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a human-piloted lead car and one autonomous following

car. The lead car sends commands and information to the

following car. Using this information, the following car

can either mimic the lead car’s behavior (for example, steer

in the same direction) or react to information (for example,

activate its brakes if the lead car is going to stop).

To increase the system’s robustness, both cars operate

cooperatively, transmitting information regarding their state,

the lead-car driver’s intentions, and any anomalous states of

the second car. For this, the cars incorporate standard intelli-

gent transportation systems technology and the latest in

European satellite positioning and location technology.

Automating the convoy
For the lead car, we used two different vehicles: a Bom-

bardier electric car and an internal-combustion-engine

Comarth S1-50, to compare the different problems involved

in each type of vehicle. (Implementing the electronics to

handle information from different systems such as braking,

steering, and acceleration was much more complicated for

the Comarth.) In both cases, we equipped the cars with an

Egnos satellite positioning receiver (we’ll discuss Egnos in

more detail later in this article), a tachometer, an electronic

compass, and access to an IEEE 802.11b network.

For the automated follower, we used another Comarth

S1-50 (see Figure 1). We added electrically assisted steer-

ing, an electronic accelerator, and electrical braking. We

also modified the bodywork and dash to hold the sensing

and monitoring systems, and rearranged the car’s interior

components so that the car could accommodate actuators

and additional electronics.

The Comarth S1-50 has a factory-equipped control area

network (CAN) for controlling the engine’s operating

parameters. However, the car has no additional electronic

exchanges (CPUs for controlling car components) for

comfort or passive safety features that a more luxurious

car might enjoy. So, we installed our own system of data

buses for the necessary additional exchanges and sensors.

To interconnect the microcontroller-based exchanges, we

integrated the signals in the car’s CAN. An Ethernet network,

using a concentrator switch for intercommunication, con-

nects the CPUs managing the high-level control applications.

To connect the CAN and Ethernet network, we used a

board incorporating Dallas Semiconductors’ TINI (Tiny

InterNetwork Interface) microcontroller, which is pro-

grammable in Java. The TINI board acts primarily as an

intermediary between the high-level control applications

and the controllers for the car’s low-level hardware (mainly

the accelerator, brakes, and steering). It therefore acts as a

translator between the Ethernet interface and the CAN bus.

We also installed these sensor and control modules in

the car:

T
he Mimics (Mobile Intelligent Model Incorporating

Independent Control and Sensing) project is devel-

oping a prototype of an intelligent convoy, where a lead car

guides a group of driverless cars. The prototype consists of
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• A Novatel GPS receiver with an Egnos

corrector

• A Trimble GPS receiver with a Rasant

corrector

• An electronic compass with inclinome-

ter compensation

• An odometry acquisition module for the

four wheels

• A 77-GHz radar sensor

• A steering control module

• A brake control module

• An accelerator control module

• A principal SBC-P111 control CPU

• An SBC-P111 CPU console with a 12-

inch LCD thin-film-transistor screen

• A control module for an alphanumeric

LCD

• An access point to an IEEE 802.11 

network

Figure 2 shows the car’s interconnections.

The GPS receivers, electronic com-

pass, and radar have an RS-232 series

interface, so we opted for a direct con-

nection to the SBC-P111 gate. Because

the radar did not fulfill the RS-232 stan-

dard, an adapter circuit was necessary.

Another important element is the IEEE

802.11 network established between the

convoy cars to transmit control and posi-

tioning information from the lead car to the

following car. In closed-circuit tests (on the

university campus and race tracks), we es-

tablished a third node as a base to receive

information from the cars and to control

the unmanned car. We set up the monitor-

ing and control network so that it can be

used both locally (in the car itself, using a

screen and keyboard) and remotely (from

any computer with Ethernet). Remote con-

trol was limited by the maximum reach of

the 2.4-GHz ISM band.

The interchange of control messages and

of positioning and state information over

Ethernet used UDP connections. Such mes-

sages followed a protocol that took into

account the need to keep messages from

being too large and to not slow down the

control cycles, while permitting clear dif-

ferentiation between the messages.

Adapting satellite data
The European Space Agency’s Galileo

project (GNSS-2) aims to launch a group

of satellites to provide the EU with an ad-

vanced positioning and navigation system

under civilian control. The system should

be operational in 2008.

Gallileo’s predecessor, the Egnos project

(GNSS-1), will boost the performance of

existing GPS and Glonass systems. Geosta-

tionary satellites will augment GPS and

Glonass signals by sending corrections to

Egnos receivers. Egnos is part of the Euro-

control Agency’s Satellite Based Augmen-

tation System project.

Egnos will function like the American

Wide-Area Augmentation System. The idea

is to replace many of the ground-based

radio systems for air traffic control, such as

ILS and VOR, thus improving the precision,

reliability, and accuracy of GPS and Glonass.

Therefore, Egnos will

• Correct in real time the error parameters

observed at a network of reference sta-

tions situated throughout the cover zone

• Provide worldwide (or at least broad)

coverage by means of geostationary

satellites transmitting correction signals

The Egnos System Test Bed, the Egnos

prototype, has been operating since Febru-

ary 2000. The ESTB provides a GPS-
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Figure 1. The automated Comarth S1-50.

Figure 2. The automated car’s interconnections.



augmentation signal that lets users calcu-

late their position to an accuracy of within

a few meters.

A further purpose of Galileo is to make

money, so the ESA plans to make the sys-

tem available for more than just air traffic

control purposes. In this context, Mimics

evaluates the ESTB’s signal by using a

Novatel receiver that can process the signal.

To analyze the Egnos data’s precision,

we placed the Novatel receiver in a static

position but set it up as if it were operating

in dynamic mode. By transforming the data

received to local (Universal Transverse

Mercator) coordinates, we assessed the

data’s dispersion and precision and calcu-

lated the horizontal-positioning error. We

took care to select a suitable test site, from

which both GPS and AOR-E satellites were

visible. The navigation positions were reg-

istered at 1 Hz.

Figure 3 shows the absolute error and

corresponding histograms for the 43,200

measurements made during Egnos correc-

tion. The absolute error takes the form of a

group of points describing a 6 × 3-meter

ellipse. The corresponding histogram shows
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Figure 3. Analyzing the Egnos signal’s accuracy (measured for a static point) for the Mimics autonomous car.
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that the error was approximately 3.8 m in 95

percent of the cases and within 1.35 m in 50

percent of the cases. This is a considerable

improvement in accuracy, compared to GPS.

The main problem we observed was

poor coverage in built-up areas and tunnels,

along with the undesirable propagation of

the signal into many dispersed navigation

trajectories, both for GPS and geostation-

ary satellites. To minimize the problem of

the poor visibility of the AOR-E satellite,

the SISnet project provides the option of

sending the corrections over the Internet,

which can be accessed through Global Sys-

tem for Mobile Communications or Gen-

eral Packet Radio Service technology. We

also realized the necessity of redefining the

criteria for calculating the horizontal pro-

tection level and the horizontal alert value

to make this system viable for intelligent

transportation systems. 

These tests lead us to conclude that using

several types of sensors to aid navigation

will probably be the best solution for ITS,

although cost will be a deciding factor.

Remote monitoring and
control

To know the system’s state at any given

moment, we developed an application for

remotely monitoring the car. This applica-

tion also provides remote control of the car.

Figure 4 shows several screens from the

application.

The User Control window (see Figure

4a) shows the car’s direction (given by the

electronic compass) and speed, and pro-

vides remote control.

Figure 4b shows the Navigation mode.

The Compass window (on the upper left)

provides the heading and other data such as

inclination (pitch and roll) and tempera-

ture. The GPS window (on the lower right)

shows the position in UTM coordinates,

the speed, the resolution quality, and the

number of satellites whose signals are

being received. This window can also

depict the satellites according to their ele-

vation and azimuth with respect to the car.

The Local Perceptual Space window

(see Figure 4c) gives a picture of the space

in front of the car, provided by the car’s

radar.

The Paths window (see Figure 4d) pro-
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Figure 4. The navigation application: (a) the User Control window; (b) the Compass and GPS windows in Navigation mode; (c) the

Local Perceptual Space window; (d) the Paths window.
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vides a georeferenced map of the zone

through which the car is moving. (“Georef-

erenced” means that we used GPS informa-

tion to precisely fix the map’s coordinates.)

It also represents the cars in accordance

with the data sent by both cars’ localization

devices (compass and GPS). In this case,

the cars are parked outside the University

of Murcia’s Information Technology De-

partment. The application also permits

zooming to show the position better.

The Mimics project provides a glimpse

into the advantages that new technologies

offer for road transportation. Mimics has

focused on the kinematics of two cars as-

sisted by satellite navigation systems and

radar; more research is necessary within

the wider framework offered by the con-

currence of new information and communi-

cation technologies.

After evaluating Mimics’ results, we’ve

formed these objectives:

• Evaluate Egnos technology in a real and

varied environment. This will include

examining Egnos’s associated services

such as receiving correction signals

through the Internet, which should over-

come coverage problems in urban areas.

• Investigate how to increase safety

through a control architecture that inte-

grates the information received from

various sensors to warn drivers of possi-

ble anomalous situations.

• Develop an integrated onboard system

that manages internal data (CAN bus

signals) and external information sources

(for example, positioning or navigation

information) and that presents informa-

tion to the user via the in-vehicle screen.

• Discover ways to access information

through different telematic services. 

One way would be to connect a user’s

PDA to the car’s information system, to

exchange navigation maps or other use-

ful information.

Achieving these objectives will require

3G wireless networks and specific systems

such as DSRC (Dedicated Short-Range

Communications) at microwave bands (5 to

18 GHz). Development of new onboard

electronic and software radio applications

will also help meet these objectives.
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