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Abstract—In this treatise, we firstly review the associated
Multiple-Input Multiple-Output (MIMO) system theory and re-
view the family of hard-decision and soft-decision based detection
algorithms in the context of Spatial Division Multiplexing (SDM)
systems. Our discussions culminate in the introduction of a range
of powerful novel MIMO detectors, such as for example Markov
Chain assisted Minimum Bit-Error Rate (MC-MBER) detectors,
which are capable of reliably operating in the challenging
high-importance rank-deficient scenarios, where there are more
transmitters than receivers and hence the resultant channel-
matrix becomes non-invertible. As a result, conventional detectors
would exhibit a high residual error floor. We then invoke the Soft-
Input Soft-Output (SISO) MIMO detectors for creating turbo-
detected two- or three-stage concatenated SDM schemes and
investigate their attainable performance in the light of their
computational complexity. Finally, we introduce the powerful
design tools of EXtrinsic Information Transfer (EXIT)-charts
and characterize the achievable performance of the diverse near-
capacity SISO detectors with the aid of EXIT charts.

Index Terms—EXIT chart, iterative detection, MIMO, mul-
tiuser detection, turbo coding, wireless communication.

I. INTRODUCTION

MULTI-User Detectors (MUDs) were originally devel-

oped for the Code-Division Multiple Access (CDMA)

uplink [1], where the direct-sequence spread symbols transmit-

ted from the users supported are jointly estimated at the Base

Station (BS), in order to minimize the associated Multiple-

Access Interference (MAI), while exploiting the BS’s knowl-

edge of both the spreading sequences and of the supported

users’ Channel Impulse Responses (CIRs) [2]. However, as a

benefit of the system model similarity between the CDMA up-

link and the Space Division Multiplexing (SDM)-aided uplink

[3], the family of MUDs developed for CDMA uplinks may

be readily applied to Spatial Division Multiplexing (SDM)

systems.

Figure 1 shows the classification of Multiple-Input Multiple-

Output (MIMO) detectors. The class of linear MIMO detectors

incorporated the classic Zero-Forcing (ZF) [4] and Minimum

Mean Square Error (MMSE) detectors [5, 6], as well as the
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recently-proposed Minimum Bit-Error Rate (MBER) detector

[7–10]. The linear MIMO detectors typically rely on adaptive

MUD coefficient adjustment algorithms, such as the Least

Mean Square (LMS) and Recursive Least Square (RLS) algo-

rithms [11], which may be invoked both in the context of the

classic MMSE criterion as well as in the recent Least Bit-Error

Ratio (LBER) algorithm [12] relying on the MBER criterion.

By contrast, the class of non-linear MIMO detectors enables us

to achieve a higher BER performance than those of the linear

detectors. The Maximum-Likelihood (ML) detector is capable

of attaining the optimal performance in an uncoded scenario,

which is achieved however at the cost of a prohibitively high

complexity. In order to reduce the ML detector’s complexity,

the tree search-based Sphere Detector (SD) [13] was proposed

for achieving a near-optimal BER performance by approxi-

mating the exhaustive ML search. Furthermore, the family of

guided random detection algorithms, such as Genetic Algo-

rithm (GA) [1, 14–16], Ant-Colony Optimization (ACO) [17–

19], Particle Swarm Optimization (PSO) [20–22] and Markov

Chain Monte Carlo (MCMC) algorithms [23–25], was pro-

posed for reduced-complexity near-optimum operation.

Moreover, since the invention of turbo coding [26], there has

been a significant interest in iterative detection, where the re-

ceiver is constituted by multiple Soft-Input Soft-Output (SISO)

decoders and each decoder iteratively exchanges extrinsic

information gleaned from the other components [27]. During

the iterative detection process, each SISO decoder is required

to output soft information of the estimated bits. To this end,

the diverse hard-decision MIMO detectors were extended

to the SISO-assisted detectors, which are for example the

SISO-MMSE [28, 29], the SISO-MBER [30, 31], the SISO-

Maximum A Posteriori (MAP) [5], the SISO-MCMC [32],

the SISO-ACO [33] and the SISO-SD [34–36] detectors.

In this treatise, we introduce diverse hard-decision and

soft-decision detectors in the context of SDM systems, while

explicitly characterizing their fundamental complexity versus

performance tradeoffs. The remainder of this chapter is or-

ganized as follows. Section II describes the system model of

the SDM scheme considered in this chapter and guarantees

the channel capacity. In Section III, a class of hard-decision

MIMO detectors is introduced, including the recent Markov

Chain MBER (MC-MBER) detector [37, 38]. Furthermore,

Section IV discusses the family of soft-decision detectors,

in order to facilitate iterative detection. Section V analyzes

the achievable performance with the aid of EXIT charts and

quantifies the computational complexity of the SISO detectors.

Finally, we summarize our findings and conclude in Section

VI.
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Fig. 1. Classification of MIMO detectors.

II. SYSTEM OVERVIEW

In this chapter, we consider the (M × N )-element SDM

system, which is portrayed in Fig. 2 and relies on M transmit

Antenna Elements (AEs) and N receive AEs, while commu-

nicating over frequency-flat Rayleigh fading channels. Here,

we employ the block-based system model of Y = HS + V ,

where the channel components H ∈ CN×M and the noise

components V ∈ CN×1 follow zero-mean complex-valued

Gaussian variables having variances of unity and of N0,

respectively. At the transmitter of Fig. 2, B = M · log2 L
information bits are mapped to M number of L-PSK/QAM

substreams S = [s1, s2, · · · , sM ]T. Then, the mth symbol

sm is transmitted from the mth transmit AE simultaneously

with the other AEs’ symbols. By contrast, the receiver has

to decompose the M multiplexed substreams, based on the

received signals Y , the estimated channel components H as

well as the noise variance N0.

A. Channel Capacity

• CCMC capacity

According to Telatar’s tutorial paper [39], the ergodic

capacity of the SDM system is formulated as CCCMC =

E
[

log2 det
(

I + HHH/N0

)]

. This ergodic capacity is

also referred to as the Continuous-input Continuous-

output Memoryless Channel (CCMC) capacity, which is

evaluated based on the effect of the symbol power and the

bandwidth, but without taking into account the specific

constellation size employed.

• DCMC capacity

In contrast to the above-mentioned CCMC capacity, the

Discrete-input Continuous-output Memoryless Channel

(DCMC) capacity was defined in [40], which serves

as a more practical capacity bound than the CCMC

capacity since it considers the effects of the specific

signaling scheme employed. Hence, the DCMC capacity

characterizes the maximum throughput limit in the high

Signal-to-Noise Ratio (SNR) region, where the DCMC

capacity curve saturates.

Given the lth symbol S(l) from the set of Nb = LM

legitimate symbols (l = 1, · · · , Nb), the conditional

TABLE I
SYSTEM PARAMETERS OF THE UNCODED SDM SCHEME OF FIG. 3

Number of transmit antennas M = 2, 3, 4
Number of receive antennas N = 3
Modulation L−PSK/QAM
Channels Frequency-flat Rayleigh fading
Channel’s coherence-time τ symbol durations
Transmission rate RSDM = M · log2 L

probability of the received signals Y is given by

p(Y |S(l)) =
1

(πN0)N
exp

(

−||Y − HS(l)||2
N0

)

. (1)

Assuming that all the signals S(l) are equiprobable,

namely that we have p(S(1)) = · · · = p(S(Nb)) = 1/Nb,

the corresponding DCMC capacity CDCMC is given by

CDCMC =

(

log2(Nb) − 1

Nb

×
Nb∑

l=1

E

{

log2

[
Nb∑

k=1

exp(Ψk,l)

∣
∣
∣
∣
∣
S(l)

]})

,

with the relation Ψk,l = −||H(S(k) − S(l)) + V ||2 +

||V ||2, where E[ζ|S(l)] indicates the expectation of ζ
conditioned on S(l).

Fig. 3 shows the CCMC and DCMC capacity of the SDM

scheme of Fig. 3, recorded for (a) BPSK and (b) QPSK

modulation schemes, where the number of transmit AEs was

varied from M = 2 to M = 4, while using N = 3 receive

AEs. It was found in both Figs. 3(a) and 3(b) that upon

increasing the SNR value, the corresponding CCMC capac-

ity increased infinitely, due to the assumption of Gaussian

input signals. By contrast, the DCMC capacity was upper-

bounded by the corresponding system’s achievable throughput

of RSDM = M log2 L at sufficiently high SNRs.

III. MIMO DETECTORS FOR UNCODED SYSTEMS

In this section we describe the class of hard-decision

detectors developed for the uncoded SDM scheme of Fig.

3, where we commence with the family of linear detectors,

which are classically referred to as spatial filtering schemes.

In order to detect the mth substream sm while suppressing
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Fig. 2. Schematic of the uncoded (M × N )-element SDM scheme.
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Fig. 3. CCMC and DCMC capacity curves of the SDM scheme obeying the architecture of Fig. 3, recorded for (a) BPSK and (b) QPSK modulation schemes,
where the number of transmit antennas was varied from M = 2 to M = 4, while the number of receive antennas was N = 3. All other system parameters
were summarized in Table I.

the interfering (M − 1) substreams, a linear MIMO detector

multiplies the received signals Y by the complex-valued

weights wm = [w1,m, w2,m, · · · , wN,m]T, which is given by

ŝm = wH
mY . More specifically, the corresponding M weight

vectors are required for the sake of detecting all the M sub-

streams, which are represented by W = [w1, w2, · · · , wM ].
Accordingly, the demodulated symbols Ŝ may be expressed

in a vectorial form as Ŝ = [ŝ1, ŝ2, · · · , ŝM ]T = W HY . In the

class of linear detectors, once the complex-valued weights W

are calculated, they can be reused for this filtering operation

within the channel’s coherence time τ . Hence, the complexity

imposed by the linear detectors is decreased upon increasing

the value of τ . Next, we will introduce the linear hard-decision

ZF, MMSE and MBER detectors, followed by the non-linear

ML, MCMC and MC-MBER detectors.

A. Zero-Forcing Detector

The classic ZF detector is the simplest linear detector,

whose weights are given by the inverse of the channel matrix

H−1. Hence, the estimated symbols Ŝ are represented by

Ŝ = H−1Y = S+H−1V , where we have the corresponding

inverse matrix H−1 [41].1 Note that since the ZF detector does

not take into account the effects of noise components V , the

1Here, in order to calculate the inverse channel matrix of H, we em-
ployed the approach of pseudo-inverse matrix, where we have H

+ =
(HH

H)−1
H

H for M ≤ N and H
+ = H

H(HH
H)−1 for M > N .

TABLE II
COMPUTATIONAL COMPLEXITY IMPOSED BY THE ZF DETECTOR

Real-valued Inverse operation
multiplications

(HHH)−1 (M ≤ N) 4M2N/τ O(M3)
(HHH)−1 (M > N) 4MN2/τ O(N3)

• × HH (M ≤ N) 4M2N —

HH × • (M > N) 4MN2 —

Ŝ = • × Y 4MN —

Total (M ≤ N) 8M2N/τ + 4MN O(M3)
(M > N) 8MN2/τ + 4MN O(N3)

resultant performance is typically degraded by the detrimental

effects of noise enhancement.

• Complexity analysis

Here, we characterize the computational complexity

imposed by the ZF detector in Table II, which is required

to calculate the estimates Ŝ. Throughout this chapter,

the complexity is evaluated in terms of the number of

real-valued multiplications, noting that a single complex-

valued multiplication is considered to be equivalent

to four real-valued multiplications. Furthermore, the

Cholesky decomposition of a Hermitian matrix having

a dimension of (C × C) requires approximately O(C3)
real-valued multiplications.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
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TABLE III
COMPUTATIONAL COMPLEXITY IMPOSED BY THE MMSE DETECTOR

Real-valued Inverse operation
multiplications

HHH 4MN2/τ —

(• + N
ρ

I)−1 — O(N3)

• × H 4MN2/τ —

Ŝ = • × Y 4MN —

Total 8MN2/τ + 4MN O(N3)

As mentioned above, the complex-valued weights

W can be reused, while the channel matrix H remains

constant, indicating that the associated computational

complexity may be substantially reduced in slow-fading

environments.

B. Minimum Mean-Square Error Detector

Similarly to the ZF detector of Section III-A, the MMSE

detector belongs to the class of linear detectors. While the

ZF detector suffers from effects of noise enhancement, the

MMSE detector calculates the complex-valued weights by

minimizing the MSE between the estimated symbol and the

transmitted SDM symbol. Thus, the complex-valued weights

are optimized in order to minimize the effects of noise

enhancement.

More specifically, the minimization of the MSE between the

mth output ŝm = wH
mY and the mth component of the sym-

bol sm can be attained, according to the Wiener solution [11]:

wm =
(

E
[

Y Y H
])−1

E [Y s∗m]. Furthermore, since we have

E
[

Y Y H
]

= HE[SSH]HH + E[V V H] = HHH + N0I

and E [Y s∗m] = HE [Ss∗m] = hm, we arrive at wm =
(

HHH + N0I
)−1

hm. Finally, the complex-valued weights

of the MMSE detector are given by W = [w1, w2, · · · , wM ]

=
(

HHH + N0I
)−1

H . We note that the SDM system

satisfying the relation of M > N is referred to as a so-called

rank-deficient scenario, where the attainable performance of

the ZF and MMSE detectors is severely degraded by the

residual interferences owing to the fact that M streams have

to be estimated with the aid of N receive antennas.

• Computational complexity

The computational complexity imposed by the MMSE

detector is characterized in Table III. Clearly, the MMSE

detector exhibits a moderate computational complexity,

which is comparable to that of the ZF detector. Addi-

tionally, periodical updates of the linear complex-valued

weights W can be omitted when the channel matrix H

remains constant, similarly to the above-mentioned ZF

detector.

C. Minimum Bit-Error Rate Detector

Although the MMSE detection criterion is one of the

most popular ones, minimizing the MSE does not necessarily

guarantee the direct minimization of the system’s BER. By

contrast, the recently-proposed MBER detector [7–10] was

designed to directly minimize the BER, hence it was shown to

outperform the MMSE solution, provided that the detector’s

output is non-Gaussian.
Let us first define the Nb = LM number of legitimate

transmitted sequences of S as S(l) (l = 1, · · · , Nb) in con-

junction with the constellation order of L. Then, considering

the employment of BPSK modulation (L = 2), we arrive at

the error probability Pe(wm) of the mth substream signal sm

in a closed form, which is represented as a function of the mth

complex weight. Having arrived at the exact BER expression,

the MBER solution is given by wm = argminwm
Pe(wm).

Since in general Pe(wm) is a nonlinear function of wm,

therefore in general the error-probability optimization problem

has to be solved iteratively, while for other linear detectors,

such as the ZF and MMSE detectors, a closed-form solution

can be derived. This suggests that the specific choice of the

optimization method employed for finding the MBER weights

affects both the computational complexity imposed and the

achievable BER performance.
To this end, a number of algorithms, such as the steepest

descent method [42], GAs [43] and PSO [44], were applied

to the non-linear MBER detection problem. A promising

approach is constituted by the Simplified Conjugate Gradient

(SCG) method [42], which will be characterized in this treatise

owing to its potential of delivering an efficient and stable

solution for this problem. More specifically, the SCG method

iteratively updates the tentative solution using the gradient

vector of the error probability with respect to the mth complex

vector wm as in [45]. This allows us to dispense with any

perturbation operation, while generating the gradient, which

reduces the associated complexity.
The above-mentioned MBER solution derived for BPSK

modulation may be readily extended to QPSK, by conducting

the error-probability minimization separately for both the real-

and imaginary-parts, which are denoted by PeI
and PeQ

,

respectively [46]. Furthermore, we may invoke the Minimum

Symbol Error Rate (MSER) detector [47], where the MBER

solution is applied to multilevel pulse-amplitude modulation,

such as Quadrature Amplitude Modulation (QAM).

• Computational complexity

The total computational complexity imposed by the

MBER detector is characterized in Table IV, where Ng

is the number of iterations activated by the simplified

conjugate algorithm used for finding the minimum of

the BER versus MBER detector weight surface. It can

be seen from Table IV that the MBER detector’s com-

plexity increases linearly with the number of legitimate

sequences Nb. Hence, upon increasing the multiplexing

factor M , the associated complexity increases exponen-

tially. For example, for a BPSK-modulated SDM system

having M = 2 transmit AEs, the value of Nb becomes

as low as Nb = 22 = 4. On the other hand, the

corresponding value of Nb for the case of a QPSK-

modulated SDM system having M = 6 transmit AEs

becomes Nb = 46 = 4 096, which represents a 1 000

times higher value than that of the M = 2 case employing

BPSK. Naturally, the complex-valued weights have to

be updated more frequently in fast-fading environments,

which typically leads to a prohibitively-high complexity.

To overcome this problem, a reduced-complexity version
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TABLE IV
COMPUTATIONAL COMPLEXITY IMPOSED BY THE MBER DETECTOR

Real-valued multiplications exponential operation

HS(l) 4NbMN/τ —
(l = 1, · · · , Nb)
∇Pe(wm) M(5NbN + 2Nb + 1) log2 L/τ NbM log2 L/τ
Weight update (18MN + M)/τ —
SCG loop ×Ng ×Ng

All substreams ×M ×M

Ŝ = • × Y 4MN —

Total NgM
2[(4Nb + 5Nb log2 L + 18)N NgNbM2 log2 L/τ

+(2Nb + 1) log2 L + 1]/τ + 4MN

of the MBER detector, a so-called Markov Chain-assisted

MBER (MC-MBER) detector will be proposed in Section

III-F.

Having reviewed the class of linear ZF, MMSE and MBER de-

tectors. Let us now consider the family of non-linear detectors,

namely the ML, the MCMC and the MC-MBER detectors.

D. Maximum Likelihood Detector

The above-mentioned linear detectors are based on the

philosophy of spatial filtering, where each of the multiplexed

signal streams is separated into unique spatial dimensions at

the receiver. On the other hand, the ML detector has the capa-

bility of simultaneously identifying the spatially multiplexed

signals by carrying out an exhaustive search over the legitimate

signal space.

Let us first consider the classic MAP detection [34], which

estimates the symbols Ŝ by maximizing the a posteriori prob-

ability P (Ŝ|Y ), given an observation of Y . Here particularly,

the MAP criterion is given by ŝm = arg maxsm
P (sm|Y ) =

arg maxsm

∑

∀S(l)
:s

(l)
m =sm

P (S(l)|Y ). Following from a

Bayes’ theorem, the a posteriori probability may be expressed

as P (Ŝ|Y ) = p(Y |Ŝ)P (Ŝ)/p(Y ), where p(Y ) is constant

for each candidate of the transmitted signals. Furthermore,

assuming that the a priori probability P (Ŝ) is equal for all the

estimated candidates, the MAP detector becomes equivalent

to the ML detector, where the maximization of P (Ŝ|Y )
is equivalent to that of p(Y |Ŝ). More specifically, the ML

detector selects the estimates from the Nb = LM legitimate

sequences so that the probability p(Y |Ŝ) is maximized. Since

the conditional probability of Eq. (1) is also referred to as

the likelihood function, the ML solution is simplified to2

Ŝ = argminS ||Y − HS||2.

• Computational complexity

The computational complexity imposed by ML detection

per symbol vector S is shown in Table V. It was found

that upon increasing the number of multiplexed streams

M , the associated computational complexity increases

exponentially, obeying the relationship of Nb = LM .

Additionally, since ML detection has to be conducted for

each symbol interval, the associated complexity may be-

come prohibitively high for a high value of M , although

the ML detector achieves the optimum performance in an

uncoded scenario.

2Note here the ML criterion comparing 2-dimensional Euclidean distances
is possible only when each noise component follows a Gaussian distribution.

TABLE V
COMPUTATIONAL COMPLEXITY IMPOSED BY THE ML DETECTOR

Real-valued
multiplications

HS 4MN
||Y − •||2 4M
arg min ×Nb

Total 4Nb(MN + M)

As mentioned, the ML detector is optimal, when all

the a priori probabilities are equal. However, in order

to achieve the optimal performance for a channel-coded

system, where additional apriori information may be

invoked at the receiver, the MAP detector [34] achieves

the optimal performance, since it exploits the a priori

probability.

E. Markov Chain Monte Carlo Detector

As mentioned above, although the ML detector achieves

the best attainable performance in an uncoded scenario, its

complexity is high. To this end, the recent studies of Markov

chain sampling have produced reduced-complexity solutions

for wireless communication systems [23–25, 32]. More specif-

ically, the MCMC detector [23–25,32] constitutes an alterna-

tive sub-optimal non-linear detector, which is based on the

efficient extraction of the statistical inferences with the aid of

Markov chains [23–25].

More specifically, the MCMC algorithm is based on two

different techniques, i.e. on the so-called Markov chain rep-

resentation and on Monte Carlo integration. While the former

is employed to find the most likely detection candidates

according to the associated probability distributions, the latter

is used to approximate the integral of interest on the basis

of the detection candidates calculated by the Markov chain

representation.

1) Markov chain representation: Several algorithms have

been designed for finding the most likely decision candidate

set with the aid of a Markov chain process [25]. In this treatise

we employ the most popular so-called Gibbs-Sampler, which

assists us in sampling the detection candidates set, with the

aim of finding the most likely ones. Fig. 4 portrays a flowchart

of the Gibbs-Sampler algorithm employed for the MCMC

detector, where the algorithmic steps are as follows:

1) Initialization:

The initialization block of the Gibbs-Sampler of Fig.
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Fig. 4. A flowchart depicting the structure of Gibbs-Sampler employed for
the MCMC detector.

4 randomly generates B = M log2 L binary signals

B(i=0) = [b
(0)
1 , · · · , b

(0)
B ]T, which represents one of the

Nb = LM legitimate signal sequences and the index i
indicates the number of loops of Fig. 4.

2) Sample generation:

In the sample generation block of Fig. 4, the bi-

nary signals B(i) = [b
(i)
1 , · · · , b

(i)
B ]T generated during

the ith loop are calculated based on the (i − 1)st

binary signals B(i−1), on the received signals Y (i)

and on the estimated channels H . To be more spe-

cific, the kth bit b
(i)
k of the signals B(i) in the ith

loop is generated from the conditional probability of

P (b
(i)
k = 0|Y , B

(i)
−k, Lpr

1 ), where we have B
(i)
−k =

[b
(i)
1 , · · · , b

(i)
k−1, b

(i−1)
k+1 , · · · , b

(i−1)
B ]T.

3) Sample collection:

This sample generation block is activated for NMC

iterations, thus a total of NMC signals B(i) (i =
1, · · · , NMC) are generated.

The above-mentioned Gibbs-Sampler of Fig. 4 samples a

set of likely signals with the aid of a random variable so that

the likelihood function is maximized as a result. Owing to the

iterative process of Fig. 4, a chain of NMC sampling processes

are correlated since the initial condition of the (i + 1)st loop

is the outcome of the ith loop and hence all of the signals

are originated from the initial conditions B(0). Therefore, NP

parallel Gibbs-Samplers may be invoked to avoid the problem

of having highly correlated successive Gibbs-Sampler solu-

tions. The employment of this method results in an increased

number of detection candidates NMCNP.

To elaborate a little further, Fig. 5 shows a simple example

of the Gibbs-Sampler derived for the case of an 8-PAM SDM

system having M = 3 transmit AEs, where the corresponding

number of legitimate sequences Nb was Nb = 83 = 512
and the SNR was set to 5 dB. While Fig. 5(a) shows the

legitimate signal space, Fig. 5(b) represents the reduced-size

signal space. Here, the Gibbs-Sampler’s parameters were given

by NMC = 50 and NP = 1. Observe in Fig. 5(b) that the

sampled signals were distributed around the transmitted signal

due to the criterion associated with the likelihood function,

although this does not necessarily mean that the sampled

signals include the transmitted signals. As a result of the

Gibbs-Sampling operation, the signal space was reduced to

N ′
b = 34, indicating that a 512/34 = 15.1 times lower number

of detection candidates were evaluated than the total number

of legitimate sequences.
2) Monte Carlo integration: Having obtained a reduced

number of NMCNP decision candidates for signal set

B(i) (i = 1, · · · , NMC) with the aid of the Gibbs-Sampler

of Fig. 4, we infer the estimate of the transmitted signals with

the aid of a process referred to as Monte Carlo integration.

In general, the process of Monte Carlo integration may be

carried out by two different techniques, namely either by

empirical averaging or by importance sampling steps. The cor-

responding estimates E[ψ(x)] of ψ(x) may be generated from

the samples ψ(x(m)) (m = 1, · · · , NMC) as, respectively,

[32] E[ψ(x)] = 1
NMC

∑

m ψ[x(m)] (empirical average) and

E[ψ(x)] =
P

m
f [x(m)]ψ[x(m)]

P

m
f [x(m)]

(importance sampling), where

f [x(m)] represents a weighting function. Since the latter typi-

cally exhibits a better performance, we employ this technique

in our investigations.

The decision concerning the kth bit bk may be formulated

by considering the extrinsic Log-Likelihood Ratio (LLR)

value represented by Le
1(bk) = ln

P (bk=0|Y ,Lpr

1 )

P (bk=1|Y ,Lpr

1 )
. In order to

estimate Le
1(bk) from a set of sampled signals, we first infer

the probability P (bk = 0|Y , Lpr
1 ) based on the importance

sampling technique [32], which is then reformulated using

Bayes rule. As a result, we have

Lpo
1 (bk) = ln

∑
p(Y |B(i)

−k, bk = 0)P (B
(i)
−k|L

pr
1 )

∑
p(Y |B(i)

−k, bk = 1)P (B
(i)
−k|L

pr
1 )

︸ ︷︷ ︸

Le
1(bk)

+Lpr
1 (bk),

(2)

where Lpo
1 and Lpr

1 represent the a posteriori and a priori

LLR values, respectively [27]. While p(Y |B(i)
−k, bk = 0, 1) is

calculated during the Gibbs-Sampling process, P (B
(i)
−k|L

pr
1 )

is given by 1/Nb in the non-iterative hard-decision based

scenario considering L
pr
1 = [Lpr

1 (b1), · · · , Lpr
1 (bB)]T =

[0, · · · , 0]T.

Finally, by subjecting the a posteriori probability

Lpo
1 (bk) (k = 1, · · · , B) to the hard-decision operation, the

output of the MCMC detector can be obtained.

• Computational complexity

Table VI shows the computational complexity imposed

by the Gibbs-Sampler of Fig. 4, which is employed by

the MCMC detector.

F. Markov Chain Minimum Bit Error Rate Detector

As mentioned in Section III-C, the family of MBER detec-

tors [7–10, 12, 30] was designed to directly minimize the BER,

and hence it was shown to outperform the MMSE solution

in the context of beamforming [7], Space-Time Equalization

(STE) [9] and SDMA [8], supporting either BPSK or QPSK

modulation schemes [12]. Furthermore, it was demonstrated

that the MBER receiver has the capability of operating in rank-

deficient scenarios, where the number of transmit antennas is
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Fig. 5. Example of the Gibbs-Sampling assisted signal space reduction for an 8-Pulse Amplitude Modulation (PAM) SDM system having M = 3 transmit
AEs. The number of legitimate signals Nb is given by Nb = 83 = 256, the resultant reduced-size signal space N ′

b was N ′
b = 34, where NMC = 50

successive samples were generated according to the Gibbs-Sampler.

TABLE VI
COMPUTATIONAL COMPLEXITY IMPOSED BY THE GIBBS-SAMPLER EMPLOYED FOR THE MCMC DETECTOR

Real-valued multiplications Exponential

||Y − HS
(i)
m±||

2 ≤ 4(1 + NMCNPM log2 L) —
×(MN + M)

P (x
(i)
m |x

(i)
−m, Y ) 2NMCNPM log2 L NMCNPM log2 L

Total ≤ 4(1 + NMCNPM log2 L) NMCNPM log2 L
×(MN + M) + 2NMCNPM log2 L

higher than the number of receive antennas. However, the high

BER performance of the MBER scheme is achieved at the

cost of a high computational complexity, which may become

particularly challenging in rapidly fading propagation environ-

ments, requiring prompt MBER detector weight updates. To

be more specific, the calculation of the MBER weight gradient

imposes a prohibitively-high complexity, which increases with

the number of transmit AEs M . To this end, we introduce a

novel MCMC aided MBER (MC-MBER) algorithm for the

sake of reducing the computational complexity of the conven-

tional MBER algorithm without degrading its performance.

Fig. 6 shows the flowchart of the proposed MC-MBER

detector, which is composed of two blocks, i.e. the Markov

chain sampling block and the approximated MBER detector

block. Firstly, in our MC-MBER detector, the Markov chain

sampling is implemented to generate the most likely NMCNP

number of signals S(i) (i=1, · · · , NMCNP) that particularly

contribute to the BER calculation of the MBER detector. Here,

we also employ the Gibbs-Sampler for the Markov chain

sampling, similarly to the MCMC detector. Having completed

the generation of the Gibbs-Sampler’s detection candidate set

of NMCNP signals, only N ′
b < Nb number of detection

candidates S(i) (i=1, · · · , N ′
b) are retained from the Gibbs-

Sampler’s solution set, also ensuring that the identical detec-

tion candidates of the parallel Gibbs-Samplers are removed.

These N ′
b < Nb detection candidates are then input to the

approximate MBER detector of Fig. 6. More specifically, the

detection candidates are used for calculating the gradient by

replacing Nb number of legitimate sequences by a reduced

set of N ′
b < Nb signals. The underlying concept of this

approximate MBER detector is that the unlikely signals, which

are not sampled by the Gibbs-Sampler, do not substantially

contribute the BER minimization. Typically, N ′
b becomes

significantly lower than Nb = LM , which is an explicit benefit

of the rapid convergence of the Gibbs-Sampler of Fig. 4.

• Computational Complexity

The computational complexity imposed by the MC-

MBER detector is shown in Table VII, which is based

on the analysis of the MBER detector detailed in Section

III-C and on the MCMC detector discussed in Section

III-E. The computational complexity of the MC-MBER

detector, which is imposed by calculating the gradient

of the BER with respect to the weights can be reduced

by a factor of Nb/N
′
b in comparison to that of the

full-complexity MBER scheme, although the MC-MBER

detector imposes the additional computation of the Gibbs-

Sampler based reduced set of N ′
b < Nb signals.
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Fig. 6. A flowchart of the MC-MBER detector.

TABLE VII
COMPUTATIONAL COMPLEXITY FOR AN MC-MBER DETECTOR

Real-valued exponential
multiplications operation

Markov chain ≤ 4(1 + NMCNPM log2 L) NMCNPM log2 L
sampling ×(MN + M) + 2NMCNPM log2 L
Approximated 4(N ′

b log2 L + N ′
bNg + 3Ng)MN NgMNb log2 L

MBER detector +M{(N ′
bN + 2N ′

b + 1) log2 L + 6N + 1}

G. Center-Shifted Sphere Detector

In this section, we introduce the center-shifted SD, which

constitutes another computationally efficient solution to the

ML detection. Note that while the above-mentioned MCMC

detector approximate the ML detector with the aid of stochas-

tic sampling, the SD aim for deterministic approximation of

the ML detection.

More specifically, the ML solution of Section III-D may be

rewritten by [48]

Ŝ = arg min
S∈χ

J(S)

= arg min
S∈χ

(S − Xc)
H(HHH + N0I)(S − Xc), (3)

where Xc represents the MMSE solution of Xc =
[xc,1, · · · , xc,M ] = (HHH + N0I)−1HHY and χ denotes

the legitimate signal space of S. To be more specific, by

exploiting the characteristics of the upper triangle matrix U ,

which is defined as UHU = HHH +N0I , the cost function

J(S) of Eq. (3) may be formulated as

J(S) = (S − Xc)
HUHU(S − Xc)

=

M∑

i

∣
∣
∣
∣
∣
∣

M∑

j

ui,j(sj − xc,j)

∣
∣
∣
∣
∣
∣

2

︸ ︷︷ ︸

φi(Si)

,

where ui,j represents the i-th row and the jth column element

of U , while we have Si = [si, · · · , sM ]. Furthermore, φi(Si)
may be elaborated as [48]

φi(Si) =

∣
∣
∣
∣
∣
∣

M∑

j

ui,j(sj − xc,j)

∣
∣
∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣
∣

ui,i(si − xc,i) +

M∑

j=i+1

ui,j(sj − xc,j)

∣
∣
∣
∣
∣
∣

2

. (4)

Here, let us define a cumulative sub-cost function Ji(Si) in a

recursive manner as

Ji(Si) = Ji+1(Si+1) + φi(Si) (i = M − 1, · · · , 1), (5)

where we have JM (SM ) = φM (SM ) =
|uM,M − (sM − xc,M )|2. Then, we have the following

properties of J(S) = J1(S1) > · · · > JM (SM ) > 0 and

Ji(Si) = Ji({sj}, j = i, · · · , M) for all the possible signals

of S ∈ LM . Hence, Eqs. (4) and (5) enable us to facilitate

the low-complexity tree search algorithm, which is capable of

avoiding the exhaustive search. The detailed implementation

can be found in [48].

We note that the complexity of the SD may be further

reduced by choosing an appropriate value for the maximum

number of best MIMO-symbol candidates K retained at each

search level in the so-called K-best SD [49].

H. Performance Results

In this section, we present the performance results character-

izing diverse MIMO detectors in the context of SDM systems

obeying the architecture of Fig. 2 employing M = 2, 3 and 4

transmit AEs and N = 3 receive AEs. Here, we considered

the employment of BPSK and QPSK modulation.

Firstly, Fig. 7 compares the achievable BER performance of

the linear detectors, namely the ZF detector of Section III-A,

the MMSE detector of Section III-B and the MBER detector of

Section III-C. Here, we considered BPSK modulation. It was

found that the achievable BER performance of the MMSE

detector was better than that of the ZF detector, since the

MMSE detector optimizes its complex-valued weights so as to

minimize the effects of AWGN. By contrast, both the ZF and

MMSE detectors exhibited error floors in the rank-deficient

scenario of M = 4. Furthermore, observe in Fig. 7 that unlike

the ZF and MMSE detectors the MBER detector did not

show any error floors. This is, because the MBER detector

is more robust to the rank-deficient scenario than the other

two linear detectors, which is an explicit benefit of the direct

BER minimization.

Next, we characterize the performance results of the non-

linear detectors. Fig. 8 shows the achievable BER of the

optimal ML detector seen in Section III-D. Observe in Fig.
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Fig. 7. Achievable BER performance of the uncoded SDM scheme obeying
the architecture of Fig. 2 and employing the ZF, the MMSE and the MBER
detectors, where the number of transmit antennas was varied from M = 2 to
M = 4, while the number of receive antennas was maintained to be N = 3.
All other system parameters were summarized in Table I.
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Fig. 8. Achievable BER performance of the uncoded SDM scheme obeying
the architecture of Fig. 2 and employing the ML detector in Section III-D,
where the number of transmit antennas was varied from M = 2 to M = 4,
while the number of receive antennas was maintained to be N = 3. All other
system parameters were summarized in Table I.

8 that all the associated BER curves exhibited a good BER

performance, without showing any BER floors. Furthermore,

it can be seen in Fig. 8 that the ML detector is capable of

achieving the maximum attainable diversity order of M · N .

Upon increasing the multiplexing factor M , the performance

advantage of the ML detector over the other three linear

detectors increased, although this was achieved at the cost

of an increased complexity.

Fig. 9 shows the achievable BER performance, comparing

the MCMC and the MC-MBER detectors, where the param-

eters used for the Gibbs-Sampler were given by NMC =
Np = 2, 3, 4, 5, 10, 20 for the MCMC detector as well as

by NMC = Np = 2, 3, 4, 5 for the MC-MBER detector.

Here, we considered an (8 × 8)-element BPSK-modulated

SNR [dB]

0 5 10 15 20

B
E
R

10-4

10-3

10-2

10-1

100

ML detector

MCMC detector

MC-MBER detector

�MC (=�P) = 2,3,4,5

�MC (=�P) = 

2,3,4,5, 10, 20

Fig. 9. The achievable BER performance of BPSK-modulated SDM scheme
obeying the architecture of Fig. 2, comparing the MCMC and the MC-
MBER detectors, where the parameters used for Gibbs-Sampler was given
by NMC = Np = 2, 3, 4, 5, 10, 20 for the MCMC detector as well as
by NMC = Np = 2, 3, 4, 5 for the MC-MBER detector. Furthermore, the
number of both transmit and receive AEs was set to (M, N) = (8, 8). All
other system parameters were summarized in Table I. The corresponding BER
curve of the ML detector was also plotted for comparison.

SDM system, where the number of legitimate sequences was

Nb = 28 = 256. The corresponding BER curve of the ML

detector was also plotted in Fig. 9 for comparison. Observe

in Fig. 9 that upon increasing NMC for the Gibbs-Sampler

to NMC = Np, the BER of the MCMC detector improved

and it converged to that of the ML detector when we have

NMC = Np = 20. In other words, it exhibited a performance

comparable to that of the ML detector. Nevertheless, when

NMC(= Np) was lower than 10, observe in Fig. 9 that

the MCMC detector exhibited an error floor. By contrast,

the achievable BER of the MC-MBER detector was good,

regardless of the Gibbs-Sampler parameters and it converged

at NMC = Np = 3. Since the MC-MBER detector is a hybrid

of the statistical and of the deterministic methods, the resultant

performance is more robust than that of the purely statistical

MCMC detector.

IV. SOFT-INPUT SOFT-OUTPUT MIMO DETECTORS

Having characterized both the achievable performance and

the complexity of the class of hard-decision detectors devel-

oped for the uncoded SDM system of Fig. 2, we now introduce

their soft-information assisted counterparts, in order to create a

practical Forward Error Correction (FEC) aided SDM system.

More specifically, we consider the two-stage serially-

concatenated SDM scheme of Fig. 10, where the uncoded

SDM system of Fig. 2 is extended to include a channel

encoder and a bit interleaver at the transmitter as well as the

corresponding interleaver/deinterleaver and a SISO channel

decoder at the receiver, according to the turbo coding principle

[27, 50]. At the transmitter, the source bits are first channel

encoded and then interleaved by the interleaver Π. Then, the

interleaved bits are S/P converted to M substreams, followed

by SDM mapping to each transmit AE. Based on the turbo

detection principle, the receiver employs iterative detection in
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Fig. 10. Schematic of the two-stage serially-concatenated SDM transmitter
and receiver, which was developed from its uncoded counterpart of Fig. 2.

the context of the SDM scheme. The receiver consists of two

SISO stages, namely the SISO-based detector and the SISO

channel decoder. The SISO detector employed demodulates

the received symbols Y and outputs the extrinsic information

Le
1 in the form of LLRs with the aid of the a priori LLRs L

pr
1 ,

which are fed back from the channel decoders to the detector.

The extrinsic LLRs Le
1 are then input to the Convolutional

Channel (CC) decoders of Fig. 10 after deinterleaving. The

extrinsic LLRs Le
2 of Fig. 10 are calculated at the channel

decoder, output and are interleaved again, before being passed

back to the SISO detector component of Fig. 10 as the a priori

information. We note that since there is no a priori information

during the first iteration, the initial values of L
pr
1 are set to

zero.

Therefore, the SDM demapping block of Fig. 10 has to

output bit-wise soft extrinsic information rather than the

estimates of the transmitted symbols. To this end, we introduce

a range of diverse SISO detectors designed for MIMO systems

in this section, including the SISO-MAP detector, the SISO-

MMSE detector, the SISO-MBER detector, the SISO-MCMC

detector and the SISO-MC-MBER detector.

Since the iterative detection is a non-linear process, it is a

challenging task to analyze the decoding characteristics and

to obtain a closed-form expression for the achievable perfor-

mance. This also makes it difficult to design the corresponding

channel encoder and to determine the appropriate number of

iterations at the receiver. Motivated by this problem, ten Brink

[51] invented a sophisticated analysis tool, namely the EXIT

chart, which visualizes the extrinsic information exchange

between the receiver components during the iterative process

and enables us to design a near-capacity turbo-coding assisted

SDM system. The fundamental theory of EXIT charts will be

described later in Section V-A.

Note that while in this treatise we focus our attention on

turbo-coded systems as a representative of channel coded

systems utilizing soft information, there exist many other

soft-information assisted channel-coded systems and their

detectors. For example, Low-Density Parity-Check (LDPC)

codes [52] constitute another important class of channel codes,

where soft information is iteratively exchanged at the decoder,

in order to increase the mutual information, similarly to the

receiver of turbo-coded systems.

A. SISO MAP Detector

According to the equivalent system model, the conditional

probability p(Y |S(l)) is given by Eq. (1). Considering that

the symbol vector S = [s1, s2, · · · , sM ]T carries B channel-

coded binary bits B = [b1, b2, · · · , bB]T, the a posteriori LLR

Lpo
1 of the bit bk (k = 1, · · · , B) is given by [53]

Lpo
1 (bk) = Lpo

1 (bk|S)

= ln

∑

S(l)∈Sk
1

p(Y |S(l)) exp
(
∑

j �=k bjL
pr
1 (bj)

)

∑

S(l)∈Sk
0

p(Y |S(l)) exp
(
∑

j �=k bjL
pr
1 (bj)

)

︸ ︷︷ ︸

Le
1(bk)

+ Lpr
1 (bk), (6)

where Sk
i (i = 0, 1) indicates a collection of the signals S

where the kth bit is bk = i ∈ {0, 1}. Then, by substituting

Eq. (1) into Eq. (6), we arrive at

Le
1(bk) =

ln

∑

S(l)∈Sk
1

exp

[

− ||Y −HS(l)||2
N0

+
∑

j �=k bjL
pr
1 (bj)

]

∑

S(l)∈Sk
0

exp

[

− ||Y −HS(l)||2
N0

+
∑

j �=k bjL
pr
1 (bj)

](7)

Furthermore, using the max-log approximation [54], the ex-

trinsic LLRs Le
1(bk) may be simplified at the cost of a minimal

performance loss.

B. SISO MMSE Detector

Similarly to the hard-decision MMSE detector reviewed in

Section III-B, the SISO MMSE detector is a popular detection

scheme, which computes the complex-valued receiver weights

by minimizing the expectation of the MSE and then outputs

the soft information. At the inner SISO demapping block of

Fig. 10, a soft-information vector HS, which is calculated

based on the a priori information, is subtracted from the equiv-

alent input signals Y excluding the mth multiplexed signal,

then the equivalent input signals Y are decontaminated from

the effects of the interference by the detector having complex-

valued weights as follows: ŝm = wH
m(Y − HS̄ + hms̄m),

where S̄ = [s̄1, s̄2, · · · , s̄M ]T hosts the signals calculated

from the a priori LLRs, whose elements are computed for

BPSK as s̄m = E[sm] = tanh
(

Lpr
m,1

2

)

, and for QPSK as

s̄m = 1√
2

{

tanh
(

Lpr
m,1

2

)

+ j tanh
(

Lpr
m,2

2

)}

, where Lpr
m,i (i =

1, · · · , log2 L) indicates the bits corresponding to the mth

signal sm.
Then, by applying to the MMSE criterion mentioned

in Section III-B, the weight vector corresponding to the

mth substream may be expressed in a closed form as

wm = (HΛmHH + |s̄m|2hmhH
m + N0I)−1hm, where

we have Λm = diag[v1, · · · , vm−1, 0, vm+1, · · · , vM ]
and vm represents the variance of the mth substream,

calculated from the a priori LLRs as follows:

vm = E[|sm|2] − |E[sm]|2 = 1 − |s̄m|2. Assuming

that the conditional PDFs P (ŝm|bm(i)) obey the

Gaussian distribution, we can express the extrinsic

information for BSPK as [28] Le
1(bm(1)) =

4R[wH
m(Y − HS̄ + hms̄m)]/(1 − vmwH

mhm),
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and for QPSK as Le
1(bm(1)) =

4R[wH
m(Y − HS̄ + hms̄m)]/(1 − vmwH

mhm) and

Le
1(bm(2)) = 4I[wH

m(Y − HS̄ + hms̄m)]/(1 − vmwH
mhm),

where bm(i) (i = 1, · · · , log2 L) is the ith channel-coded

binary bit of the mth substream at each symbol duration.

C. SISO MBER Detector

Similarly to the hard-decision MBER detector introduced

in Section III-C, the error probability of the mth substream

signal sm can be expressed as a closed form [30] based on

Q-function, on Nb = LM number of legitimate transmit-

ted sequences and on signals calculated from the a priori

information. Then, the MBER detector’s weights are then

derived by minimizing the BER function similarly to the hard-

decision MBER detector. wm = argminw Pe,I(wm). The

probability Pe,I(wm) is a nonlinear function of the weights

wm, therefore in general the optimization problem has to be

solved iteratively. Furthermore, similarly to the SISO MAP

detector of Section IV-A, the max-log approximation may be

invoked for the sake of reducing the complexity imposed.

Moreover, the above-mentioned MBER detector derived for

BPSK modulation may be readily extended to multi-level

modulation schemes, such as QPSK [55] and QAM [56].

Unfortunately, since the SISO MBER detector has to update

the weights per every symbol vector, its total complexity tends

to be higher than that of the SISO MAP detector. This may

be overcome by introducing MCMC and LLR thresholding

techniques as detailed in Section IV-E.

D. SISO MCMC Detector

In Section III-E, we have introduced the hard-decision

MCMC detector, which applies the hard-decision operation

to the output soft information formulated in Eq. (8). The

SISO MCMC detector may then be readily implemented

by modifying the treatment of the a priori LLRs at the

Markov chain sampling operation as well as the max-log

approximation [57]:

Le
1(bk) = max

S(i)∈Sk
1

[

−||Y − HS(i)||2
N0

+ ln P (B
(i)
−k)

]

− max
S(i)∈Sk

0

[

−||Y − HS(i)||2
N0

+ ln P (B
(i)
−k)

]

, (8)

where Sk
i (i = 0, 1) represents a set of samples S(l) generated

by the Gibbs-Sampler, whose kth information bit is bk = i and

P (B
(i)
−m) is the a priori probability, which is calculated from

the a priori LLRs.

E. SISO MC-MBER Detector

As mentioned above in Section IV-C, the high BER per-

formance of the MBER scheme is achieved at the cost of a

high computational complexity, which may become particu-

larly challenging in rapidly fading propagation environments,

requiring prompt MBER detector weight updates. Similarly,

frequent weight-updates are required in iterative detection

scenarios, where soft information has to be exchanged between

the detector and the channel decoder.

Clearly, the calculation of the MBER weight gradient

imposes a high computational complexity, which increases

exponentially with the value of M . It may be readily shown

that an unlikely signal set of S(l) resulting in a small value

of P (S(l)) does not substantially contribute to the gradient

expression. Thus, similarly to Section IV-E, we introduce the

Markov Chain representation method that efficiently extracts

a likely set of signals from the Nb = LM legitimate se-

quences for the sake of reducing the computational complexity

associated with the gradient calculation. This is achieved

without degrading the BER performance of the full-complexity

SISO MBER scheme. The procedure of the SISO MC-MBER

detector is similar to that of the non-iterative hard-decision

MC-MBER detector of Fig. 4. The slight difference is in the

implementation of the approximate MBER detector block of

Fig. 4, where the SISO MBER detector assisted by the a priori

LLRs rather than the hard-decision MBER detector is applied

based on the N ′
b most likely signals generated by the Gibbs-

Sampler.

Furthermore, the computational complexity of the MC-

MBER detector is further reduced by introducing a novel

concept, namely thetechnique of a priori LLR thresholding,

in which a priori information is utilized in the Markov chain

simulation in order to reduce the associated computational

complexity without substantially degrading its performance.

1) A priori LLR Thresholding Assisted Complexity Reduc-

tion: Clearly, the above-mentioned Gibbs-Sampler is largely

affected by the a priori information passed to it from the chan-

nel decoder, which indicates whether the corresponding bit is

more likely to be 1 or 0. For example, when the LLR Lpr
1 (bk)

is a large positive value, P (b
(i)
k = 1|B(i)

−m, Y , Lpr
1 (bk)) is

close to unity. Thus the bit b
(i)
k is set to 0 as a result

of comparing P (b
(i)
k = 1|B(i)

−k, Y , Lpr
1 (bk)) to the random

variable ξ.

Based on this fact, we introduce the novel concept of using

an a priori LLR threshold based technique for the Gibbs-

Sampler, by omitting the low-probability detection candidates.

To be more specific, when the LLR Lpr
1 (bk) is higher than a

certain threshold value ζ > 0, the corresponding bit b
(i)
k is set

to 0 without implementing the Gibbs-Sampling. In the same

way, if the LLR Lpr
1 (bk) is less than the threshold value −ζ,

the bit b
(i)
k is set to 1. It is plausible that a lower value of the

threshold ζ leads to a lower complexity at the cost of a less

accurate approximation of the Gibbs-Sampler.

To elaborate a little further, the complexity reduction effects

of the a priori LLR thresholding technique is substantially

affected by the a priori LLRs utilized. For example, since

no a priori LLRs can be given in the first iteration, we

cannot benefit from this technique at this stage. After the first

iteration, upon increasing the number of the iterations, the

absolute value of the a priori LLRs gleaned from the channel

decoder tend to increase, leading to the increase in the effects

of the computational complexity reduction advocated by the a

priori LLR thresholding technique. Therefore, the beneficial

effect of this technique on the computational complexity

reduction largely depends on the number of iterations as well

as on the SNR.
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Fig. 11. Explanation of the a priori LLR thresholding technique, where the threshold value ζ was set to ζ = 3.

F. Computational Complexity

In this section, we compare the computational complexity

of the SISO detectors, such as the SISO MBER detector, the

SISO MAP detector, the SISO MCMC detector and the SISO

MC-MBER detector, which have to calculate M log2 L LLRs

corresponding to the information bits transmitted during each

symbol interval. Since the basic calculations associated with

each SISO detectors’ complexity is similar to those of the

hard-decision detectors shown in Section III, we only list

the results in Table VIII. The corresponding computational

complexity is evaluated in terms of the real-valued multi-

plications. Here, we show both the complexity of the MC-

MBER detectors, either employing or dispensing with the a

priori LLR thresholding technique of Section IV-E1, where

γ represents the relative frequency of activating the LLR

thresholding during the implementation of the Gibbs-Sampler.
We note that except for the SISO MMSE detector, the em-

ployment of the max-log approximation was assumed for the

LLR calculations, which substantially reduces the associated

complexity in comparison to the exact calculations of the LLR

values.

V. EXIT CHART AIDED SYSTEM DESIGN

In this section, we firstly highlight the concept of EXIT

charts, which is a powerful technique used for analyzing the

convergence behaviour of iterative detection aided transmis-

sions based on the turbo-coding principle. EXIT chart in

the next section. The EXIT charts are then used to analyze

the SDM system detected with the aid of SISO detectors

introduced in the previous section.

A. EXIT Chart

In turbo detection, an infinitesimally low BER may be

attained by the iterative exchange of extrinsic mutual infor-

mation between two SISO decoders, i.e. the inner and outer

decoders. Since the iterative decoding process is not linear,

the prediction of its convergence behaviour is a challenging

task. The ingenious tool of EXIT charts was proposed by

ten Brink [51, 58] for the visualization of the iterative de-

coding behaviour and for the prediction of the ‘BER-cliff’

position, where the BER suddenly drops. More specifically,

the input/output relationship of the mutual information at

each decoder is characterized by the EXIT chart and then

their interaction assisted by the iterative decoding process

is examined without time-consuming bit-by-bit Monte-Carlo

simulations.

The SDM demapper of Fig. 10 outputs the a posteriori

information based on the noise-contaminated channel output

observations and on the a priori information gleaned from the

outer channel decoder. By subtracting the a priori informa-

tion from the a posteriori information, the SDM demapper

generates the extrinsic information. The EXIT chart analysis

relies on exploiting the following two assumptions. Firstly,

it assumes having a sufficiently long interleaver that assures

statistical independence of the a priori LLRs La. Secondly, it

stipulates having a Gaussian distribution for the LLRs, which

may be formulated as La = µA · s + nA, where we have

µA = σ2
A/2, whith µ being the variance of the LLRs La.

Here the conditional probability of the a priori LLR La is

given by

pLa(x|S = s) =
1√

2πσA

exp

(

− (x − (σ2
A/2) · s)2

2σ2
A

)

. (9)

In binary EXIT chart analysis, the mutual information

between the a priori or extrinsic LLRs Li (i = a, e) and the

corresponding bits S is calculated by the following equation

[51]

I(Li; S) =
1

2

∑

s=±1

∫ ∞

−∞
pLi(x|s) log

pLi(x|s)
pLi(x)

dx (10)

with pLi(x) = 1
2 {pLi(x|s = +1) + pLi(x|s = −1)}, where

pLi(x|s) is the probability of the a priori information condi-

tioned on encountering s = ±1. Then, by applying Eq. (9),

which is based on the Gaussian distribution assumption to the

PDF of the LLRs La, the mutual information between the a

priori LLRs La and the equiprovable transmitted symbols s
can be written by [51]

I(La; S) = IA(σA)

= 1 −
∫ ∞

−∞

1
√

2πσ2
A

exp

(

− (La − σ2
A/2)2

2σ2
A

)

× log2(1 + e−L)dL. (11)

For simplicity, Eq. (11) is written as I = J(σA), which
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TABLE VIII
COMPUTATIONAL COMPLEXITY OF THE SISO MMSE, THE SISO MBER, THE SISO MAP, THE SISO MCMC AND THE SISO MC-MBER DETECTORS

FOR THE TWO-STAGE TURBO-CODED SDM SYSTEM OF FIG. 10.

MUD Computational complexity

MMSE (4MN2 + 2MN + 10N2 − 2N + 2 log2 L + 1)M (weight calculation)
+12MN + 5M (LLR calculation)

MBER log2 L · NgNbM(8MN + 10N + M log2 L + 5) (weight calculation)
+3M log2 L + NgM(8M + 2)

+M log2 LNb(4N + 2) (LLR calculation)
MAP Nb(4MN + 2N + 1) + M log2 L

MCMC 4(1 + log2 L · MNMCNP)M(N + 1) (Gibbs-Sampler)
+2 log2 L · MNMCNP

+ 2N ′
b(M log2 L − 1) (LLR calculation)

MC-MBER 4(1 + log2 L · MNMCNP)M(N + 1) (Gibbs-Sampler)
+2 log2 L · MNMCNP

(without + log2 L · NgN
′
bM(8MN + 10N + M log2 L + 5) (approx. MBER)

thresholding) +3M log2 L + NgM(8M + 2)
+M log2 LN ′

b(4N + 2) (LLR calculation)
MC-MBER 4[1 + log2 L · M(1 − γ)NMCNP]M(N + 1) (Gibbs-Sampler)

(with +2 log2 L · M(1 − γ)NMCNP

thresholding) + log2 L · NgN
′
bM(8MN + 10N + M log2 L + 5) (approx. MBER)

+3M log2 L + NgM(8M + 2)
+M log2 LN ′

b(4N + 2) (LLR calculation)

we refer to as the J-function. In [59], this J-function was

approximated by

I = J(σA) ≈
(

1 − 2−H1σ
2H2
A

)H3

, (12)

where the constants H1, H2 and H3 are given by 0.3073,

0.9835 and 1.1064, respectively. The J-function is a unique

unambiguous function, and thus its inverse function is deter-

mined uniquely as

σA = J−1(I) ≈
(

− 1

H1
log

(

1 − I1/H3

)) 1
2H2

. (13)

By contrast, the mutual information between the extrinsic

LLRs Le and the corresponding bits S is calculated by the ex-

perimentally gathered histogram. More specifically, the LLRs

La generated by using the covariance σA in (13) are input

to the corresponding SISO decoder, and then the histogram

of the output LLRs Le is evaluated in order to obtain the

PDF pLe(x|s). Finally, the mutual information IE is calculated

using Eq. (10). According to this calculation procedure, the

two EXIT curves, i.e. the inner and outer decoder’s EXIT

curves, may be drawn. By examining the relationship of the

two curves, we can predict the convergence characteristics of

the iterative receiver.

The inner and outer decoders’ EXIT curves should not

intersect before the point of (IA, IE) = (1.0, 1.0), which leads

to the ideal extrinsic information exchange between the two

decoders. The emergence of an open EXIT chart convergence

tunnel enables the system to achieve an infinitesimally low

BER at the corresponding SNR. However, since in general

the outer decoder’s EXIT curve is not guaranteed to reach

the point of perfect convergence to a vanishingly low BER

at (IA, IE) = (1.0, 1.0) due to the non-recursive nature of

the inner code, this ideal condition may not always be satis-

fied, depending on the system’s structure. Nevertheless, every

system has the potential of arriving at a point of (IA, IE) =

(1.0, α) associated with 0 < α < 1, if the two EXIT curves

I
E

0.0 0.2 0.4 0.6 0.8 1.0

I
A

0.0

0.2

0.4

0.6

0.8

1.0

Half-rate RSC

Constraint length of 2-7

Fig. 12. Outer decoder EXIT curves corresponding to a half-rate RSC having
the constraint length of 2 to 7, obeying the generator polynomials shown in
Table IX.

form an open tunnel, where we can have a moderately low

BER.

Fig. 12 shows the six different outer decoder EXIT curves

corresponding to various half-rate RSC codes having the

constraint lengths spanning from 2 to 7, obeying the generator

polynomials shown in Table IX. The generator polynomials

(Gr, G)8 employed in the simulation are listed in Table IX,

which are represented in octal form.

It can be seen from Fig. 12 that upon increasing the

constraint length of the RSC, the slope of the EXIT curve

becomes less steep around the value of IA = 0.5. Thus, for

IA > 0.5, a RSC code having a higher constraint length has
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Fig. 13. The inner code’s EXIT curves of the SISO MAP detector in the serially-concatenated SDM system seen in Fig. 10, for the scenarios of (M, N ) =
(4, 3) AEs and of (M, N ) = (4, 4) AEs. Here, the SNR was varied from 0 dB to 10 dB in every 1 dB. We also plotted the outer EXIT curve of the half-rate
RSC(2,1,3) with generator polynomials of (Gr, G) = (5, 7)8 in octal form. All other system parameters were summarized in Table X.

TABLE IX
GENERATOR POLYNOMIALS EMPLOYED FOR THE HALF-RATE RSC CODES

Constraint Generator polynomials
length in octal(Gr, G)8

2 (3, 2)8
3 (5, 7)8
4 (15, 17)8
5 (35, 23)8
6 (53, 75)8
7 (133, 171)8
8 (247, 371)8
9 (561, 753)8

the potential of exhibiting a wider EXIT tunnel. This indicates

that depending on the parameters of the RSC code employed,

the characteristics of the iterative receiver change and hence

the choice of these parameters provide us with an additional

degree of design freedom.

In contrast to the outer code’s EXIT chart of Fig. 12, Figs

13(a) and 13(b) show the inner code’s EXIT curves of the

BPSK- and QPSK-modulated SDM system seen in Fig. 10,

for the scenarios of (M, N ) = (4, 3) AEs and (M, N ) = (4, 4)

AEs. Here, we employed the SISO MAP detector of Section

IV-A and the SNR value was varied from 0 dB to 10 dB

with the step size of 1 dB. The outer RSC(2,1,3) decoder’s

EXIT curve was also plotted. Observe in Figs 13(a) and 13(b)

that upon increasing the SNR value, the inner decoder’s EXIT

curve moved upwards, hence leading to a wider EXIT tunnel.

Additionally, it was found that as expected, a increase in the

constellation size L and an decrease in the number of receive

antennas N degrades the corresponding inner code’s EXIT

curve by shifting it downwards.

Having generated the EXIT charts for the SDM system

invoking the SISO-MAP detector, we then embark on veri-

TABLE X
BASIC SYSTEM PARAMETERS OF THE CODED SDM SCHEME OF FIG. 10.

Number of transmit antennas M = 4
Number of receive antennas N = 3, 4
Modulation BPSK, QPSK

Channels Frequency-flat Rayleigh fading
Channel’s coherence-time τ = 1 symbol duration

Interleaver blocklength 200 000 bits
Channel code RSC(2, 1, 3)
Generator polynomials (Gr, G) = (5,7)8
Number of iterations I = 10

fying the prediction of the iterative convergence by drawing

the decoding trajectory within the EXIT chart. Fig. 14 shows

the decoding trajectory corresponding to the interleaver length

of 200 000 bits at SNR = 4 dB. Ovserve in Fig. 14 that

the trajectory exhibited a good match with the prediction,

where the iterative decoding converged after I = 5 iterations.

Furthermore, the achievable BER performance is shown in

Fig. 15, where the number of iterations I was changed from

I = 0 to I = 10.

In order to provide further insights, let us now characterize

the convergence behaviour of other SISO detectors. Firstly,

Fig. 16 show the EXIT charts for the SISO MMSE detector

of Section IV-B and for the SISO MBER detector of Section

IV-C. Here, we considered the scenario of (M, N ) = (4, 3)

AEs and BPSK modulation. It can be seen that the EXIT

curve of the SISO MBER detector exhibited a wider EXIT

tunnel than that of the SISO MMSE detector especially for

BPSK, although both the MBER and MMSE schemes’ EXIT
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Fig. 14. Decoding trajectory of the iteratively detected half-rate RSC-coded
QPSK-modulated SDM system of Fig. 10 employing (M, N ) = (4,3) AEs
and the SISO MAP detector of Section IV-A. The interleaver lengths was set
to 200 000 bits, while the SNR was 4 dB.

curves predicted a lower BER performance than that of the

SISO MAP detector.3

Fig. 17 shows the MCMC detector’s EXIT curves for

different values of NMC(= NP), which was varied from

NMC = NP = 2 to NMC = NP = 10, at SNR=5 dB. Observe

in Fig. 17 that upon increasing the value of NMC(= NP),
the EXIT curve improved, reaching that of the MAP detector

for NMC = NP = 10. Furthermore, Fig. 18 shows the

computational complexity imposed by the MCMC detector,

which corresponds to the EXIT curve of Fig. 17. Although

upon increasing the NMC(= NP) the computational com-

plexity also increased, the complexity of the MCMC detector

remained ten times lower than that of the MAP detector for

NMC = NP = 10. According to Figs. 17 and 18, this suggests

that the MCMC detector constitutes a good approximation of

the MAP detector, provided that a sufficiently high number of

samples are generated by the Gibbs-Sampler.

Fig. 19 shows the EXIT curves of the MC-MBER detec-

tor at SNR = 5 dB, while deactivating the a priori LLR

thresholding technique of Section IV-E1, where the Gibbs-

Sampler parameters were chosen as NMC = NP = 2, 3, 4 and

5. Furthermore, we plotted the corresponding EXIT curve of

the full-complexity MBER detector in order to characterize

the upper bound of the MC-MBER detector. Recall that the

MC-MBER detector is the reduced-complexity version of

the full-complexity MBER detector. Observe in Fig. 19 that

upon increasing the values NMC(= NP), the corresponding

3In order to provide further insights, consider the special case of the two-
stage receiver of Fig. 10, where the number of iterations I is set to zero,
which constitutes the two-stage non-iterative receiver. Since in this scenario
the SDM demapping block of Fig. 10 does not utilize a priori information,
the linear weights remains constant for the linear SISO detectors, such as
the SISO MMSE and the SISO MBER detectors. Therefore, the associated
complexity may be substantially reduced at the cost of no iterative gain, where
the extrinsic information output from the SDM demapping block corresponds
to the point of IA = 0.
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Fig. 15. Achievable BER performance of the iteratively detected half-rate
RSC-coded QPSK modulated SDM system of Fig. 10 employing (M, N ) =
(4,3) AEs and the SISO MAP detector of Section IV-A, where the number of
iterations I was varied from I = 0 to I = 10, while the interleaver length
was set to 200 000 bits. All other system parameters were summarized in
Table X.
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Fig. 16. The inner code’s EXIT curves of the SISO MMSE and MBER
detectors in the serially-concatenated BPSK-modulated SDM system seen in
Fig. 10, for the scenario of (M, N ) = (4, 3) AEs. Here, the SNR was varied
from 0 dB to 10 dB in every 1 dB. We also plotted the outer EXIT curve of
the half-rate RSC(2,1,3) with generator polynomials of (Gr, G) = (5, 7)8 in
octal form. All other system parameters were summarized in Table X.

EXIT curve of the MC-MBER detector was shifted slightly

higher, mainly in the low IA regime. More specifically, the

EXIT curve recorded for the case of NMC = NP = 5
attained a slightly lower performance than that of the full-

complexity MBER detector. Accordingly, it can be argued that

the proposed MC-MBER detector was capable of efficiently

approximating the full-complexity MBER detector. We also

note that while the performance of the MCMC detector was

substantially affected by the Gibbs-Sampler’s parameters, as

evidenced by Fig. 17, the MC-MBER detector exhibited a

good performance for low NMC = NP values, as shown

in Fig. 19. This is because the MC-MBER detector is a
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Fig. 17. EXIT chart of the SISO MCMC detector in the QPSK-modulated
(6 × 4)-element SDM system of Fig. 10 at the SNR = 5 dB, comparing the
effects of the Gibbs-Sampling parameters, where NMC(= NP) was given by
NMC = NP = 2, 3, 4, 5, 10. All other system parameters were summarized
in Table X.
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Fig. 18. Computational complexity imposed by the SISO-MCMC detector in
the QPSK-modulated (6×4)-element SDM system of Fig. 10 at the SNR = 5
dB, comparing the effects of the Gibbs-Sampling parameters, where NMC(=
NP) was given by NMC = NP = 2, 3, 4, 5, 10. All other system parameters
were summarized in Table X.

stochastic-deterministic hybrid detector, rather than being a

purely stochastic detector. Next, in Fig. 20 we characterized

the computational complexity imposed by the SISO MC-

MBER detector, which corresponds to the EXIT curves of Fig.

19. Here, the number of iterations I was varied from I = 0
to I = 10, noting that the number of sampled signals N ′

b

required is also affected by the a priori information gleaned

from the channel decoder. It can be seen from Fig. 20 that the

complexity of the MC-MBER detector employing the Gibbs-

Sampler parameter of NMC = NP ≤ 5 exhibited more than

ten times lower complexity than that of the MAP detector.

Additionally, upon increasing the number of iterations I , the

IA
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Fig. 19. EXIT chart of the MC-MBER detector in the QPSK-modulated
(6 × 4)-element SDM system of Fig. 10 at the SNR = 5 dB, comparing
the effects of the Gibbs-Sampling parameters, where NMC(= NP) was
given by NMC = NP = 2, 3, 4, 5, while the a priori LLR thresholding
was deactivated. All other system parameters were summarized in Table X.
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Fig. 20. Computational complexity imposed by the SISO MC-MBER
detector in the QPSK-modulated (6 × 4)-element SDM system of Fig. 10
at the SNR = 5 dB, comparing the effects of the Gibbs-Sampling parameters,
where NMC(= NP) was given by NMC = NP = 2, 3, 4, 5, while the a

priori LLR thresholding was deactivated. All other system parameters were
summarized in Table X.

complexity of the MC-MBER detector was reduced owing to

the beneficial effects of having higher a priori LLRs.45

Furthermore, in Fig. 21 we investigated the a priori LLR

thresholding technique proposed for the complexity reduction

of the MC-MBER detector, where the EXIT curves of the MC-

MBER detector employing the different threshold values of

ζ = 0.5, 1, 5 and 10 were considered, for the QPSK-modulated

(6 × 4)-element SDM system at SNR = 5 dB. It was found

4To elaborate a little further, the a priori LLR thresholding technique was
found to further reduce the complexity of the MC-MBER detector, although
the detailed simulation results are omitted for the sake of saving space.

5Although in this paper we considered low-order constellations for the sake
of simplicity, the concepts of the MCMC and the MC-MBER detectors may
be readily applicable to higher order constellation schemes, such as 16-QAM
and 64-QAM. Further details and numerical results can be found in [32] for
the MCMC detector and in [60] for the MC-MBER detector.
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Fig. 21. EXIT curves of the MC-MBER detector in the QPSK-modulated
(6 × 4)-element SDM system of Fig. 10 at the SNR = 5 dB, where the a

priori LLR thresholding was activated with the aid of the threshold values
of ζ = 0.1, 1, 5 and 10. Here, the Gibbs-Sampling parameters was set to
NMC = NP = 10. All other system parameters were summarized in Table
X.
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Fig. 22. Achievable BER performance of the iteratively detected half-rate
RSC-coded QPSK modulated SDM system of Fig. 10 employing (M, N )
= (8,4) AEs and the SIC-MMSE-aided iterative centre-shifting K-best SD
receiver. c©2008 IET, Wang, Xu, Chen, Hanzo, [49].

that even for as low as ζ = 0.5, the outer EXIT curve of

the MC-MBER detector exhibited a good performance, which

was close to that of the full-complexity MC-MBER detector

of Fig. 19.

Moreover, Fig. 22 illustrates the achievable BER perfor-

mance of the K-best SISO SD [49] in the scenario of

the QPSK-modulated (8×4)-element SDM system. In this

scheme, search center Xc was iteratively updated with the aid

of Soft-Interference-Cancellation (SIC-)MMSE [29]. Observe

in Fig. 22 that the reduced-complexity (K = 16) center-

shifting SD is capable of approaching the performance of the

large-search-space (K = 1024) SD dispensing with center-

shifting at BER = 10−5. Also, for a fixed value of K = 32, the

TABLE XI
BASIC SYSTEM PARAMETERS OF THE CODED SDM SCHEME OF FIG. 23.

Number of transmit antennas M = 4
Number of receive antennas N = 3
Modulation QPSK

Channels Frequency-flat Rayleigh fading
Channel’s coherence-time τ = 1 symbol duration

Detector Max-log MAP detector
Interleaver blocklength 200 000 bits
Outer channel code RSC(2, 1, 2)
Generator polynomials (Gr, G) = (3,2)8
Precoder URC
Number of inner iterations Iin = 1
Number of outer iterations Iin = 0–10

iterative gain over the non-iterative receiver labeled as ‘SISO

detection’ was doubled to approximately 6 dB by the SIC-

MMSE center-shifting-aided receiver, when compared to that

of iterative SD dispensing with the center-shifting.6

B. Three-Stage-Concatenated Turbo SDM Systems

Let us now consider the family of serially concatenated

three-stage turbo SDM system shown in Fig. 23. More specif-

ically, the information bits are firstly channel-encoded by the

half-rate Recursive Systematic Convolutional (RSC) code and

then interleaved by the first random interleaver Π1 of Fig. 23.

Then, the interleaved bits are further encoded by the Unity-

Rate Convolutional (URC) code and the URC-coded bits are

then interleaved by the random interleaver Π2 of Fig. 23.

Finally, the interleaved bits are mapped to the AEs with the

aid of our SDM mapping scheme, in order to generate the

space-time codewords S(i) to be transmitted to the receiver.

By contrast, the receiver structure of Fig. 23 is constituted

by a three-stage iterative detector, where three SISO decoders

exchange their extrinsic information in the form of LLRs. Let

us assume that the RSC code is used as the outer code, while

considering the amalgamated combination of the URC code

and the SDM mapper to be the inner code.7

Fig. 24 shows the EXIT curves of the QPSK-modulated

SDM arrangements, where the corresponding SNR was varied

from 0 dB to 10 dB with a step-size of 1 dB for generating

the inner code’s EXIT curves. We also plotted the outer

RSC(2,1,2) decoder’s EXIT curve, which employed the octal

generator polynomials of (3, 2)8, where the interleaver length

of both interleaver Π1 and Π2 was set to 200 000 bits. This is

a sufficiently high interleaver length, which enables a good

match between the EXIT-chart prediction and the Monte-

Carlo simulation-based BER results, as detailed in [53]. The

6For further numerical investigations as well as the complexity analysis of
the SD, please refer to [48, 61]. Additionally, the achievable BER performance
of the SD and the MCMC can be found in [32, 62].

7The benefit of this assumption is that we do not need a three-dimensional
EXIT chart, whilst a three-stage concatenated scheme would require two 3D
EXIT charts for visualizing the mutual information improvement benefits of
exchanging extrinsic information amongst three serially concatenated SISO
blocks, as detailed in [53]. This amalgamation of the above-mentioned two
components is carried out by exchanging extrinsic information between these
two components as many times, as necessary for achieving the highest mutual
information between them and then considering them as a single SISO block.
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Fig. 23. Schematic of a three-stage RSC- and URC-coded SDM scheme using iterative detection.
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Fig. 24. EXIT chart of our RSC- and URC-coded SDM system of Fig. 23.
All other system parameters were summarized in Table XI.

corresponding EXIT curves of the two-stage turbo-coded SDM

system of Fig. 10 were also plotted as a benchmarker. It can be

seen in Fig. 24 that the corresponding inner decoder’s EXIT

curves of the three-stage and two-stage systems exhibited

substantially different characteristics. More specifically, the

inner code’s EXIT curve of the three stage system reached

the point of perfect convergence to a vanishingly low BER at

(IA, IE) = (1.0, 1.0), as the explicit benefit of employing a

URC.8

Finally, Fig. 25 shows the achievable BER performance of

our RSC- and URC-coded SDM system employing QPSK

modulation, which had a total throughput of R = 4
bits/symbol. The number of iterations I between the outer

and inner codes was varied from Iout = 0 to Iout = 10. As

predicted from the EXIT chart of Fig. 24, the corresponding

8The role of the URC is to transform the scheme considered into an Infinite
Impulse Response (IIR) arrangement, which results in an improved iterative
gain by effectively spreading the extrinsic information and hence eliminating
the potential error-floor.
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Fig. 25. Achievable BER performance of our RSC- and URC-coded SDM
system of Fig. 23 employing QPSK modulation, where the number of outer
iterations Iout was changed from Iout = 0 to Iout = 10. All other system
parameters were summarized in Table XI. The dashed-lines indicate the lowest
possible SNRs, at which an infinitesimally low BER may be attained at the
effective throughput of 4 bits/symbol, calculated from DCMC capacity and
the maximum achievable rate.

BER curve exhibited an infinitesimally low BER at the SNR

point of 4.9 dB.9

VI. SUMMARY AND CONCLUSIONS

In this treatise, we introduced diverse hard- and soft-

decision MIMO detectors in the context of SDM systems,

such as the ZF, the MMSE, the MBER, the ML, the MAP,

9To elaborate a little futher, EXIT charts are useful not only for analyzing
the convergence behaviour of iterative decoding, but also for designing the
system architecture capable of achieving a near-capacity performance. For
example, the recent turbo-coded system may be constituted by the IRregular-
Convolutional Codes (IRCC) [63] or the IRregular-Precoded LDCs (IR-
PLDC) [64], which can be optimized with the aid of the EXIT chart, so that
inner- and outer-EXIT curves are matched with each other, hence having a
minimal EXIT tunnel area over a wide range of SNRs. Similarly, the irregular
LDPC codes [65] can also be optmized based on the EXIT chart for the
sake of attaining a near-capacity performance, as shown in [66]. Furthermore,
in [67] Multi-Level Bit-Interleaved Coded Modulation (ML-BICM) may be
adaptively encoded with the aid of EXIT chart, where the information rate
loss caused by the mismatch between channel realization and channel coding
is minimized in a near-simultaneous manner.
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TABLE XII
SUMMARY OF THE MMSE, THE MBER, THE ML, THE MAP, THE MCMC, THE MC-MBER DETECTORS IN THE CONTEXT OF UNCODED AND

TURBO-CODED SDM SCHEMES OF FIGS. 2 AND 10, EMPLOYING THE SYSTEM PARAMETERS OF TABLES I AND X.

Linear detector
ZF MMSE MBER

Criterion Section III-A Section III-B Section III-C

Complexity O(max(M3,N3)
τ

) O(max(M3,N3)
τ

) O(
NgNbM2N log2 L

τ
)

Performancea 29.6 dB 23.2 dB 15.4 dB

Criterion — Section IV-B Section IV-C
Iterations I = 10
FEC rate 0.5

Complexity — O(M2N2) O(NgNbM2

×N log2 L)

Performanceb

(2 × 2) — 2.5 dB 2.5 dB
(4 × 2) — 5.7 dB 5.6 dB
(6 × 2) — 7.7 dB 7.4 dB
(8 × 2) — 12.5 dB 8.8 dB

Non-linear detector
ML MAP MCMC MC-MBER

Criterion Section III-D — Section III-E Section III-F

Complexity O(NbMN) — O(NMCNPM2 O(max(NMCNPM log2 L,
×N log2 L) NgN

′
b) · MN)

Performancea 11.7 dB — 12.9 dB 15.4 dB

Criterion — Section IV-A Section IV-D Section IV-E
Iterations I = 10
FEC rate 0.5

Complexity — O(NbMN) O(NMCNPM2 O(max((1 − γ)NMCNP,
×N log2 L) NgN

′
b) · M2N log2 L)

Performanceb

(2 × 2) — 2.5 dB 2.5 dB 2.5 dB
(4 × 2) — 5.6 dB 5.6 dB 5.6 dB
(6 × 2) — 7.3 dB 7.4 dB 7.4 dB
(8 × 2) — 8.7 dB 8.7 dB 8.8 dB

——————
a Performance is characterized by the SNR value recorded for BER = 10−3 in the (3 × 3)-element BPSK-modulated uncoded SDM system of Fig. 2.
b Performance is characterized by the SNR value required for BER = 10−3 in the (M × 2)-element BPSK-modulated uncoded SDM system of Fig. 10.

the MCMC and the MC-MBER detectors. In Section II, we

provided the system overview and the theoretical capacity of

the SDM scheme. Section III firstly reviewed the sub-class

of hard-decision aided linear detectors, which are beneficial

in slow-fading environments, since the calculated complex-

valued weights can be reused during the coherence-time of

the channels. More specifically, the ZF detector of Section

III-A exhibited the poor BER performance because of the

noise enhancement effects imposed on the channel’s inverse

matrix. The MMSE detector of Section III-B was designed to

overcome this problem, hence outperforming the ZF detector.

Furthermore, since the MBER detector of Section III-C di-

rectly minimized the BER, the MBER detector exhibited the

best BER performance among the linear detectors, although

at the expense of a high computational complexity. The

MBER detector is also capable of supporting rank-deficient

scenarios, while the ZF and the MMSE detectors typically

exhibited the error floors in these scenarios. In contrast to

the linear detectors, non-linear hard-decision detectors have

the potential of approaching the optimal BER performance,

but the detector weights have to be updated on a symbol-

by-symbol basis. The ML detector of Section III-D exhibited

optimal performance owing to its exhaustive symbol procedure

search, where the computational complexity increases expo-

nentially upon increasing the multiplexing factor M . In order

to reduce the ML detector’s complexity, the MCMC detector

of Section III-E invoked the Monte Carlo simulation with the

aid of Markov chain sampling. Moreover, in Section III-F we

proposed a new hybrid detector amalgamating the non-linear

MCMC detector and the linear MBER detector, aiming for

the MBER performance, while reducing its complexity in fast-

fading environments.

In Section IV we introduced soft-decision detectors for

the two-stage serially concatenated SDM scheme of Fig. 10,

where we advocated a turbo-coding assisted iterative MIMO

receiver structure. Here, we extended the hard-decision detec-

tors introduced in Section III to their SISO counterparts, which

are the SISO-MMSE detector of Section IV-B, the SISO-MAP

detector of Section IV-A, the SISO-MBER detector of Section

IV-C, the SISO-MCMC detector of Section IV-D and the SISO

MC-MBER detector of Section IV-E. Furthermore, in Section

IV-E1 we proposed a novel complexity-reduction technique,

namely a priori LLR thresholding, for the SISO MC-MBER

detector, while characterizing the computational complexity

imposed by each detector. In Section V, we characterized the

SISO detectors’ performance with the aid of EXIT chart, while
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analyzing the behaviour of the iterative decoding process. To

elaborate a little further, in Table V-A we summarized the

SISO detectors’ performance and complexity comparison both

for uncoded and coded SDM systems.
In this treatise, we have compared a range of diverse MIMO

detectors in the context of SDM systems and characterized

their complexity versus performance tradeoffs. Each sub-

optimal detector was designed for reducing the computational

complexity of the ML and MAP detectors, which are optimal

for uncoded and coded scenarios, respectively.

VII. GLOSSARY

ACO Ant-Colony Optimization

AEs Antenna Elements

AWGN Additive White Gaussian Noise

BER Bit-Error Ratio

BS Base Station

CC Convolutional Channel

CCMC Continuous-input Continuous-output Memo-

ryless Channel

CDMA Code-Division Multiple Access

CIRs Channel Impulse Responses

CSI Channel State Information

DCMC Discrete-input Continuous-output Memory-

less Channel

EXIT EXtrinsic Information Transfer

FEC Forward Error Correction

GA Genetic Algorithm

LBER Least Bit-Error Rate

LDPC Low-Density Parity-Check

LLR Log-Likelihood Ratio

LMS Least Mean Square

MA I Multiple Access Interference

MAP Maximum A Posteriori

MBER Minimum Bit-Error Rate

MC-MBER Markov Chain assisted Minimum Bit-Error

Rate

MCMC Markov Chain Monte Carlo

MIMO Multiple-Input Multiple Output

ML Maximum Likelihood

MMSE Minimum Mean-Square Error

MUD Multi-User Detection

PSK Phase-Shift Keying

PSO Particle Swarm Optimization

QAM Quadrature Amplitude Modulation

RLS Recursive Least Square

RSC Recursive Systematic Convolutional

SCG Simplified Conjugate Gradient

SD Sphere Detection

SDM Space Division Multiplexing

SISO Soft-Input Soft-Output

SNR Signal-to-Noise Ratio

STE Space-Time Equalization

URC Unity-Rate Convolutional

ZF Zero-Forcing
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