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MIMIC-CXR, a de-identified 
publicly available database of chest 
radiographs with free-text reports
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Chest radiography is an extremely powerful imaging modality, allowing for a detailed inspection of 

a patient’s chest, but requires specialized training for proper interpretation. With the advent of high 

performance general purpose computer vision algorithms, the accurate automated analysis of chest 

radiographs is becoming increasingly of interest to researchers. Here we describe MIMIC-CXR, a 

large dataset of 227,835 imaging studies for 65,379 patients presenting to the Beth Israel Deaconess 
Medical Center Emergency Department between 2011–2016. Each imaging study can contain one or 
more images, usually a frontal view and a lateral view. A total of 377,110 images are available in the 
dataset. Studies are made available with a semi-structured free-text radiology report that describes 

the radiological findings of the images, written by a practicing radiologist contemporaneously during 
routine clinical care. All images and reports have been de-identified to protect patient privacy. The 
dataset is made freely available to facilitate and encourage a wide range of research in computer vision, 

natural language processing, and clinical data mining.

Background & Summary
Chest radiography is a routinely used imaging modality to assess the chest and is the most common medical 
imaging study in the world. Chest radiographs are used to identify acute and chronic cardiopulmonary condi-
tions, verify that devices such as pacemakers, central lines, chest tubes, and gastric tubes are correctly positioned, 
and to assist in related medical workups. In the U.S., the number of radiologists as a percentage of the physician 
workforce is decreasing1, and the geographic distribution of radiologists favors larger, more urban counties2. 
Even when trained radiologists are available, chest radiographs are often interpreted first by non-radiologists 
such as intensivists and emergency physicians, before being overread by a radiologist. Delays and backlogs in 
timely medical imaging interpretation have demonstrably reduced care quality in such large health organizations 
as the U.K. National Health Service3 and the U.S. Department of Veterans Affairs4. The situation is even worse in 
resource-poor areas, where radiology services are extremely scarce. As of 2015, only 11 radiologists served the 12 
million people of Rwanda5, while the entire country of Liberia, with a population of four million, had only two 
practicing radiologists6. Accurate automated analysis of radiographs has the potential to improve the efficiency of 
radiologist workflow and extend expertise to under-served regions.

The combination of burgeoning datasets with increasingly sophisticated algorithms has resulted in a number 
of significant advances in other application areas of computer vision7,8. A key requirement in the application 
of these advances to automated chest radiograph analysis is a sufficiently large data set that allows competing 
algorithms from different groups to be directly compared to one another. Here we present MIMIC Chest X-ray 
(MIMIC-CXR), a large publicly available dataset of chest radiographs with free-text radiology reports. The dataset 
contains 377,110 images corresponding to 227,835 radiographic studies performed at the Beth Israel Deaconess 
Medical Center (BIDMC) in Boston, MA. The dataset is de-identified to satisfy the US Health Insurance 
Portability and Accountability Act of 1996 (HIPAA) Safe Harbor requirements. Protected health information 
(PHI) has been removed. Randomly generated identifiers are used to group distinct reports and patients. The 

1Institute of Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA. 
2Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, USA. 3Department of Emergency 
Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA. 4Department of Radiology, Stanford University, 
Palo Alto, CA, USA. 5Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA. *email: 
aewj@mit.edu

DATA DESCRIPTOR

OPEN

https://doi.org/10.1038/s41597-019-0322-0
http://orcid.org/0000-0002-8735-3014
http://orcid.org/0000-0002-6318-2978
mailto:aewj@mit.edu


2SCIENTIFIC DATA |           (2019) 6:317  | https://doi.org/10.1038/s41597-019-0322-0

www.nature.com/scientificdatawww.nature.com/scientificdata/

dataset is intended to support a wide body of research in medicine including image understanding, natural lan-
guage processing, and decision support.

Methods
The creation of MIMIC-CXR required handling three distinct data modalities: electronic health record data, 
images (chest radiographs), and natural language (free-text reports). These three modalities were processed inde-
pendently and ultimately combined to create the database. The project was approved by the Institutional Review 
Board of BIDMC (Boston, MA). Requirement for individual patient consent was waived because the project did 
not impact clinical care and all protected health information was removed.

Electronic health record. The BIDMC operates a locally built electronic health record (EHR), including 
a Radiology Information System (RIS), to store and process clinical and radiographic data. We identified the 
set of chest radiographs to include in a two stage process. First, we identified a cohort of patients. We queried 
the BIDMC EHR for chest radiograph studies acquired in the emergency department between 2011–2016, and 
extracted only the set of patient identifiers associated with these studies. A collection of images associated with 
a single report is referred to as a study, identified by a unique identifier, the study ID. We then extracted all chest 
radiographs and radiology reports available in the RIS for this set of patients between 2011–2016.

For anonymization purposes, two sets of random identifiers were generated. First, a random identifier was 
generated for each patient in the range 10,000,000–19,999,999, which we refer to as the subject_id. Each 
patient was also assigned a date shift which mapped their first index admission year to a year between 2100–2200. 
This ensures anonymity of the data while preserving the relative temporality of patient information, which is 
crucial for appropriate processing of the data. Note that this date shift removes all information about seasonality 
or day of the week for the studies. Second, as each report will be associated with a single unique study identifier, 
we generated a random identifier for each study in the range 50,000,000–59,999,999. We refer to the anonymized 
study identifier as the study_id. As multiple images may be associated with the same study (e.g. one frontal 
and one lateral image), multiple images in MIMIC-CXR have the same study_id.

Chest radiographs. Chest radiographs were sourced from the hospital picture archiving and communica-
tion system (PACS) in Digital Imaging and Communications in Medicine (DICOM) format. DICOM is a com-
mon format which facilitates interoperability between medical imaging devices. The DICOM format contains 
meta-data associated with one or more images, and the DICOM standard stipulates strict rules around the struc-
ture of this information. The DICOM standard is updated regularly each year. In this work, we use the DICOM 
Standard version 2017e9. This standard is available online: http://dicom.nema.org/medical/dicom/2017e/. 
Although it was not necessary to retain images in DICOM format for MIMIC-CXR, we believe it is beneficial for 
the data to be distributed in a standard format used in hospitals worldwide. Retaining data in DICOM format 
encourages the development of algorithms which can process data in this format and, consequently, are more 
readily applicable to real clinical practice.

The acquired DICOM images contained PHI which required removal for conformance with HIPAA. PHI 
was removed from both the DICOM meta-data and the pixel values. DICOM meta-data is organized into a 
finite set of data elements; each element is uniquely identified by a numerical tag and stores a fixed concept. The 
DICOM standard (Table E.1-1, PS 3.15) describes a number of de-identification profiles, each of which outlin-
ing data elements which must be removed or modified in order to anonymize patient data9. We followed the 
Basic Application Level Confidentiality Profile with the Clean Descriptors Option, Retain Longitudinal Temporal 
Information Modified Dates, Clean Pixel Data, and Clean Graphics options. The De-identification Method Code 
Sequence (0012,0064) was set to a length five sequence codifying the aforementioned profile choices, and Patient 
Identity Removed (0012, 0062) was set to “YES” for all images. Broadly, this de-identification strategy represents 
our intent to fully remove individual patient information while retaining useful parameters stored in descriptive 
attributes and preserving the chronology of radiographs for a single patient.

Basic application level confidentiality profile. DICOMs were initially de-identified using Orthanc v1.0.010. As the 
unique identifier for the image is considered PHI, Orthanc generated new unique identifiers for each image, and 
this identifier is used as the filename for each image. The DICOM standard requires that a unique object identifier 
(UID) be generated for the study, series, and instance (in our case, the image). These UIDs were generated using 
the Universally Unique Identifier (UUID) approach and stored in the DICOM header as “2.25.” followed by an 
integer up to 39 digits in length. Anonymized identifiers for the patient and study were inserted into the patient 
and study DICOM data elements.

Clean descriptors option. A number of data elements which contained unstructured text were present. Data ele-
ments which provided no scientific value were removed. Data elements which were useful but contained free-text 
were homogenized using manually curated look up tables. Text which was not present in the data element look 
up table was removed.

Retain longitudinal temporal information modified dates. Longitudinal information is important for contextual-
izing sequential chest radiographs for an individual patient. Temporal information was retained by shifting dates 
relating to patient care using the patient-specific date shift previously generated. Dates stored in the data elements 
listed in Table E.1-1 under the Retain Longitudinal Temporal Information Modified Dates were shifted using 
this methodology9. The time of day was not modified by the date shifting process. Notably, the ontology used for 
certain fields is versioned using a date (e.g. SNOMED), and these dates were retained without a date shift.
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Clean pixel data. After processing of DICOM meta-data, de-identification of the image pixel values was neces-
sary. Images sometimes contain “burned in” annotations: areas where pixel values have been modified after image 
acquisition in order to display text. These annotations usually contain information necessary for image interpre-
tation, such as image orientation, anatomical position of the subject, and timestamp of image capture. However, 
annotations may also include patient names, medical record numbers, and patient date of birth. The resulting 
image, with textual annotations encoded within the pixel themselves, is then transferred from the modality to 
PACS. Since the annotations are applied at the modality level, it is impossible to recover the original image with-
out annotations. Although these annotations would be more effectively encoded as an overlay rather than in the 
pixels themselves, burned in annotations are still a common practice in medicine.

Images were de-identified using a custom algorithm which removed dates and patient identifiers, but retained 
radiologically relevant information such as orientation. The algorithm applied an ensemble of image preproc-
essing and optical character recognition approaches to detect text within an image. Images were binarized to 
enhance contrast of the text with the background. Three thresholds were used to binarize the image: one based 
upon the maximum pixel intensity, one based upon the minimum pixel intensity, and one fixed to a specific pixel 
value frequently used by the modality when adding text. Optical character recognition was performed using the 
tesseract library v3.05.0211. In the DICOM header, the data element Burned In Annotation (0028, 0301) was set 
to “YES” if any text was detected in the image pixels, otherwise it was set to “NO”.

Text was classified as PHI using a set of custom regular expressions which aimed to be conservative in removal 
of text and allow for errors in the optical character recognition. If a body of text was suspected to be PHI, all pixel 
values in a bounding box encompassing the PHI were set to black.

Clean graphics. Table E.1-1 of the DICOM standard lists a set of standard data elements which store overlay 
planes, graphics, or annotations and must be cleaned of PHI when using the Clean Graphics option9. These 
data elements were removed when present. Subsequently, the Graphic Object Sequence (0070, 0009) under the 
Graphic Annotation Sequence (0070, 0001) data element was used to store coordinates of the PHI obscuring 
black boxes used to clean the pixel data.

Validation of de-identification. All unique DICOM metadata attribute values were manually reviewed and did 
not contain PHI. We then manually reviewed the pixel data for 6,900 radiographs. Each image was reviewed by 
two independent annotators. 180 images were identified for a secondary consensus review; none of which ulti-
mately had PHI. The most common causes for annotators to request consensus review were: (1) existence of a 
support device such as a pacemaker, (2) text identifying in-hospital location (e.g. “MICU”), and (3) obscure text 
relating to radiograph technique (e.g. “prt rr slot 11”).

Radiology reports. During routine care, radiologists have access to brief text summarizing the underlying 
medical condition, the reason for examination, and prior imaging studies performed. The PACS workstation used 
by clinicans to view images allows for dynamic adjustment of the mapping between pixel value and grey-level 
display (“windowing”), side-by-side comparison with previous imaging, overlaying of patient demographics, and 
overlaying of imaging technique. Reports are transcribed during reading of an image series using a real-time 
computer voice recognition service.

Radiology reports for all identified studies were extracted from the underlying EHR. Reports were exported 
in eXtensible Markup Language (XML). Text was extracted from the XML file and organized into single text files 
denoted by the study identifier. Reports are archived with linebreaks to ensure individual lines are no longer 
than 79 characters, and contain up to four segments delimited by underscores repeated to the width of the page. 
The four segments are: an optional addendum, a report header with patient information, clinical information 
imported from the EHR, and the main body of the report. Only the addendum and main segments of the report 
are written by the radiologist.

The free-text portion of each report was processed as follows. First, the header segment was removed, as it 
contained administrative information that is not necessary for interpretation of the report. The clinical informa-
tion segment was also removed from the textual report. Electronic signatures located at the end of the report were 
identified using a set of regular expressions and removed. As a result, reports have a maximum of two segments: 
an optional addendum, and the body of the report. The free-text report was then de-identified using a rule-based 
approach based upon prior work12–14. PHI of any length was consistently replaced with three underscores (“_ _ 
_”). Study reports are stored in individual text files named using the anonymous study identifier.

We evaluated the performance of our de-identification approach by manually annotating 2,238 radiology 
reports for PHI. We annotated all text specified by HIPAA as PHI. Furthermore, we annotated large locations 
(such as U.S. states and countries), years, and clinical provider names as PHI. These are not required to be 
removed by HIPAA, but we have elected to remove these entities. We compared the performance of our auto-
mated annotation method against this gold standard set. Each document contained an average of 642 characters 
and 145 “tokens” (words), with 324,641 tokens across the entire set. Of these tokens, 9,778 were considered PHI, 
with an average of 4.4 PHI tokens per document. Our approach did not detect 8 of the 9,778 PHI tokens. The eight 
tokens consisted of: three provider names which were also English dictionary words (e.g. Rose), one misspelled 
provider name, two dates with typographical errors, and two sets of initials for provider names. We manually 
removed these entities from the final dataset.

Each report was also associated with meta-data in the source XML file, including the following fields: patient 
identifier, study identifier, date and time of study, and the examination name. Examination names are stand-
ardized within the BIDMC under the Procedure Code Sequence (0008, 1032) using Simon-Leeming codes15,16. 
Simon-Leeming codes are referenced as “CLP” in the standard set of code systems described by the Health Level 7 
(HL7) organization (HL7 v2 Table 0396, https://www.hl7.org/special/committees/vocab/table_0396/index.cfm). 
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Table 1 lists the number of studies for the top ten most frequent examination names. An additional 14 examina-
tion names are present with very few (<60) studies for each, for a total of 24 distinct examination names.

Data Records
All data are made available on PhysioNet17. Access is controlled, requiring user registration, completion of a 
credentialing process, and signing of a data use agreement (see usage notes). The MIMIC-CXR project page on 
PhysioNet describes the dataset and informs users how they may apply for access18.

Images and reports are organized into subfolders named according to the anonymous patient identifier. Each 
patient subfolder contains a single folder and a single text file for each imaging study made available for that 
patient.

Study folder. Folder names are set to the anonymized study identifier prefixed with the letter “s” (e.g. 
s########). This study folder contains all imaging performed for the study in DICOM format9; namely one or 
more chest radiographs.

Study text. The free-text radiology report is made available in a plain text file. The stem of the file has the same 
filename as the study folder, and it can be differentiated from the study folder by its extension (“.txt”).

An example of this layout is provided in Table 2. All patient identifiers begin with the digit 1 and have a total 
length of 8 digits. All study identifiers begin with the digit 5 and have a total length of 8 digits. DICOM file names 
are unique 40 character hexadecimal strings with dashes separating groups of eight characters.

To alleviate issues many software packages have with parsing a large number of files in a single folder, we 
group patient folders into higher level folders based on the first three characters of the folder name. For example, 
the folder “p10000032” would be placed in the higher level folder “p10”, “p11000011” would be placed in “p11”, 
and so on.

Code Examination name DICOMs (%)

C11 CHEST (PA AND LAT) 248,664 65.94

C12 CHEST (PORTABLE AP) 126,292 33.49

PC111 DX CHEST PORTABLE PICC LINE PLACEMENT 329 0.09

PC171 DX CHEST PORT LINE/TUBE PLCMT 1 EXAM 255 0.07

PC172 DX CHEST PORT LINE/TUBE PLCMT 2 EXAMS 165 0.04

PC173 DX CHEST PORT LINE/TUBE PLCMT 3 EXAMS 157 0.04

PC3 DX CHEST & RIBS 131 0.03

PC1 DX CHEST WITH DECUB 104 0.03

C13 CHEST (SINGLE VIEW) 85 0.02

PC113 DX CHEST 2 VIEW PICC LINE PLACEMENT 77 0.02

Table 1. Number of DICOM images for the top ten most frequent radiological examination types. Examination 
type is classified using Simon-Leeming codes35, and is available in the DICOM header within the Procedure 
Code Sequence (0008, 1032).

Level 1 Level 2 Description

s50414267.txt Radiology report.

s50414267 Study folder.

02aa804e-bde0afdd-112c0b34-7bc16630-4e384014.dcm DICOM file.

174413ec-4ec4c1f7-34ea26b7-c5f994f8-79ef1962.dcm DICOM file.

s53189527.txt Radiology report.

s53189527 Study folder.

2a2277a9-b0ded155-c0de8eb9-c124d10e-82c5caab.dcm DICOM file.

e084de3b-be89b11e-20fe3f9f-9c8d8dfe-4cfd202c.dcm DICOM file.

s53911762.txt Radiology report.

s53911762 Study folder.

68b5c4b1-227d0485-9cc38c3f-7b84ab51-4b472714.dcm DICOM file.

fffabebf-74fd3a1f-673b6b41-96ec0ac9-2ab69818.dcm DICOM file.

s56699142.txt Radiology report.

s56699142 Study folder.

ea030e7a-2e3b1346-bc518786-7a8fd698-f673b44c.dcm DICOM file.

Table 2. Example of the data record layout using patient 10000032. All records listed in this table are located 
within the p10000032 folder. Column headers indicate the depth level in the folder hierarchy. Level 1 folders and 
files are present within the p10000032 folder. Level 2 files are present in the subfolder immediately above.
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A mapping file is provided which lists all image names with the corresponding study identifier and patient 
identifier.

An example study is provided in Fig. 1.

Technical Validation
Creation of MIMIC-CXR followed good software practices, including source code control, continuous integra-
tion, and test-driven development19. DICOM meta-data was parsed to determine the anatomy examined and 
view position, and a small number of mislabeled radiographs which were not examining the chest were removed 
(e.g. pelvic and abdominal radiographs). We validated DICOM meta-data consistency with the DICOM standard 
using the open-source DICOM validator dciodvfy, available from https://www.dclunie.com/dicom3tools/dciod-
vfy.html.

Aside from view parsing and de-identification of the dataset, no filtering or processing of the images was per-
formed. Consequently, images exhibit a number of phenomena common in daily practice. The quality of images 
varies, both in terms of technique and in terms of patient positioning (e.g. not all patients are healthy enough 
to stand for a posterior-anterior radiograph, or sit upright for an anterior-posterior radiograph). Images may 
unintentionally omit anatomy present in a standard chest radiograph, or have objects that obstruct important 
anatomy. Finally, collimation can also be applied at the modality to crop the image, improving post-processing 
in the area of interest. Figure 2 presents a selection of images from the dataset exhibiting challenges to automated 
processing. It is important for methods using the database to be capable of accommodating these variations as 
they routinely occur in clinical practice.

Usage Notes
Use of the data requires proof of completion of a course on human subjects research (e.g. from the Collaborative 
Institutional Training Initiative20). Data access also requires signing of a data use agreement that stipulates, 
among other items, that the user will not share the data, will not attempt to re-identify any patients or insti-
tutions, and will release code associated with any publication using the data, as is the process for MIMIC-III21 
and eICU-CRD22. Once approved, data can be directly downloaded from the MIMIC-CXR Database project on 
PhysioNet.

We have provided publicly accessible Jupyter Notebooks23,24 to demonstrate usage of the data. These note-
books supplement online documentation and provide commentary on best practices when working with the data. 

Fig. 1 Example study contained in MIMIC-CXR. Above (a), the radiology report provides the interpretation of 
the image. PHI has been removed and replaced with three underscores (_ _ _). Below, the two chest radiographs 
for this study are shown: (b) the frontal view (left image) and (c) the lateral view (right image).
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These notebooks are made available in an openly available code repository25. One notebook provided reproduces 
all tables in this paper from the publicly available dataset.

A core aim in publicly releasing MIMIC-CXR is to foster collaboration in medical image processing and 
secondary analysis of electronic health records. We believe that publicly accessible code using publicly available 
data will accelerate research in the field and ensure reproducibility of future studies26,27. We hope that users will 
contribute code used in their studies to this repository or link to their own repositories of openly available code 
to ensure maximum visibility in the community. Online documentation is made available and will be updated as 
needed: https://mimic-cxr.mit.edu.

Related datasets. While MIMIC-CXR can support a large body of research independently, a number of 
other datasets exist which may compliment future work. The Japanese Society of Radiological Technology (JSRT) 
Database contains 247 images with labels of chest nodules as confirmed by subsequent computed tomography 
(CT)28. Notably, the dataset is provided with annotations segmenting the lungs and heart. The Montgomery 
County chest X-ray set (MC) and the Shenzhen Hospital X-ray set (SH) are publicly available datasets focusing 
on classification of tuberculosis29,30. The MC dataset, courtesy of the National Library of Medicine, contains 138 
posterior-anterior chest x-rays in DICOM format of which 58 contain radiographic findings associated with 
tuberculosis. The SH dataset, courtesy of the Shenzhen No. 3 People’s Hospital, contains 662 posterior-anterior 
chest x-rays in PNG format of which 336 display manifestations of tuberculosis. The Open-I Indiana University 
Chest X-ray dataset contains 8,121 images associated with 3,996 de-identified radiology reports31. The NIH 
released ChestX-ray14 (originally ChestX-ray8), a collection of 112,120 frontal chest radiographs from 30,805 
distinct patients with 14 binary labels indicating existence pathology or lack of pathology32. A total of 224,316 
chest radiographs for 65,240 patients admitted to Stanford Hospital were released with the CheXpert labeler by 
researchers at Stanford University33. These images were released with 14 labels derived from automatic processing 
of the notes in a similar fashion to the NIH dataset, though the labels do not perfectly overlap, and the CheXpert 
labels include an additional “uncertain” category. Similarly the University of Alicante released a set of 160,868 
chest radiographs from 69,882 patients admitted to the Hospital San Juan de Alicante, Spain34. This dataset was 
released with structured labels for each radiograph acquired either manually or automatically. Manual labels were 
sourced from the reports associated with over 20,000 images. Automated labels for the remaining images were 
generated by a neural network classifier trained using the aforementioned manual labels. Notably, there were 297 
label categories, and the aim of the label set was to exhaustively cover all radiographic, anatomic, and diagnostic 
labels mentioned in the report.

Code availability
Due to the use of real patient information during the de-identification process, the code used to prepare the 
dataset cannot be made publicly available. Example usage code, including loading a DICOM study and linking it 
with its associated free-text radiology report, has been made available publicly25.
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