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General relativity establishes the equality between matter-energy density and the Riemann curvature of spacetime.
Therefore, light or matter will be bent or trapped when passing near the massive celestial objects, and Newton’s
second law fails to explain it. The gravitational effect is not only extensively studied in astronomy but also attracts
a great deal of interest in the field of optics. People have mimicked black holes, Einstein’s ring, and other fas-
cinating effects in diverse optical systems. Here, with a gradient index lens, in the geometrical optics regime, we
mimic the Schwarzschild precession in the orbit of the star S2 near the Galactic Center massive black hole,
which was recently first detected by European Southern Observatory. We also find other series of gradient
index lenses that can be used to mimic the possible Reissner–Nordström metric of Einstein’s field equation
and dark matter particle motion. Light rays in such gradient lenses will be closed in some cases, while in other
cases it would be trapped by the center or keep dancing around the center. Our work presents an efficient
toy model to help investigate some complex celestial behaviors, which may require long period detection by
using high-precision astronomical tools. The induced gradient lenses enlightened by the gravitational effect
also enrich the family of absolute optical instruments for their selective closed trajectories. © 2021 Chinese
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1. INTRODUCTION

Einstein’s general theory of relativity is one of the cornerstones
in modern physics. It holds the best understanding of gravity so
far, explaining that the nature of universal gravitation originates
from matter-energy, resulting in curved spacetime. To date,
general relativity (GR) has passed all the experimental tests with
flying colors, such as the precession of Mercury [1], gravita-
tional redshift [2], the observations of solar-mass pulsars in
binary systems [3], and the gravitational waves from several stel-
lar mass, black hole candidate in-spirals [4]. Recently, the report
of first detection of the Schwarzschild precession in S2’s orbit
around the nearest massive black hole (candidate) in the Galaxy
Center has received attention, being more prominent evidence
of GR [5]. In optics, in analogy to the equality between matter-
energy and curved spacetime, macroscopic Maxwell’s equations
in complex inhomogeneous media can be mapped into free-
space Maxwell’s equations of an arbitrary spacetime metric
[6–10], leading to lots of transformation optical applications
like invisibility cloaks [11–17], field rotators [18,19], and illu-
sion devices [20]. Moreover, despite the functionality of con-
trolling the flow of light, this analogy has also been utilized to
mimic some exciting gravitational effects related to GR in re-
turn, for instance, black holes [21–27], Einstein’s ring [28], de
Sitter space [29,30], and cosmic strings [31,32].

For the above mimicking, most works are from the perspec-
tive of transformation optics. However, in classical aspect, the
analogy has another inherent correspondence, revealed through
the least action principle in mechanics (Maupertuis’s principle)
and Fermat’s principle in geometrical optics. This correspon-
dence is also called optical-mechanical analogy [33–36]. It
means that we can observe some gravitational phenomena in
the regime of geometrical optics using light rays. Comparing
the forms of Hamilton equations in these two fields, one can
obtain the closed connection between classical mechanics and
geometrical optics, i.e., the potential V and total energy E (of
unit mass) can construct a gradient refractive index profile n,
with the same shape of trajectories in both mechanics and geo-
metrical optics [36]. Here, based on the optical-mechanical
analogy, in the geometrical optics regime, we use a gradient
index lens to mimic the star S2’s Schwarzschild precession near
the Galactic Center massive black hole SgrA* mentioned above.
With the help of light ray trajectories in the gradient index lens,
the difference between universal gravitation and GR is clearly
shown. The extra cubic term r−3 in the effective potential of the
Schwarzschild spacetime makes the path in precession and
causes Newton’s second law to fail [37]. Moreover, inspired
by such mimicking, we propose two other types of gradient
index lenses stemming from the Newton and Hooke potentials,
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each with an additional quadratic perturbation r−2. The orbits
in those lenses will not always be in precession. It can be closed
under certain conditions or be trapped by the center. Such
gravitational effects of additional quadratic term systems in
astronomy are possibly related to the charged Reissner–
Nordström metric [38,39] of GR and the dark matter particle
motions in galaxies [40].

2. SCHWARZSCHILD PRECESSION MIMICKING

The nearest black hole candidate SgrA* is located at the center
of the Milky Way, surrounded by a very dense cluster of stars.
One of the closest stars is S2, whose distance from SgrA* at
orbit’s perihelion is about 120Au (Au, atomic units). Due to
the extreme gravity environment, the system of SgrA* provides
a wonderful “laboratory” for GR testing. For the star S2, the
orbit obeys the Schwarzschild metric of Einstein’s field equa-
tion:

ds2 � −

�

1 −
2GM

c2r

�

−1

dr2 − r2dθ2 − r2 sin2 θdϕ2

� c2
�

1 −
2GM

c2r

�

dt2, (1)

where G is gravitational constant,M is the mass of SgrA*, and c
is the speed of light. The geodesic equations in this curved
spacetime are

d2xα

ds2
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dxμ

ds

dxν

ds
� 0, (2)

where α, μ, and ν traverse all generalized coordinates (r, θ, ϕ, t),
and Γ

α
μν is called the Christoffel symbol, which can be calcu-

lated by the metric tensor in Eq. (1). Equation (2) contains four
equations related to the four generalized coordinates. By the
spherical symmetry, and without any loss of generality, we
chose θ � π

2 as the plane of trajectory. Then the derivatives
of θ vanish and the equations are reduced to three. When
we substitute values of Γα

μν, these equations are
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where ds � cdτ. Equation (4) can be rewritten as r2 dϕ
dτ � L (L is

a constant), stating that angular momentum is conserved.
Combining Eqs. (3) and (5), another key equation about en-
ergy conservation can be found. The two dominant equations
are the following:

�

dr

dτ
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� r2
�
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r

� −c2�1 − K 2� � 2GMr
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r2
dϕ

dτ
� L, (7)

where K is also an integration constant. After some algebraic
calculation, Eqs. (6) and (7) will be simplified into one formula:

c2K 2
− c2 �

�

dr

dt

�

2

� L2

r2
−

2GM

r
−

2GML2

c2r3
: (8)

That is the final equation of the matter motion in
Schwarzschild spacetime. In Newtonian mechanics, a particle
with mass m and total energy E, influenced only by the gravity
from a spherically symmetric object with mass M , satisfies

2E

m
�

�

dr

dt

�

2

� L2

r2
−

2GM

r
: (9)

The first two terms on the right side of Eq. (9) correspond to
kinetic energy part, and the third term corresponds to the po-
tential. Comparing Eq. (9) with Eq. (8), one can find that both
left sides of the equations represent per unit mass of the total
energy, and their difference is that the Schwarzschild metric of
GR has an additional cubic potential item r−3. When r is small,
the cubic item dominates, yet the potential in origin will more
rapidly approach infinity, causing the precession of perihelion
in orbits. Therefore, interestingly, the potential form V �
−

GM
r −

GML2

c2r3
can be regarded as a modified universal gravita-

tional potential of celestial bodies on behalf of the impact of
GR, at least in the mathematical form.

Now let us treat the mechanical problem in the geometrical
optics regime using a gradient index lens. To begin, we employ
the closed relationship between classical mechanics and geo-
metrical optics based on the optical-mechanical analogy. The
shape of particle trajectories in mechanics is the same as the
trajectories of light rays in a lens with a refractive index distri-
bution [36]

n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�E − V �
p

, (10)

and E and V in Eq. (10) are the total energy per unit mass and
the potential, respectively. Equation (10) indicates that the gra-
dient index lens is determined by E and V . In celestial mechan-
ics, E and V dominate the matter energy distribution of the
system, and when it comes to geometrical optics, these two
key factors are reflected in the refractive index profile n, where
n plays the major role in light ray propagation. One must notice
that in the analogy, the independent variables of two fields are
not the same. Maupertuis’s principle (the least action principle)
is
R

mvdl , and the Fermat’s principle is
R

ndl . It seems that
refractive index profile n is the role of “velocity” v in mechanics
[n has the dimension of v in Eq. (10)]. However, if the inde-
pendent variable in optics corresponds to the physical time t,
the refractive index n will be proportional to the speed of
light c. Thus, the independent variable of the optics under
the analogy is actually a stepped parameter, not the physical
time t . Here we will use ζ to distinguish it from t. To further
identify the mechanical problem in optics, we must know the
initial condition or another important physical quantity, the
orbital angular momentum L, of both fields.

For star S2, the per unit mass energy and per unit orbital
angular momentum are E � −

GM
2a and L �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GMa�1 − e2�
p

,
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respectively. Here a is semi-major axis and e is the eccentricity
of the orbit. From Ref. [5], a � 1031.32Au, e � 0.884649,
and thus the perihelion rp � a�1 − e� � 118.922Au. The mass
of the nearest black hole candidate SgrA* is M � 4.261 ×

106M s (M s is the solar mass). The Schwarzschild precession

of per S2’s orbit can be obtained from GR as Δϕ � 3πRs

a�1−e2��
12.1 0, where Rs � 2GM

c2
is the Schwarzschild radius. With the

help of the optical-mechanical analogy, this precession of star
S2 can be visualized vividly in a gradient index lens. Substitute

E � −

GM
2a and modified universal gravitational potential

V � −

GM
r −

GML2

c2r3
into Eq. (10), and the refractive index profile

mimicking Schwarzschild precession induced by the black hole

SgrA* is n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
�

−

GM
2a � GM

r � GML2

c2r3

�

q

. In fact, there are sev-

eral other mimickings about static black holes, such as n � 1
r

[22,23,26]. However, the gradient lens we propose based on
the optical-mechanical analogy is very different from those
in the previous works. The lens here is a general formula
for interactions between two massive celestial bodies, not lim-
ited to black holes. Our method involves the astronomical
quantities, which is more reasonable in revealing the actual
celestial motions in the universe, while the mimicking n � 1

r

is emphasized on the trapping effect, and it is more suitable
for a light absorber, or we can call it an “optical black hole.”
In Fig. 1(a), we draw the light ray trajectories of both universal
gravitation analogy and Schwarzschild precession analogy. The
massive black hole is placed in the origin, and the trajectories

start at the perihelion �0, −rp� indicated by the

cyan spot below the origin. The direction of velocity is

perpendicular to the radius vector at that point. The universal

gravitation analogy is shown in a red dashed elliptically closed

curve, while the blue curve represents the mimicking of

Schwarzschild precession. From Fig. 1(a), it can be found that

the precession accumulates and becomes obvious with the evo-

lution of the “time” ζ. At the beginning, the two curves are very

close to each other, and after 15 periods the difference is gradu-

ally revealed. Although ζ does not correspond to the physical

time t, the shapes of the trajectories in mechanics as well as the

precession per orbit (Δϕ) are conserved in the geometrical op-

tics [33]. Therefore, if we care less about the physical time, this

mimicking is fast and effective to make some useful predictions

at first, by avoiding the complex mathematical calculations of

the metric of curved spacetime.
In Fig. 1(a) we enlarge a small area (the white dashed box) to

show the precession clearly. The precession looks very small as
depicted in the inset (in the right corner). However, it is much
bigger compared with the precession of Mercury around the
Sun. We also extract the x and y components of universal gravi-
tation analogy (red curve) and Schwarzschild precession
analogy (blue curve). The results are presented in Figs. 1(a)
and 1(b), respectively. We show the last three periods and
find that the separation between universal gravitation
and Schwarzschild precession is obvious in the plot of x�ζ�.
The separation is getting larger as the “time” ζ increases.

Fig. 1. (a) Light ray trajectories of universal gravitation analogy and Schwarzschild precession analogy of the star S2’s orbit around the nearest massive
black hole SgrA* candidate (in the origin). Trajectories start from the perihelion �0, −rp� (the cyan dot), and rp � a�1 − e� � 118.922Au. The red
dashed elliptically closed curve is the analogy of universal gravitation. The blue curve varying with the “time” ζ is the mimicking of Schwarzschild
precession. Per orbit of this precession is 12.1 0, and here it is about 3° for 15 periods. The inset in the lower right corner is an enlarged view of the
trajectories in the upper dashed white box. The background color map is the logarithmic refractive index distribution log�n� of the induced gradient lens
mimicking Schwarzschild precession. The profile n�r� goes infinitely at the origin, and it equals 0 in the region outside r � 2.063Au [the plotted
minimum value log�n� � −3 here]. (b) and (c) The x components and y components of these two trajectories, respectively. Three periods are plotted,
and the difference between universal gravitation and Schwarzschild precession is clearly shown in curves of x�ζ�.
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However, the curves of y�ζ� remain almost the same due to the
high eccentricity of the orbit.

3. PERTURBATION OF QUADRATIC TERM r−2

In the previous section, the Schwarzschild precession is success-
fully reproduced in geometrical optics based on the optical-
mechanical analogy. The modified universal gravitational
potential is the key role in connecting mechanics with optics.
In the vast universe, there are various kinds of effective poten-
tials that describe the interaction between celestial bodies. Some
effective potentials can be adopted to represent the influence of
GR if the spacetime is static, like the Schwarzschild metric and
the Reissner–Nordström metric. In this section, we are inter-
ested in whether there exist other potentials in astronomy that
can make a different trajectory, not always in the elliptical orbit
or in precession. In this way, the novel gravitational effects in
celestial mechanics may enlighten us to meet some new ideas
for optics based on the optical-mechanical analogy. In
Schwarzschild precession, it is the cubic term r−3 that yields
the precession of the perihelion and causes the orbit to no
longer be closed. However, if the additional term in the modi-
fied potential is quadratic, i.e., r−2, will the phenomenon in the
corresponding gradient index lens be the same as Schwarzschild
precession? The answer here is no. For convenience, we con-
sider a more concise and basic potential form in Newton me-
chanics, i.e., V � −

1
r , to manifest gravity. Now we add the

extra quadratic term r−2 with coefficient λ and make up a
new modified Newton potential V � −

1
r −

λ
r2
. In mechanics,

the trajectory of a particle (set the mass as unit) under such
a central potential field can be precisely solved, and the expres-
sion is [37]

r � α2L2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2Eα2

L2

q

cos�αθ�
, (11)

where θ is polar angle, and α �
ffiffiffiffiffiffiffiffiffiffiffi

1 − 2λ
L2

q

, which depends on

coefficient λ and orbital angular momentum L. According to
Eq. (10), the refractive index profile of the “quadratic” gradient

lens is n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
�

E � 1
r � λ

r2

�

q

. It is noticed that if E � −

1
2,

λ � 0, this lens is the well-known Eaton lens with the profile

n �
ffiffiffiffiffiffiffiffiffi

2
r − 1

q

[41], which is widely used in optics for bending

the desired angle of input rays. According to the optical-
mechanical analogy, the Eaton lens is connected to the
Newton profile V � −

1
r , and the trajectories in that lens are

also ellipses, the same as the red dashed curve in Fig. 1(a).
Besides, the Eaton lens is also an important self-imaging lens
in the optical absolute instrument family. Before we start the
exploration of light rays in the “quadratic” lens, the initial con-
dition, i.e., the orbital angular momentum L in mechanics
must be changed to the proper form in the geometrical optics.
The L in geometrical optics is determined by the location and
the refractive index profile of the ray [42]:

L � n�r�r sin ψ , (12)

where ψ is the angle between the radius vector and the tangent
of the ray trajectory. Here, we also set E � −

1
2 to keep consis-

tent with the Eaton lens (for n � 1 at r � 1 in the Eaton lens).
We divide the “quadratic”modified Newton lens into two cases
of λ > 0 and λ < 0 and plot several typical examples in Fig. 2.

In Fig. 2, the light rays start from point (1, 0) with different
launching angle ψ , stating their various orbit angular momen-
tum L. The first row is the case of λ � 1, with ψ � 3

4
π and

ψ � 1
3
π in Figs. 2(a) and 2(b), respectively. The trajectory

in Fig. 2(a) is trapped by the center, with a pure imaginary value

of α (α �
ffiffi

3
p

3 i), while the trajectory in Fig. 2(b) is closed. It has

finished passing through the origin three times, and then it fi-
nally joins into the starting point. The value of α is 13. However,

the situations in the case of the negative λ are different, as

shown in Figs. 2(c) and 2(d). For λ � −

6
37, the trajectories

of the light rays have clear boundaries. They are stably restricted
in an annular region with the positive refractive index. The ray
in Fig. 2(c) with a launching angle ψ � 1

6 π is in precession and

keeps dancing around the center. Its α is equal to
ffiffiffiffi

73
p

5 . The ray

in Fig. 2(d) with the initial angle ψ � 1
4 π is closed in a petaloid

shape, and the α equals 7
5. The closed trajectory has seven petals

and passes through the origin five times. The reason why the
trajectories are in various shapes can be dated back to Eq. (11)
(the path solution in mechanics). The value of factor α before
the polar angle θ is essential. If α is rational, taking the form of
p
q (p, q are coprime integers), the trajectory will be repeated and

closed after the period 2qπ. Recalling the closed trajectories in

this part [α � 1
3 in Fig. 2(b) and α � 7

5 in Fig. 2(d)], we find

that light rays will have p petals and travel the origin q times for

α � p
q. We call it the general rule of closed orbits. Nevertheless,

if α is nonrational, there is no finite period, and it will keep
dancing around the center as illustrated in Fig. 2(c)

(α �
ffiffiffiffi

73
p

5 ). And as for the nonreal α, the term cos�αθ� in

Eq. (11) will change into hyperbolic cosine form, which is fur-
ther away from the period function. Thus the ray will collapse
to straight the center if the launching direction is toward the
center [Fig. 2(a)], or it will travel for some distance and turn
back to the center due to the reflection resulting from the
gradually decreasing n (in mechanics the turning point is
due to the vanishing velocity) if the launching direction is op-
posite to the center.

In fact, the phenomena for the case λ < 0 in quadratic
modified Newton potential V � −

1
r −

λ
r2
of Figs. 2(c) and 2(d)

are related to another exact metric of Einstein’s field equation,
i.e., the Reissner–Nordström metric. This metric describes the
spacetime around a spherically symmetric nonrotating massive
body with an electric charge Q . If Q is zero, it reduces to the
Schwarzschild metric. However, if the electric charge Q is non-
zero, the charged particle motion has additional quadratic item
r−2, along with the fourth power item r−4 in Eq. (8), whereas
the higher power term can be neglected in some ways, and thus
the situation is fundamentally similar to Figs. 2(c) and 2(d).

4. MODEL EXTENSION

The above Newton profile V � −

1
r is a basic potential in uni-

verse. Another common potential, the Hooke potential
V � 1

2 r
2 (also named the harmonic potential) also supports
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closed elliptical trajectories, which can describe the gravitation
of dark matter particles within the spherical isotropic homo-
geneous galaxies [40]. With the optical-mechanical analogy,
the Hooke potential is associated with the Luneburg lens

n �
ffiffiffiffiffiffiffiffiffiffiffi

2 − r2
p

[43], with the energy constant E � 1. The
Luneburg lens is also a perfect imaging lens and has extensive
applications in optical antennas. Now this begs the question: if

the quadratic term λ
r2
is introduced into the Hooke potential,

how does the light ray behave in its induced gradient
index lens?

To solve this problem, we can first search its orbit in me-
chanics, and then transform the quantities in the language of
optics based on the analogy. By the laws of conservation of en-
ergy and momentum, the trajectory of the particle in the modi-
fied Hooke potential V � 1

2
r2 − λ

r2
can be solved as [37]

r2 � α2L2∕E

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − α2L2

E2

q

cos�2αθ�
, (13)

where α is also the intermediate parameter and α �
ffiffiffiffiffiffiffiffiffiffiffi

1 − 2λ
L2

q

.
Equation (13) expounds that when α is rational (α � p∕q), the

trajectories will be closed, whereas, as the factor in front of the
polar angle θ is 2α, the trajectory will obey the general rule
based on 2α. Different from the energy (with unit mass) in
a Newtonian system, the energy of the modified Hooke poten-
tial is positive, and we also set E � 1 to be in accordance with
the Luneburg lens. By using Eq. (10), the problem can be mim-

icked by the gradient index lens, i.e., n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
�

1 − 1
2
r2 � λ

r2

�

q

.

We also calculate two cases of λ > 0 and λ < 0 in geometrical
optics, and the results are shown in Fig. 3.

There are two closed trajectories in Figs. 3(b) and 3(d). Their
shapes are exactly consistent with the general rule of closed or-
bits. In Fig. 3(b), the value of 2α is 74, and thus the trajectory has
seven petals and passes the origin four times, while for 2α � 8 in
Fig. 3(d), the trajectory has eight petals after traveling around the
origin one time. Besides, the analysis of the trapping effect in
Fig. 3(a) and the precession in Fig. 3(c) is the same as that
in the previous section. It should be noted that the parameters
of λ and ψ can be arbitrary, and those we chose are to better
evidence our consequences. The trajectories in these two types
of lenses (induced by the modified Newton potential and Hooke
potential) are pretty interesting. The lenses can perform a

Fig. 2. Light ray trajectories in the lens n�r� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
�

E � 1
r � λ

r2

�

q

with E � −

1
2 induced by the modified Newton potential of two different λ. The

color maps show the corresponding distributions of the refractive index profiles. All the rays start from point (1, 0), as indicated by the red dot. First
row: λ � 1; (a) and (b) correspond to the launching angles ψ � 3

4 π and ψ � 1
3 π, respectively. (a) The ray collapses into the center, like the trapping

effect of a black hole. α equals
ffiffi

3
p

3 i, which is a pure imaginary number. (b) The ray is closed after traveling around the origin three times, with α � 1
3.

Second row: λ � −

6
37; (c) and (d) represent the launching angles ψ � 1

6 π and ψ � 1
4 π, respectively. (c) The trajectory is in precession and keeps

dancing around the center, where α is
ffiffiffiffi

73
p

5 . (d) The closed ray trajectory of seven rotational symmetric petals. It joins into the starting point after

traveling around the origin five times, and α is 7
5.
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“selective imaging (self-imaging)” in optics, as only certain sets of
the light rays following the general rule can be closed. Thus it can
be regarded as a special kind of optical absolute instrument, as
their conditions for imaging are restricted. Moreover, the trap-
ping effect and the precessional motion may also have potential
applications in light absorbing and confining (cavity), and these
effects are more common in such lenses.

5. CONCLUSION

In this paper, we propose a gradient refractive index lens to
mimic the Schwarzschild precession in the orbit of star S2 near
the Galactic Center massive black hole SgrA* for the first time
to our knowledge, based on the optical-mechanical analogy in
the field of geometrical optics. The optical-mechanical analogy
involves potential V and energy E of the system, and thus we
use a modified universal gravitational potential to represent the
influence of GR. Inspired by the Schwarzschild precession
mimicking, we propose two types of gradient lenses stemming
from the modified Newton potential and modified Hooke po-
tential, which are possibly related to the Reissner–Nordström
metric and dark matter motions in astronomy. With the help of
ray tracing, we find the light trajectories in these lenses will be

closed, governed by a general rule, otherwise they will be
trapped by the center or be continuously in precession.
These interesting properties can be utilized in designing selec-
tive optical imaging devices and light absorbers. The optical-
mechanical analogy builds a useful bridge to connect mechanics
with optics, and our work shows some of its capabilities. Such
interdisciplinary work of celestial mechanics and optics prom-
ises to potentially enlighten us with some new thoughts and
ideas for both fields, for example, the Eaton lens, the
Luneburg lens, and the Morse lens in optics [44].
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