
Mimicry of proofs with computers: the case of
Linear Algebra

ORIT HAZZAN*

Department of Education in Technology and Science, Technion - Israel
Institute of Technology, Israel

e-mail: oritha@techunix.technion.ac.il

and RINA ZAZKIS

Faculty of Education, Simon Fraser University, 8888 University Drive,
Burnaby, BC, Canada V5A 1S6.

e-mail: zazkis@sfu.ca

(Received 25 June 2002)

This article examines the idea of ‘following the flow of a proof with an
example’ in order to assist the learner in the challenging task of understanding
mathematical proofs. This strategy is termed ‘mimicry of a proof’. However,
such mimicry can be impractical or unreasonably demanding when the
mathematical objects in the proof are difficult to manipulate without
technological enhancement. This is the case with many proofs in Linear
Algebra, in which the manipulated objects are vectors or matrices. Therefore,
the article focuses on the idea of proof mimicry with a computer algebra system
(CAS). As examples, this strategy is applied to the proofs of two theorems: the
basis theorem and the orthogonalization theorem. In addition, pedagogical
guidelines to be followed in constructing a set of computer activities for
students are presented and examined.

1. Introduction
Teaching students to understand, write and appreciate mathematical proofs

presents one of the major challenges in mathematics education. This challenge
surfaces when students are introduced to formal proofs in secondary school and
still exists when mathematics is taught at the undergraduate level. As it turns out,
many of the proofs of mathematical theorems in the context of Linear Algebra
involve additional complexity for the learners. These theorems deal with abstract
objects, such as matrices or vector spaces, and some (intricate) manipulation of
these objects is carried out as part of the proof. Specifically, the proofs often
involve mathematical induction, a strategy that is not fully grasped by many
learners. Moreover, and maybe most importantly, as Linear Algebra is a first or a
second year course in most institutions, these proofs appear relatively early in
learner’s experiences with proofs.

In this article we present a pedagogical strategy for helping students unravel
complex and condensed proofs. This strategy is ‘mimicry of proofs’. We start with

*The author to whom correspondence should be addressed.

INT. J. MATH. EDUC. SCI. TECHNOL., 2003
VOL. 34, NO. 3, 385–402

International Journal of Mathematical Education in Science and Technology
ISSN 0020–739X print/ISSN 1464–5211 online # 2003 Taylor & Francis Ltd

http://www.tandf.co.uk/journals
DOI: 10.1080/0020739031000108628

discussion of students’ difficulties with mathematical proofs. We then introduce
the idea of proof mimicry with a numerical example. We proceed with a discussion
of students’ difficulties in learning Linear Algebra, focusing on Linear Algebra
proofs. We present examples of student activities based on the idea of mimicry of
proofs in Linear Algebra. We conclude by sharing an experience of implementa-
tion of this strategy in a classroom. Our aim is to present a pedagogical approach.
Thus, though we have data indicating that students do improve their under-
standing of the relevant Linear Algebra concepts, this article focuses on the
pedagogical aspect rather than on the research aspect of our experience.

2. Proofs in learning mathematics
Abundant research that explores students’ difficulties with mathematical proof

has already been carried out. Some of these difficulties are discussed with respect
to specific proofs, or specific kinds of proofs, such as proof by induction or indirect
proof [1–4]. Other research undertakings indicate that some students do not
appreciate the need for a formal mathematical proof as part of their ‘proof
schemes’ [5]. Specifically, what is accepted by these students to be a convincing
argument is often inconsistent with mathematical community conventions. Thus,
‘proof by example’ may serve as sufficient argument for a student possessing an
empirical inductive proof scheme.

Though we do not accept particular examples as mathematical proofs, we
do acknowledge their role in learning to prove and in understanding proofs.
According to Edwards [6] expectation or belief which is based on a specific set of
examples is an important element in the ‘territory before proof’ and a stepping
stone towards conjecture and deductive reasoning. Rowland [7] focuses on the
notion of generic proof; that is, ‘proof by example’ that does not capitalize on any
specific features of the particular example. While ‘proof by generic example’ on its
own does not constitute a formal mathematical proof, considering a generic
example and extracting its non-particular features provide a bridge towards
creating a general mathematical proof.

A large amount of research literature focuses on learners’ writing proofs. Less
attention is paid to topics related to reading proofs, such as reading proofs in a way
that leads to student understanding of the proof and to student ability to analyse its
structure, rather than the ability to recreate it from memory. Selden and Selden [8]
have shown that undergraduate students have difficulty in interpreting the text of
proofs and that often these students are unable to distinguish between a valid proof
from a meaningless manipulation of symbols. It was suggested that under-
graduates should be allowed ample opportunity to evaluate proofs.

Almost two decades ago, acknowledging the challenge in understanding a
complex proof, Leron [9] presented the idea of structuring proofs, that is, arranging
the presentation of a proof in a way that its structure is explicit to the reader.
However, uncovering such a structure is not predominant in textbooks or lecture
halls. As a result, most proofs are still presented to the learner in a linear fashion.

The question that arises is: how can one truly understand, and make sense of a
proof? Specific examples are often used in order to demonstrate the correctness of
a statement or theorem that has been or is about to be proved. Specific examples
are also used as a bridge in building a general proof [7]. Another important role
that can be attributed to specific examples is that of understanding a proof rather

386 O. Hazzan and R. Zazkis

than that of creating it. We suggest that following the flow of a proof (as it is
presented in a conventional linear fashion), with a specific example helps in
understanding the proof. We call this strategy ‘proof mimicry’.

We focus here on construction proofs. Not to be confused with proofs of
correctness of geometrical constructions, construction proofs are proofs that entail
the construction of a new mathematical object (be it a function, a set or even just a
number) as one of their central features. Thus, the renowned Cantor’s proof, often
referred to as the ‘diagonal method’, establishes the equality of the cardinality of
rational numbers and the cardinality of natural numbers by constructing a
function, a one-to-one correspondence. Euclid’s proof of the infinity of primes
introduces a construction of a new number. We believe that following this
construction process with a specific example may help in understanding the core
argument. In the next section we consider this example in further detail.

3. Example of proof mimicry: infinity of primes
As short proofs are sometimes the most difficult to unravel, several researches

suggest pedagogical approaches to help students understand such proofs. For
example, Leron [1] and Rowland [7] discuss the pedagogical approach for turning
a proof-by-contradiction into a constructive proof.

Our purpose here is less ambitious. In this section we illustrate how specific
examples may be helpful. Table 1 presents the proof of the theorem that states that
there are infinitely many prime numbers. To demonstrate the pedagogical power
of specific examples we simply follow the proof with numerical examples.

Suppose that the finite set of primes is S ¼ {2,3}. Then the new constructed
number M ¼ (2 . 3) þ 1 ¼ 7. In this case 7 is a ‘new prime’, prime that has not
been included in the presumably finite list of primes.

Gradually enlarging the set of primes, we get:

(2 . 3 . 5) þ 1 ¼ 31, ‘new prime’
(2 . 3 . 5 . 7) þ 1 ¼ 211, ‘new prime’
(2 . 3 . 5 . 7 . 11) þ 1 ¼ 2311, ‘new prime’

At this stage, and maybe even earlier, an expectation is created that adding 1 to
any multiple of primes will generate a new prime number. Therefore the next step
is crucial:

(2 . 3 . 5 . 7 . 11 . 13) þ 1 ¼ 30031
but, 30031 ¼ 59 * 509

Indeed, 30031 is a composite number, and its prime factors, 59 and 509, are not
elements in the presumably finite set of primes. In our experience this particular
example has a greater explanatory power for many learners than the argument ‘M
has a prime factor p different from p1,. . .,pn, since dividing M by any of the primes
in S gives a reminder of 1’.

Theorem. There are infinitely many prime numbers.
Proof. Suppose, on the contrary, that the number of primes in finite, p1,. . ., pn.

Consider M ¼ (p1 . p2pn) þ 1.
Then M is a prime number or M has a prime factor p different from p1,. . ., pn

Contradiction.

Table 1. Proof of infinite number of primes.

Mimicry of proofs with computers 387

The human mind is often not satisfied with the knowledge that some objects
exist. There is a desire to point out exactly what these objects are. Similarly,
unraveling a construction process with a specific example helps understand exactly
how the construction works. In the above illustration we could unravel the proof
by following it along with numerical examples. As the calculations involved in the
numerical examples are simple, they could easily be carried out mentally or with
the help of a hand-held calculator. There are cases, though, where the mathemati-
cal objects constructed in proofs are too complex to be manipulated with such ease.
Many of the proofs in Linear Algebra present such complexity. In what follows we
discuss general difficulties that students face in the Linear Algebra course and
suggest a way to assist them with the complexity of Linear Algebra proofs.

4. Learning Linear Algebra
The experience of teaching and learning Linear Algebra is often referred to as

difficult and frustrating [10, 11]. One obvious reason for this is that this course
appears early in a sequence of courses for specializing in Mathematics, before
students are fully accustomed to the demands of the discipline for rigor and
abstraction. Dorier et al. [12] suggest that for many students ‘Linear Algebra is no
more than a catalogue of very abstract notions’ (p. 95). These researchers further
describe students’ perception of Linear Algebra as ‘an avalanche of new words,
new symbols, new definitions and new theorems’ [12]. However, the abundance of
novelty with which students are faced presents only part of the difficulties.
According to [13], Linear Algebra is the first course in which students encounter
‘full fledged mathematical theory, built systematically from the ground up, with all
its fuss about making assumptions explicit, justifying statements by reference to
definitions and already proved facts’ (p. 65). One difficulty that students
experience with this ‘full fledged theory’ is its generality, that is, the difficulty is
in shifting attention from particular objects to general structures.

A further difficulty is with the objects themselves—vector spaces, bases,
kernels, etc.—which are found by learners to be difficult, probably because such
concepts require a higher level of abstraction than students are used to.
Furthermore, the existence of multiple levels of description and representation
(general theory of vector spaces, more specific theory of Rn and geometric
representation of R2 or R3) and the constant shifting among these levels provide an
additional obstacle.

Instructors and researchers acknowledge these difficulties and, as a result, are
seeking pedagogical approaches thatmakeLinearAlgebramore accessible.Utilizing
computer technology could be a possible means to this end. In the next section we
focus on the use of computer technology for the learning of Linear Algebra.

5. Linear Algebra and technology
Computer technology is slowly making its way into learning and teaching

undergraduate mathematics. About two decades ago the emerging discussion
surrounded possible benefits of utilizing computers and the feasibility of
computer-supported approaches in the existing structure of undergraduate
mathematics education. Today, though the ‘chalk and tack’ prevails in many
Linear Algebra classes, the use of technology is acknowledged and often
mentioned as recommendation [14]. The discussion among the researchers has

388 O. Hazzan and R. Zazkis

shifted from ‘for and against technology’ to ‘how to utilize technology?’, ‘what
software to use?’, ‘what activities to develop?’.

One possible approach to integrating technology in Linear Algebra builds on
work with computer algebra systems (such as MATLAB and Maple) with which
students can manipulate n-tuples and matrices (cf. [15, 16]). A different
perspective is suggested by Sierpinska et al. [17], who designed an approach
that provides students with a ‘soft entry’ to Linear Algebra through the
two-dimensional vector space of dynamic geometry environments (in that case it
is Carbi). This approach builds on the geometric mode of description of Linear
Algebra. However, despite the work with low dimensions and the use of
visualizations (as the implementation of this method advocates) students’
difficulties persisted when the students were in the process of moving to the
structural abstract mode [18].

Hillel [10] proposes four levels of activity with the Computer Algebra System
(in this case Maple) that support the learning of Linear Algebra:

(1) computing (moving beyond 2- and 3-dimensional examples);
(2) becoming acquainted with objects and operations;
(3) exploring and getting inductive evidence of proofs;
(4) creating a milieu which supports mathematical discourse.

We consider the types of activities described by Hillel as dimensions rather
than levels, to avoid the presumption of hierarchical structure. In this article we
demonstrate a new fifth dimension—mimicry of proofs—that encompasses and
builds on the four previously mentioned dimensions.

6. Mimicry in Linear Algebra
In the previous sections we laid out the rationale behind the mimicry of

mathematical proofs in general and the importance of such implementation in the
context of Linear Algebra in particular. In this section we present two examples
for mimicry of proofs with the aid of a computer algebra system (Maple). The two
examples are taken from the traditional introductory Linear Algebra course. The
first example is the proof of the theorem that states that ‘in a finite-dimensional
vector space, all bases have the same number of elements’ (referred to in this article
as the Basis Theorem). It is illustrated how the proof of the theorem can be
represented by Maple functions1. In addition to the proof mimicry itself we
present a set of activities designed for teaching students the proof. We found this
theorem suitable for the illustration as its proof is based on a lemma the proof of
which relies on an inductive process. As it turns out, Linear Algebra instructors
consider this proof to be the most sophisticated proof presented to students in an
introductory Linear Algebra course. Our second example—the Gram-Schmidt
theorem—is presented very briefly. In this case we illustrate only the mimicry
idea. Specific activities for students can be designed similarly to the first example
and according to the instructor’s preference.

1The illustration is based on an experiment that Orit Hazzan (one of the authors)

together with David Chillag and Uri Leron all from the Technion - Israel Institute of

Technology, carried out in 1997–1999 as part of a campus wide project that aimed to

integrate information technologies into Technion teaching.

Mimicry of proofs with computers 389

Example 11: The Basis Theorem
Table 2 presents the proof of the theorem discussed in this section.

In what follows we present the proof of the Replacement Lemma (Cf. table 2).
This is the proof that is, in fact, mimicked in the set of activities for students
presented in Appendix B. As mentioned above and described in what follows, the
proof consists of an inductive process in which the elements of B1 are added one by
one at the beginning of the spanning indexed set we got so far. At each step the first
element (from the left) in the spanning indexed set, that is linearly dependent by its
previous ones, is thrown away. Since the eliminated vector cannot be one of the
vectors that we just added to the spanning indexed set, the elements of B1 are
exhausted before the elements of the spanning set. In the case of equality, the
elements of B1 are exhausted at the same step of the inductive process with all the
elements of the spanning set. The above inductive process is based on the fact that
if an ordered set of vectors is linearly dependent, then there is one vector that is a
linear combination of its previous ones.

As was previously mentioned, according to Linear Algebra instructors, this
proof causes students a number of difficulties. This observation is followed from at
least two characteristics of the proof. First, students should mentally hang on to
algebraic structures (spanning set, linear dependency and linear combination). At
the stage in which the proof is presented, not all the students have as yet
constructed these objects mentally. Second, the inductive process is usually
described in a condensed way, and students cannot unravel it, understand what it
contains and follow it. The following computer activities are intended for the
purpose of helping students overcome these difficulties. Before the set of activities
for students is presented, the guidelines that were adopted in the design of the
activities are outlined.

The main guideline that was adopted in the development of the Maple activity,
in which the proof of the Basis Theorem is mimicked, focuses on the construction
of (computational and mental) mathematical objects. This was done in the spirit of
constructionism [19]. Thus, in order to implement the idea of ‘out-of-the-mind
construction leads to mental construction’, mathematical concepts are represented

Table 2. Proof of the theorem that states that in a finite-dimensional space, all bases have
the same number of elements.

Theorem. In a finite-dimensional space, all bases have the same number of elements.
Proof. Follows from the following lemma.

Lemma.
Let V be a finite-dimensional vector space and {x1, x2,. . .,xn} be a basis for V with n
elements. If {y1, y2,. . .,ym} is a set of m linearly independent vectors in V, then m 6 n.

Proof of Theorem.
Let {x1, x2,. . .,xn} and {y1, y2,. . .,ym} be bases forV, a finite-dimensional space. Since {y1,
y2,. . .,ym} is a linearly independent set and {x1, x2,. . .,xn} is a basis, by the above lemma
m 6 n. If we consider {x1, x2,. . .,xn} to be a linearly independent set and {y1, y2,. . .,ym} to
be a basis, by the above lemma n 6 m. Thus, n ¼ m.

The above lemma is based on the Replacement lemma.
Let B be a set of linearly independent vectors in the spanning space of a set of vectors A.
For all subset B1, B1�B, exists A1, A1�A and jA1j ¼ jB1j, that B1 replaces. In short,
(A�A1) [B1 spans the same span as A.

390 O. Hazzan and R. Zazkis

by Maple functions. The idea of representing mathematical objects by means of
programming languages is not new. For example, Dubinsky and Leron [20]
present an activity in which students discover Lagrange Theorem through a set of
ISetL activities (pp. 108–111). A similar approach is adopted here for mimicking
mathematical proofs.

Further, the set of student activities consists of two main kinds of tasks. The
first kind of tasks is based on the exploration of a given function behavior (e.g.,
basis). Concepts were introduced to students by way of Maple activities prior to
the formal presentation of the concepts in the lecture. Thus, when students were
asked to reveal the meaning of a given function, even a meaningful name (such as
basis) was unknown to them and therefore, of no use to them. As a result, students
had to reveal the meaning of a given function based on their knowledge at the time.
In that process they had to manipulate mentally what they already knew, and to
construct a new mental object from those building blocks. The second kind of
tasks is based on object construction (e.g. LD, which determines whether a given set
of vectors is linearly dependent). In this case students were asked to construct a
new function which mimics a mathematical object (and its properties). The mental
construction which is associated with such function construction can be explained by
way of the constructionist perspective mentioned above. Furthermore, as the
properties of the mathematical notion are mimicked, the students have to approach
the concept as an object. Hence, we believe that this kind of activities may lead
students to an object conception of the concept under (mental and computational)
construction (cf. [21, 22]).

Appendix A presents the functions on which the mimicry of the proof of the
Basis Theorem is based. Appendix B presents the entire set of activities developed
for student engagement with the theorem. In what follows several illustrative
sections from the set of student activities are presented. The instructions presented
in these activities should be executed in Maple. However, in order to make the
presentation here self-contained for the reader, the instructions were carried out
and the computer responses were copied (indented). Our comments on each
activity accompany the text presented to students.

The first set of instructions defines a set of vectors to be manipulated in later
stages for checking algebraic connections and relationships. This set can be
extended in order to allow for additional exploration.

The following exercise calls upon the students to explore the properties of an
algebraic concept (basis), prior to introducing the concept in class. The idea is to
let the students (mentally and computationally) construct a new mathematical
concept based on their current knowledge. Guidance to explore the properties of
basis by manipulating specific examples is provided with the aim of leading
students from concrete thinking to abstract thinking.

>v1:¼ vector([1,0,0]); v2:¼ vector([0,1,0]);

>v3:¼ vector([0,0,1]); v4:¼ vector([1,1,1]);

v1:¼ [1, 0, 0]

v2:¼ [0, 1, 0]

v3:¼ [0, 0, 1]

v4:¼ [1, 1, 1]

Mimicry of proofs with computers 391

In the next step students are given the Maple function which implements the
concept of linear combination. In addition to the presentation of a mathematical
concept, this function illustrates the idea of programming/constructing mathema-
tical concepts. That is, students realize that they can build new mathematical
concepts, and not only processes. This awareness is crucial for the consequent
activities, in which more advanced mathematical concepts are constructed.

After the introduction of the Maple definition of linear combination, the
students are invited to explore the properties of this notion. Then, they are asked
to construct a Maple function LD (which determines whether a given set of
vectors is linearly dependent) that, in fact, uses the function that has just been
defined for them. The idea is to show the students that these constructions, that
have been added to the programming language by the programmer, can also be
used in the construction of more complicated mathematical notions. This idea is
also illustrated by the next function, sub.space, that is given to the students and is
used in later stages.

The following function sub.space inputs two sets of vectors and checks whether
the subspace spanned by the first set is a subspace of the space spanned by the
second set. This is done by checking whether each vector in the first set is a linear
combination of the vectors of the second set.

Exercise. Try to understand what the function basis does.

>basis([v1, v2, v3, v4]);

[v1, v2, v3]

>basis([v1, v2, v3]);

[v1, v2, v3]

>basis([v3, v2, v1]);

[v3, v2, v1]

>basis([vector([1,1,1]),vector([2,2,2]),vector([1,-1,1]),

vector([2,-2,2]), vector([1,0,1]),vector([0,1,1])]);

[[1, 1, 1] , [1, -1, 1], [0, 1, 1]]

The following function LC (for Linear Combination) inputs a vector and a set of vectors and

checks whether the vector is a liner combination of the vectors in the set:

>LC:¼ proc(u,X)

> RETURN ((basis(X)) ¼ (basis([op(X),u])));

>end;

>B:¼ [v1,v2,v3]; LC(v4,B); evalb(LC(v4,B));

B:¼ [v1, v2, v3]

[v1, v2, v3] ¼ [v1, v2, v3]

true

>evalb(LC(v4,[v1,v2]));

false

Exercise. Write a Maple function LD which determines whether a given set of

vectors is linearly dependent.

392 O. Hazzan and R. Zazkis

The following vectors are defined for checking the properties of subspaces with
a larger set of vectors. After the exploration (that is skipped here but is presented
in Appendix 2), the function sub.space is used for constructing the function
eq.subspace. As with sub.space the students are asked to explore the properties of
the notion that is expressed by the function eq.subspace. This function is used in
later stages to check that the replacement lemma does, in fact, work.

So far the basic components for the proof of the Basis Theorem have been
constructed. At this stage, the functions LCP and LCP.index that implement the
proof of the Basis Theorem are constructed one by one. The first one finds, from a
given set of vectors, the first vector that is a linear combination of its previous ones.
The second one outputs the index of that vector. For each of these functions, the
students are asked to explore the function behaviour. In what follows only one
example of such exploration is presented.

>r:¼ vector([1,1,0]); s:¼ vector([1,2,3]); t:¼ vector([2,2,2]);

r:¼ [1, 1, 0]

s:¼ [1, 2, 3]

t:¼ [2, 2, 2]

>eq.subspace:¼ proc(T,S);

> RETURN (sub.space(T,S) and sub.space(S,T));

>end;

The following function inputs an ordered set S of vectors and, if the set is linearly dependent,

returns the first vector which is a linear combination of its previous ones.

>LCP:¼ proc(S);

> for i from 1 to nops(S)-1 do

> if LC(S[iþ1],S[1..i])

> then RETURN(S[iþ1]); fi; od;

> end;

>B1:¼ [v1,v2,v3,v4]; LCP(B1);

B1:¼ [v1, v2, v3, v4]

v4

>LCP.index:¼ proc(S);

> for i from 1 to nops(S)-1 do

> if LC(S[iþ1],S[1..i])

> then RETURN(iþ1) fi; od;

> end;

> sub.space :¼ proc(T,S);

> if nops(T) ¼ 1 then RETURN(LC(T[1],S)); fi;

> if LC(T[1],S) then RETURN(sub.space(T[2..nops(T)],S)); fi;

> RETURN (LC(T[1],S));

>end;

Mimicry of proofs with computers 393

The next two functions that were presented to the students implement one step
in the inductive process on which the proof of the Basis Theorem is based. The
idea behind the functions is explained to the students. After these two functions
are presented and explored, the students are asked to implement the full process of
the proof.

The following commands confirm the claim of the theorem; that is, that the
spanned vector space does not change after each of the replacement steps.

The following function inputs an ordered set of vectors S and, if the set is linearly dependent,

‘kicks out’ the first vector which is a linear combination of its previous ones.

>kick.LCP:¼ proc(S);

> i:¼ LCP.index(S);

> RETURN([op(S[1..i-1]),op(S[iþ1..nops(S)])]);

> end;

>r:¼ vector([1,1,0]); kick.LCP([r,v1,v2,v3,v4]);

r:¼ [1, 1, 0]

[r, v1, v3, v4]

The following function performs the main step in the proof that any two bases of the same vector

space have the same number of elements. The function inputs a vector q and an ordered set S of

vectors, adds the vector at the beginning of the set, and (if possible) replaces one of the vectors in

the set with the given vector, so that the span is not changed.

>replace:¼ proc(q,S);

> RETURN (kick.LCP([q,op(S)]));

> end;

>LCP.index([v1,v2,r,t,s]);

3

>SP:¼ [v2,s,v1,v3];

SP:¼ [v2, s, v1, v3]

>SP1:¼ replace(r,SP);

SP1:¼ [r, v2, s, v3]

>SP1;

[r, v2, s, v3]

>evalb(eq.subspace(SP,SP1));

true

>SP2:¼ replace(v4,SP1);

SP2:¼ [v4, r, v2, v3]

>evalb(eq.subspace(SP,SP2));

true

394 O. Hazzan and R. Zazkis

Here, the written instructions guiding the students’ activity end. Students are
encouraged to define different sets of vectors and run through the procedures
several times with different vectors as inputs. In such, the process underlying the
theorem is unraveled and the burden of computation is left to the computer. From
a cognitive perspective, the main goal of the activity is the construction of
mathematical notions, whether the building blocks are Maple commands or
functions that are programmed by the learners or the instructor. It is our belief
that these computational constructions lead to the mental construction of the
relevant mathematical notions.

Example 2: The Gram-Schmidt Theorem
This example illustrates how the Gram-Schmidt orthogonalization process is

mimicked by Maple functions. Additional activities similar to those illustrated in
our first example, can be added according to student level, the amount of time that
the instructor wishes to dedicate to this topic, and the instructor’s preference.

Appendix C presents the three functions that can be used for mimicking the
Gram-Schmidt orthogonalization process. The function create.new.vector that is
presented below is the core of the Gram-Schmidt orthogonalization process.
It mimics the creation of the vector that is added to the orthogonal basis at the kth
stage of the process.

If the function is given to the students, they may be asked to check the
function’s behaviour with various inputs. Specifically, students may be guided to
check the properties of the created vector for different cases and to explore why
these properties ensure a creation of an orthogonal basis. If the construction of the
function is assigned to students as a programming task, they would mimic the
creation of the orthogonal basis.

After the creation of the new vector is completed, what remains to be done is to
normalize the vectors and to gather them into one orthogonal basis. The first
operation is simple when implemented in Maple; the second one turns out to be
quite messy in Maple. However, as the heart of the process consists of the way the
vectors are created one by one and the analysis of vector properties, it is reasonable
to expect that constructing the above function create.new.vectorwill assist students
in making mental constructions for the ideas that comprise the essence of the proof.

7. Conclusion
The core of this article is dedicated to the idea of mimicking mathematical

proofs with computational tools. We focused on two examples in Linear Algebra
and elaborated on some pedagogical and cognitive ideas and considerations behind

>create.new.vector:¼ proc (Ak, ortho_basis);

> RETURN (Ak - SumVec (Ak, ortho_basis));

>end;

Exercise. The previous lines have carried out the replacement of one vector at a time. Write

a function set.replace which replaces any independent set of vectors with the same number of

vectors in any spanning set.

Mimicry of proofs with computers 395

the choice of various tasks. The activities presented above do not exhaust all the
possible options. For example, students may also be asked to give examples of
different objects and to check whether the objects hold certain properties. For
further discussion about the contribution of this kind of activity to students’
learning see [23].

In conclusion we present responses of two students, in which they reflect on
their learning at the end of the course. These two responses were selected since
they express ideas of constructivism and constructionism in the students’ own
words. The two responses were given as answers to the following question: In your
opinion, how did the Maple activities influence your understanding of the Linear
Algebra course? These students, like others, present an indication that the CAS
enhancement of Linear Algebra course aided their understanding.

Student A: Interaction with Maple helped me understand the material in
depth. I think that each student should ‘get involved’ in the
software and check his/her understanding. There is a difference
between theoretical knowledge which is presented by the lecturer
during the lesson and knowledge gained from personal experience,
and this is exactly the point.

Student B: In my opinion, the activity improved my understanding of the
course, because it enabled me to imagine the definitions and
the proofs the first time I heard the lecturer present them. In
addition, the option ‘to play’ with vectors and matrices helped
me understand clearly what linear dependency is and what a
basis is.

Proofs are the heart of mathematical activity and understanding of proofs is
crucial for students’ mathematical maturity. However, mathematical convention in
the presentation of proofs often emphasizes compactness and elegance over
explanatory power. Acknowledging this convention, Hanna [24] makes a profound
distinction between proofs that ‘prove’ and proofs that ‘explain’. The proofs of the
theorems discussed above definitely prove, rather than explain. We believe that the
mimicry of proofs helps explain proofs that do not explain.

Appendix A: Functions that mimic the proof of the basis theorem
This appendix presents the functions on which the mimicry of the proof of the

Basis Theorem relies.

. The Maple function basis finds a basis for a vector space. Its input is a set (or
list) of vectors and it returns the maximal set of linearly independent vectors
from that set.

. The following function LC (for Linear Combination) inputs a vector and a
set of vectors and checks whether the vector is a linear combination of the
vectors in the set:

>LC:¼proc(u,X)

>RETURN ((basis(X)) ¼ (basis([op(X),u])));

>end;

o The function op removes the brackets.

396 O. Hazzan and R. Zazkis

. The following function inputs an ordered set of vectors S and, if the set is
linearly dependent, ‘kicks out’ the first vector which is a linear combination
of the previous ones.

>kick.LCP:¼proc(S);

> i:¼LCP.index(S);

> RETURN([op(S[1..i-1]),op(S[iþ1..nops(S)])]);

> end;

>LCP.index:¼proc(S);

> for i from 1 to nops(S)-1 do

> if LC(S[iþ1],S[1..i])

> then RETURN(iþ1) fi; od;

> end;

o The function nops returns the number of elements in a list.

. The following function replaces one vector at a time: the function inputs a
vector q and an indexed set of vectors S, adds the vector at the beginning of
the set, and (if possible) replaces one of the vectors in the set with the given
vector, so that the span is not changed.

>replace:¼ proc(q,S);

>RETURN (kick.LCP([q,op(S)]));

>end;

Appendix B: Worksheet implementing proof of the basis theorem
Notes

1. The instructions in the following worksheet should be executed in Maple.
However, in order to make this Appendix self-contained, the instructions
were executed and the computer responses were copied into the Appendix.
In order to distinguish the Maple instructions from the computer responses,
the computer responses are indented.

2. The worksheet presented here is a shorter version of the original activity
that was given to the students. The original activity included additional
exercises and mathematical explorations.

>with(linalg); {Calling the Linear Algebra package}

>v1:¼ vector([1,0,0]); v2:¼ vector([0,1,0]);

> v3:¼ vector([0,0,1]);v4:¼ vector([1,1,1]);

v1:¼ [1, 0, 0]

v2:¼ [0, 1, 0]

v3:¼ [0, 0, 1]

v4:¼ [1, 1, 1]

Exercise: Try to understand what the function basis does.

>basis([v1, v2, v3, v4]);

[v1, v2, v3]

>basis([v1, v2, v3]);

[v1, v2, v3]

>basis([v3, v2, v1]);

Mimicry of proofs with computers 397

[v3, v2, v1]

> basis([vector([1,1,1]),vector([2,2,2]),vector([1, -1,1]),vec-

tor([2,-2,2]), vector([1,0,1]), vector([0,1,1])]);

[[1, 1, 1] , [1, -1, 1], [0, 1, 1]]

The following function LC (for Linear Combination) inputs a vector and a set
of vectors and checks whether the vector is a liner combination of the vectors in
the set:

>LC:¼proc(u,X)

> RETURN ((basis(X)) ¼ (basis([op(X),u])));

>end;

>B:¼[v1,v2,v3]; LC(v4,B); evalb(LC(v4,B))

B:¼ [v1, v2, v3]

[v1, v2, v3] ¼ [v1, v2, v3]

true

>evalb(LC(v4,[v1,v2]));

false

Exercise. Write a Maple function LD which determines whether a given set of
vectors is linearly dependent.

The following function inputs two sets of vectors and checks whether the
subspace spanned by the first set is a subspace of the space spanned by the second
set. It does this by checking whether each vector in the first set is a linear
combination of the vectors of the second set.

>sub.space:¼ proc(T,S);

> if nops(T) ¼ 1 then RETURN(LC(T[1],S)); fi;

> if LC(T[1],S) then

RETURN(sub.space(T[2..nops(T)],S));

fi;

>RETURN (LC(T[1],S));

>end;

Note: The function sub.space can be written in a more elegant programming style.
However, since the students were learning their first programming course in
parallel to the introductory Linear Algebra course, we gave up the elegancy
of programming to make the functions more readable.

>v1:¼vector([1,0,0]); v2:¼vector([0,1,0]);

v3:¼vector([0,0,1]);

v1:¼ [1, 0, 0]

v2:¼ [0, 1, 0]

v3:¼ [0, 0, 1]

>B:¼[v1,v2,v3];

B:¼ [v1, v2, v3]

>r:¼vector([1,1,0]); s:¼vector([1,2,3]);

398 O. Hazzan and R. Zazkis

t:¼vector([2,2,2]);

r:¼ [1, 1, 0]

s:¼ [1, 2, 3]

t:¼ [2, 2, 2]

>evalb(sub.space([r,s],B));

true

>evalb(sub.space(B,[r,s]));

false

>eq.subspace:¼ proc(T,S);

> RETURN (sub.space(T,S) and sub.space(S,T));

>end;

>evalb(eq.subspace([r,s,t],B));

true

>evalb(eq.subspace([r,v1],[v1,v2]));

true

>evalb(eq.subspace([r,v1],[v1,v3]));

false

The following function inputs an ordered set S of vectors and, if the set is
linearly dependent, returns the first vector that is a linear combination of its
previous ones.

>LCP:¼proc(S);

> for i from 1 to nops(S)-1 do

> if LC(S[iþ1],S[1..i])

> then RETURN(S[iþ1]); fi; od;

> end;

>B1:¼[v1,v2,v3,v4]; LCP(B1);

B1:¼ [v1, v2, v3, v4]

v4

>LCP([v4,v1,v2,v3]);

v3

>t:¼vector([2,2,2]); B2:¼[op(B1),t];

t:¼ [2, 2, 2]

B2:¼ [v1, v2, v3, v4, t]

>LCP(B2);

v4

>LCP([v1,v2,v3,t,v4]);

t

>LCP.index:¼proc(S);

> for i from 1 to nops(S)-1 do

> if LC(S[iþ1],S[1..i])

> then RETURN(iþ1) fi; od;

> end;

>r:¼vector([1,1,0]); s:¼vector([1,2,3]);

t:¼vector([2,2,2]);

Mimicry of proofs with computers 399

r:¼ [1, 1, 0]

s:¼ [1, 2, 3]

t:¼ [2, 2, 2]

>LCP.index([v1,v2,r,t,s]);

3

>LCP.index([v1,v2,t,s]);

4

The following function inputs an ordered set of vectors S and, if the set is
linearly dependent, ‘kicks out’ the first vector which is a linear combination of its
previous ones.

>kick.LCP:¼proc(S);

> i:¼LCP.index(S);

> RETURN([op(S[1..i-1]),op(S[iþ1..nops(S)])]);

> end;

>r:¼vector([1,1,0]); kick.LCP([r,v1,v2,v3,v4]);

r:¼ [1, 1, 0]

[r, v1, v3, v4]

The following function performs the main step in the proof that any two bases
of the same vector space have the same number of elements. The function inputs a
vector q and an ordered set S of vectors, adds the vector at the beginning of the set,
and (if possible) replaces one of the vectors in the set with the given vector, so that
the span is not changed.

>replace:¼ proc(q,S);

> RETURN (kick.LCP([q,op(S)]));

> end;

>eval(r); eval(B);

[0, 1, 1]

[v1, v2, v3]

>replace(r,B);

[r, v1, v3]

>eval(s); SP:¼[v2,s,v1,v3];

[3, 2, 1]

SP:¼ [v2, s, v1, v3]

>SP1:¼replace(r,SP);

SP1:¼ [r, v2, s, v3]

>SP1;

[r, v2, s, v3]

>evalb(eq.subspace(SP,SP1));

true

>SP2:¼replace(v4,SP1);

SP2:¼ [v4, r, v2, v3]

>evalb(eq.subspace(SP,SP2));

true

400 O. Hazzan and R. Zazkis

Exercise. The previous lines have done a replacement of one vector at a time.
Write a function set.replace which replaces any independent set of vectors with the
same number of vectors in any spanning set.

Appendix C: The Gram-Schmidt orthogonalization process
mimicked by Maple functions

>create.new.vector:¼ proc (Ak, ortho_basis);

> RETURN (Ak - SumVec (Ak, ortho_basis));

>end;

>SumVec:¼ proc (v, orth_bas);

> if nops(orth_bas) ¼ 1 then RETURN

((inner.product (v ,orth_bas[1])) * orth_bas [1]); fi;

> RETURN (((inner.product (v ,orth_bas[1])) * orth_bas[1]) þ

SumVec (v, orth_bas [2.. nops(orth_bas)]));

>end;

> inner.product:¼ proc(u,v);

> if nops (u) ¼ 1 then RETURN (u [1]* v[1]); fi;

> RETURN ((u[1] * v[1]) þ
inner.product(u[2..nops(u)],v[2..nops (v)]));

>end;

References
[1] LERON, U., 1985, Educ. Studies Math., 16, 321.
[2] DUBINSKY, E., 1986, J. Math. Behav., 5, 305.
[3] DUBINSKY, E., 1989, J. Math. Behav., 8, 285.
[4] HAREL, G., 2002, in Learning and Teaching Number Theory: Research in Cognition and

Instruction, edited by S. Campbell and R. Zazkis (Westport, CT: Ablex Publishing),
pp. 185–212.

[5] HAREL, G., and SOWDER, L., 1998, in Research on Collegiate Mathematics Education,
edited by E. Dubinsky, A. Schoenfeld, and J. Kaput (American Mathematical
Society).

[6] EDWARDS, L., 1997, Int. J. Comput. Math. Learning., 2. 187.
[7] ROWLAND, T., 2002, in Learning and Teaching Number Theory: Research in Cognition

and Instruction, edited by S. Campbell, and R. Zazkis (Westport, CT: Ablex
Publishing), pp. 157–184.

[8] SELDEN, A., and SELDEN, J., 2003, J. Res. Math. Educ., 34(1), 4–36.
[9] LERON, U., 1983, Structuring mathematical proofs. American Mathematical Monthly,

90(3), pp. 174–185.
[10] HILLEL, J., 1995, in 5th International Symposium on Mathematics Education, National

University of Mexico, Mexico City.
[11] HILLEL, J., and SIERPINSKA, A., 1994, in Proceedings of the 18th International

Conference on the Psychology of Mathematics Education, Lisbon, August 1994.
[12] DORIER, J.-L., ROBERT, A., ROBINET, J., and ROGALSKI, M., 2000, in On the Teaching

of Linear Algebra, edited by J.-L. Dorier (Kluwer Academic), pp. 85–124.
[13] HILLEL, J., and SIERPINSKA, A., 1997, in Proceedings of the 18th International

Conference for the Psychology of Mathematics Education, edited by J. P. da Ponte and
J. F. Matos, Lisbon, Portugal, Vol. 3, pp. 65–72.

[14] HAREL, G., 2000, inOn the Teaching of Linear Algebra, edited by J.-L. Dorier (Kluwer
Academic), pp. 177–189.

Mimicry of proofs with computers 401

[15] BAULDRY, W. C., EVANS, B., and JOHNSON, J., 1995, Learning Linear Algebra with
Maple (John Wiley and Sons, Inc).

[16] DEEBA, E. and GUNAWARDENA, A., 1998, Interactive Linear Algebra with Maple V
(New York: Springer-Verlag).

[17] SIERPINSKA, A., TRGALOVA, J., HILLEL, J., and DREYFUS, T., 1999, in Proceedings of
the 23rd Conference of the International Group for the Psychology of Mathematics
Education, edited by O. Zaslavsky, Haifa, Israel, Vol. I, pp. 119–134.

[18] SIERPINSKA, A., 2000, in On the Teaching of Linear Algebra, edited by J.-L. Dorier
(Kluwer Academic), pp. 209–246.

[19] HAREL, I., and PAPERT, S. (eds), 1991, Constructionism (Norwood, NJ: Ablex).
[20] DUBINSKY, E., and LERON, U., 1994, Learning Abstract Algebra with Isetl (Springer-

Verlag).
[21] DUBINSKY, E., 1991, in Advanced Mathematical Thinking, edited by D. Tall (Kluger

Academic Press), pp. 95–123.
[22] SFARD, A., 1991, Educ. Studies Math., 22, 1–36.
[23] HAZZAN, O., and ZAZKIS, R., 1999, FOCUS on Learning Problems in Mathematics,

21(4), 1.
[24] HANNA, G., 1989, in Proceedings of the Thirteenth International Conference for the

Psychology of Mathematics Education, Vol. 2, pp. 45–51, Paris, France.

402 Mimicry of proofs with computers

