistent field (SCF)

optimization of the wave function using a convergence threshold of 1×10−5 a.u. with respect

to the largest component of the electronic gradient. The initial guess of the wave function

in each MD step is based on an extrapolation from the five previous steps to accelerate

convergence and to improve energy conservation.68

To investigate the effect of the long-range coupling on the energy, forces, and dipole

moment of the QM subsystem for different short-range cutoffs and multipole orders, we per-

formed an analysis on 10 structures that were extracted from the last half of the simulations

(20,000 steps) at regular intervals, i.e. every 2,000th step (∼ 0.97 ps). In the case of GB1,

we calculated the Hirshfeld partial charge of the zinc ion instead of the dipole moment. The

SCF convergence threshold was set to 1.0× 10−6 a.u. in these single-point calculations.

We also examined the robustness of the QM/MM implementation by monitoring the

energy fluctuations of the Wat(aq), Ace(aq), and BuOH(ace) systems during QM/MM-MD

simulations in the NVE ensemble. Simulations using BO and CP methods were performed

both with and without long-range coupling. For the simulations of Wat(aq) and Ace(aq)

that include the long-range coupling, we first performed additional equilibrations for ∼2.42

ps (5,000 steps) including the long-range coupling and otherwise using the same settings as

described above. Short-range cutoffs of 28, 30, and 32 a.u. were used for Wat(aq), Ace(aq),

and BuOH(ace), respectively, while the short-range coupling was used for the entire system in

the simulations without long-range coupling. The same settings as described above were used

for the QM/MM-MD simulations based on the BO approach except that the convergence

threshold was set to 1.0× 10−6 a.u. and eight previous steps were used in the wave function
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extrapolation. For the QM/MM-MD simulations using the CP method, a time step of ∼0.07

fs (3.0 a.u.) was used for Wat(aq) and ∼0.12 fs (5.0 a.u.) for the other two systems. The

fictitious electron mass was set to 700 a.u. for all systems except for Wat(aq) where it was

set to 800 a.u.

5 Results and Discussion

To validate the new MiMiC-based QM/MM implementation, we performed simulations on

four molecular systems of varying size and composition as described in the Computational

Details (section 4).

The numerical quality of the implementation is assessed by measuring the fluctuation

of the total energy through QM/MM-MD simulations of the solute–solvent systems in the

NVE ensemble. Both BO and CP approaches are investigated either using a full short-range

coupling for the entire system or including also the long-range coupling with short-range

cutoffs of 28, 30, and 32 a.u. for Wat(aq), Ace(aq), and BuOH(ace), respectively. The results

are presented in Figure 4 where the fluctuations of the total energy per particle over time

are shown relative to the average energy. In all cases, the energy profile displays fluctuations

with negligible drift, showing that stable simulations can be performed using the MiMiC-

based QM/MM implementation. No appreciable difference is observed between the CP and

BO approaches in terms of drift due to the relatively tight SCF convergence threshold of

1.0 × 10−6 a.u. together with the wave function extrapolation used in the BO simulations.

However, larger fluctuations are observed when using the BO approach compared to CP

in the case of BuOH(ace). This can be attributed to the larger time step used in the BO

simulations (0.48 fs) compared to the one used in the CP simulations (0.12 fs). In the case

of Wat(aq) and Ace(aq), the energy fluctuations are larger and more irregular compared to

those observed for BuOH(ace). This is most likely related to the difference in the size of the

systems combined with the use of nonperiodic electrostatic QM–MM interactions.
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Figure 4: Fluctuation of the total energy per particle with respect to time for QM/MM-MD
simulations in the NVE ensemble of the Wat(aq) (top panel), Ace(aq) (middle panel), and
BuOH(ace) (bottom panel) systems within the BO or CP approach using short-range (SR)
coupling for the entire system or including long-range (LR) coupling with short-range cutoffs
of 28, 30, and 32 a.u. for Wat(aq), Ace(aq), and BuOH(ace), respectively. The change in
energy per particle is given relative to the average energy (∆E(t) = E(t)− 〈E〉).

A new feature in our MiMiC-based QM/MM implementation compared to the current

implementation in the CPMD program by Laio et al. 30 is the ability to use an open-ended

multipole expansion for use in the long-range coupling. Using higher orders in the multipole

expansion will in many cases produce a more accurate electrostatic potential thus allowing

the long-range coupling to be used at shorter distances. Compared to the current implemen-

tation, this reduces the computational cost of the QM–MM interactions even further without

compromising the accuracy. To investigate how much the short-range cutoff distances can

be decreased while still retaining a high accuracy, we performed single-point calculations
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on a series of snapshots using varying orders of the multipole expansion and short-range

cutoff distances and compared key properties to calculations where the short-range coupling

was used for the entire system. Specifically, we examined the total energy, forces, and, as

a measure of how well the electron density is reproduced, the dipole moment of the QM

subsystem. For the GB1 system, we investigate the Hirshfeld partial charge of the zinc ion

instead of the dipole moment.
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Figure 5: Convergence of the total energy of (a) Wat(aq), (b) Ace(aq), (c) BuOH(ace),
and (d) GB1 with respect to the short-range cutoff distance and the order of the multipole
expansion used for the long-range coupling (which are indicated with different colors). The
points show the mean absolute error based on single-point calculations on ten snapshots using
the full short-range coupling as reference. The cutoff distance is based on the fragment-based
partitioning scheme in the case of Wat(aq), Ace(aq), and BuOH(ace), whereas for GB1 it is
based on the atom-based partitioning.

The results from the single-point calculations are shown in Figures 5–8. The lower limits
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of the short-range cutoff distances were chosen so as to exclude distances that cause con-

vergence issues in the SCF calculations. These issues were observed for some snapshots,

mostly when using higher-order multipoles, which thus suggests that they are related to

a divergence of the multipole expansion. It is possible that the divergence is exacerbated

by electron spill-out or overpolarization of the electronic density. Electron spill-out can be

avoided in most cases by using the short-range coupling for all MM atoms that are inside

the QM cell. This is due to the modified interaction tensor (see eq 5) used in the short-range

coupling which effectively prevents electron spill-out by ensuring that the potential stays fi-

nite as the QM electron – MM charge distance goes to zero. That being said, whether or not

it is necessary to include all MM atoms that are inside the QM cell depends on the system.

For the systems investigated here, the short-range cutoff distances have to be around 24, 30,

and 32 a.u. using the fragment-based partitioning for the Wat(aq), Ace(aq), and BuOH(ace)

systems, respectively, in order to go beyond the extent of the QM cell, while for the GB1

system, the short-range cutoff has to be roughly 30 a.u. using the atom-based partitioning.

However, we do not observe any adverse effects by using shorter cutoffs apart from a slight

increase in error.

Ideally, the long-range coupling should reproduce the short-range coupling but at a re-

duced computational cost. To achieve this, it is sufficient that the errors are equal to or

lower than the numerical precision of the calculated properties which is determined by the

SCF convergence threshold used in the single-point calculations. From Figure 5 it can be

seen that the total energy converges only for the small solute–solvent systems. However,

for these systems it converges at a cutoff distance where only very few solvent molecules

are treated using the long-range coupling. The savings in computational cost are therefore

negligible compared to using the short-range coupling for the entire system. The situation is

different for the other properties as can be seen in Figures 6 and 7. The numerical precision

of these properties is roughly of the order of 10−6 a.u. This point is first reached at cutoff

distances of around 24 a.u. for the solute–solvent systems, while the GB1 system requires a
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(d) GB1

Figure 6: Convergence of the forces in (a) Wat(aq), (b) Ace(aq), (c) BuOH(ace), and (d)
GB1 with respect to the short-range cutoff distance and the order of the multipole expansion
used for the long-range coupling (which are indicated with different colors). The points show
the mean of the maximum absolute error based on single-point calculations on ten snapshots
using the full short-range coupling as reference. The cutoff distance is based on the fragment-
based partitioning scheme in the case of Wat(aq), Ace(aq), and BuOH(ace), whereas for GB1
it is based on the atom-based partitioning.

longer cutoff distance of about 40 a.u. to fully converge due to the much larger size of the

QM subsystem in GB1.

The order at which the multipole expansion converges depends not only on the cutoff

distance (i.e., the distance from the center of the expansion) but also on the composition

of the QM subsystem (mainly the number of atoms) as well as the calculated property.

For a given cutoff distance, increasing the multipole expansion above a certain order yields

very little improvement, which suggests that the expansion has converged. To improve
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Figure 7: Convergence of the dipole moment strength of the QM (a) water molecule in the
Wat(aq) system, (b) acetone molecule in the Ace(aq) system, (c) n-butanol molecules in the
BuOH(ace) system, and (d) the Hirshfeld charge of the zinc ion in GB1 with respect to the
short-range cutoff distance and the order of the multipole expansion used for the long-range
coupling (which are indicated with different colors). The points show the mean absolute
error based on single-point calculations on ten snapshots using the full short-range coupling
as reference. The cutoff distance is based on the fragment-based partitioning scheme in the
case of Wat(aq), Ace(aq), and BuOH(ace), whereas for GB1 it is based on the atom-based
partitioning.

the accuracy further it is necessary to increase the cutoff distance until full convergence is

reached both with respect to the order of the multipole expansion and the cutoff distance.

To converge the forces at the shortest possible cutoff distance, which is at ∼ 24 a.u. for the

solute–solvent systems and ∼ 40 a.u. for GB1, requires a fourth-order multipole expansion in

the case of Wat(aq), fifth-order for Ace(aq), sixth-order for BuOH(ace), and seventh-order

for GB1 (see Figure 6). The dipole moments (or zinc ion charge in the case of GB1) are also
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converged at around the same cutoff distances (see Figure 7). Using the cutoff distance and

order of multipoles where the forces are fully converged yields an error in the total energy

roughly of the order of 10−5 a.u. for Wat(aq) and BuOH(ace) and 10−4 a.u. for Ace(aq)

and GB1. These errors are negligible compared to the thermal energy of the systems, and

the dynamics of the two approaches can thus be considered equivalent as far as sampling is

concerned.

Using the long-range coupling greatly improves the computational efficiency compared

to using the short-range coupling for the entire system (see Figure 8). For the small solute–

solvent and GB1 systems the computational cost is reduced by 70–80%. This reduction is

further increased to ∼ 99% for the large BuOH(ace) system.

Obtaining the same level of accuracy using a second-order multipole expansion, which

is the limit in the implementation by Laio et al.,30 would require cutoff distances that are

much larger. In fact, for the small solute–solvent systems, the forces are only fully converged

when almost all solvent water molecules are treated via the short-range coupling, while for

the larger systems it requires larger cutoffs than those investigated here. The corresponding

increase of the computational cost would by far exceed the cost associated with the use of a

higher-order multipole expansion at shorter cutoff distances.

The optimal short-range cutoff distance and order of the multipole expansion varies

depending on the system. Our results indicate that a relatively short cutoff can be applied

for homogeneous systems (e.g., solute–solvent systems), while for heterogeneous systems

(e.g., proteins) it may be necessary to use longer cutoffs. The number of atoms in the QM

subsystem can be used as a guideline to decide at which order to truncate the multipole

expansion, e.g. higher number of atoms generally require higher orders of multipoles. In

general, it is advisable to investigate which cutoff distance and multipole order is suitable to

achieve a desired accuracy.

Finally, to demonstrate the performance of the MiMiC-based QM/MM implementation,

we ran a series of simulations of the GB1 system using an increasing number of compute
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Figure 8: Relative wall times for the calculation of the QM/MM contributions compared to
the short-range coupling of the (a) Wat(aq), (b) Ace(aq), (c) BuOH(ace), and (d) GB1 sys-
tems with respect to the short-range cutoff distance and the order of the multipole expansion
used for the long-range coupling (which are indicated with different colors). The points show
the mean relative wall times based on single-point calculations on ten snapshots using the
full short-range coupling as reference. The cutoff distance is based on the fragment-based
partitioning scheme in case of Wat(aq), Ace(aq), and BuOH(ace) whereas for GB1 it is based
on the atom-based partitioning.

cores. This benchmark provides preliminary insight into the performance of the MiMiC-

based QM/MM. A thorough analysis will be presented in an upcoming study in order to

fully demonstrate the improved efficiency of the present implementation. In Figure 9, we

compare the parallel speedup of the MiMiC-based QM/MM and the current tight-coupling

QM/MM approach in CPMD.30 The system was set up so as to ensure a fair comparison

between the two implementations. Thus, a second-order multipole expansion is used while

all other settings correspond to those described in the Computational Details (section 4).
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Figure 9: Parallel speedup of a time step of QM/MM-MD using CP dynamics. Speedups
are given relative to one core using a single node (24 cores) as reference. Included are
speedups of the (a) total time and (b) time spent computing QM–MM terms for the MiMiC-
based QM/MM (green line/circles) and the current QM/MM implementation in CPMD (red
line/triangles). The blue line indicates ideal speedup. The points show the mean speedup
based on four time steps. The insets display the scaling efficiency. Calculations were run on
JURECA (2 × 12-core Intel Xeon E5-2680 v3 CPUs per node).69

Due to differences in the partitioning schemes used in MiMiC and the current QM/MM

in CPMD, we used a cutoff distance of 28 a.u. using the atom-based partitioning for the

MiMiC-based QM/MM and 20 a.u. for the current QM/MM in CPMD, to ensure a similar

partitioning of the MM atoms into short- and long-range domains. In Figure 9a, it can be

seen that the MiMiC-based QM/MM-MD reaches a very good overall speedup with a parallel

efficiency above 70% at 1920 cores when using a single node (24 cores) as the baseline. This

is a substantial improvement compared to the current implementation in CPMD which stops

scaling at 240 cores yielding a speedup factor of around 190. In Figure 9b, it is shown that

the limiting factor in the current QM/MM implementation in CPMD is the computation

of QM–MM interaction terms. In contrast, in the MiMiC-based QM/MM, the computation

of interaction terms displays near linear scaling even up to ∼ 3000 cores, thus effectively

eliminating this bottleneck. Here it is worth noting that the average time per time step

of the MiMiC-based QM/MM-MD at the scaling limit is only 0.3 s. It is expected that

scalability is further improved for larger QM subsystems. Roughly a third of the total time
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per time step is spent computing QM–MM interactions terms at the scaling limit. This

would be a much smaller fraction in a BO-based simulation where the QM part is more

expensive due to the SCF cycles. Importantly, the communication overhead, which can be

viewed as the cost of the loose coupling adopted in the present work, is only about 0.005 s.

Since the communication overhead scales linearly with system size, it will be negligible even

for large systems.

6 Summary and Outlook

We outlined a flexible and efficient framework for multiscale modeling in computational chem-

istry (MiMiC) which is based on a MPMD scheme using loose coupling between programs.

Its high degree of flexibility allows coupling of potentially any set of molecular modeling

programs with minimal interference in their source codes. Moreover, it enables efficient use

of computational resources by exploiting the existing parallelization strategies used in the

coupled programs. Fast communication between the coupled programs is achieved through

a custom communication library that utilizes MPI intercommunicators.

The framework was demonstrated in a new electrostatic embedding QM/MM implemen-

tation combining the CPMD and GROMACS programs. Illustrative applications on simple

solute–solvent systems as well as a more complex biologically relevant system were presented.

The robustness of the implementation was verified through constant energy simulations that

exhibited good conservation of energy. The QM/MM implementation features a generalized

version of the electrostatic coupling scheme by Laio et al. 30 which approximates long-range

QM–MM interactions through a multipole expansion of the electrostatic potential originat-

ing from the QM subsystem. We showed that this scheme can substantially reduce the

computational cost associated with the electrostatic QM–MM interactions without losing

accuracy compared to an exact treatment. At the same time, the parallel performance was

substantially improved which will allow for much more efficient use of resources. Thus, an
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overall speedup of roughly an order of magnitude was observed when compared to the cur-

rent QM/MM implementation in CPMD showcasing that a loose coupling scheme does not

have to be associated with significant communication overhead.

Extensions of the QM/MM methodology to polarized embedding including excited state

treatments and combinations with MTS algorithms are currently ongoing. Thanks to its

flexibility, the framework is also well suited for the development of models that go beyond

basic QM/MM. For example, it allows the use of multiple subsystems, where each subsystem

can be described at a different level of theory and resolution, as well as multilevel descriptions

of the same parts of the system, which can be useful for subtractive schemes and MTS

approaches.
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