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Abstract—We devise theoretical grounds for constructing
channel models for multiple-input multiple-output (MIMO) sys-
tems based on information-theoretic tools. The paper provides
a general method to derive a channel model which is consistent
with one’s state of knowledge. The framework we give here has
already been fruitfully explored with success in the context of
Bayesian spectrum analysis and parameter estimation. For each
channel model, we conduct an asymptotic analysis (in the number
of antennas) of the achievable transmission rate using tools from
random matrix theory. A central limit theorem is provided on the
asymptotic behavior of the mutual information and validated in
the finite case by simulations. The results are useful both in terms
of designing a system based on criteria such as quality of service
and in optimizing transmissions in multiuser networks.

Index Terms—Antenna arrays, Bayesian probability theory,
channel modeling, entropy, multiple-input multiple-output
(MIMO), random matrices.

I. INTRODUCTION

THE problem of modeling channels is crucial for the effi-
cient design of wireless systems [1]. The wireless channel

suffers from constructive/destructive interference signaling [2],
[3] and yields a randomized channel with certain statistics to be
discovered. Recently ([4], [5]), the need to increase spectral ef-
ficiency has motivated the use of multiple antennas at both the
transmitter and the receiver side. Hence, if the multiple-input
multiple-output (MIMO) link is characterized (see Fig. 1) by
an matrix with independent and identically distributed
(i.i.d.) Gaussian entries which are perfectly known to the re-
ceiver, it has been proved [6] that the ergodic capacity increase is

bits per second per hertz for every 3-dB increase at
high signal-to-noise ratio (SNR). However, for realistic channel
models, results are still unknown and may seriously put into
doubt the MIMO hype. As a matter of fact, the actual design of
efficient codes is tributary of the channel model: the transmitter
has to know in which environment the transmission occurs in
order to provide codes with adequate properties: as a typical ex-
ample, in Rayleigh-fading channels, when coding is performed,
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Fig. 1. MIMO channel representation.

Hamming distance plays a central role whereas maximizing Eu-
clidean distance is the commonly approved design criteria for
Gaussian channels [7], [8].

As a consequence, channel modeling is the key for better un-
derstanding of the limits of wireless transmissions. Questions of
the form: “what is the highest transmission rate on a propaga-
tion environment where we only know the mean of each path,
the energy of each path, and the directions of arrival?” are cru-
cially important. Their answers will be decisive on the use of
MIMO technologies for a given state of knowledge.

Before going further, let us first introduce the modeling
constraints. We assume that the transmission takes place be-
tween a mobile transmitter and a receiver. The transmitter has

antennas and the receiver has antennas. Moreover, we
assume that the transmitted signal propagates through a linear
filter channel. Finally, we assume that the interfering noise is
additive, white, and Gaussian distributed.

The transmitted signal and received signal are related as

(1)

with

(2)

where is the received SNR, , , and denote, respectively,
time, frequency, and delay, is the received vector,

is the transmit vector, is an additive
spatially and temporally white Gaussian noise vector with unit
variance.

For the rest of the paper, we address the channel, without loss
of generality, in its frequency-domain representation. We pro-
vide some theoretical grounds to model the frequency response
matrix based on a given state of knowledge. Knowing
only certain properties of the channel such as directions of ar-
rival (DoA), directions of departure (DoD), bandwidth, center
frequency, the number of transmit and receive antennas, the
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number of chairs in the room, etc., we investigate how to at-
tribute a joint probability distribution to the entries of
the matrix .

This problem can be answered in light of Bayesian proba-
bility theory. Bayesian probability theory has led to a profound
theoretical understanding of various scientific areas [9]–[16]
and has shown the potential of entropy as a measure of our
degree of knowledge when encountering a new problem. The
principle of maximum entropy provides a theoretical justifica-
tion in conducting scientific inference: we do not need a model,
entropy maximization creates a model for us out of the informa-
tion available [10], [11]. Choosing the distribution with greatest
entropy avoids the arbitrary introduction or assumption of infor-
mation that is not available.

In this contribution, we take the Bayesian viewpoint in which
channel modeling represents our knowledge of reality [17].
We provide answers to the following question: what is the best
model one can construct given some state of knowledge. This
is admittedly a vague question since there is no strict definition
of what is meant by best. In this contribution, our aim is to
derive a model which reflects our state of knowledge. We need
a measure of uncertainty which expresses the constraints of our
knowledge and the desire to leave the unknown parameters to
lie in an unconstrained space. To this end, many possibilities
are offered to us to express our uncertainty. However, we need
an information measure which is consistent—it complies to
certain common-sense desiderata as expressed in [18]—and
is easy to manipulate. We need a simple general principle for
translating information into probability assignment. Entropy
is that measure of information that fulfills this criteria. Back
in 1980, Shore and Johnson [18] proved that the principle of
maximum entropy is the correct method of inference when
given new information in terms of expected values. They
proved that maximizing entropy is correct in the following
sense: maximizing any function but entropy will lead to in-
consistencies unless that function and entropy have the same
maximum. Thus, aiming for consistency, we can maximize
entropy without loss of generality. The consistency argument is
at the heart of scientific inference and will be expressed through
the following axiom.

Axiom 1: If the prior information which the channel
model is based on can be equated to the prior information
of the channel model then both models should be assigned
the same probability distribution .

Any other procedure would be inconsistent in the sense that,
by changing indices 1 and 2, we could then generate a new
problem in which our state of knowledge is the same but in
which we are assigning different probabilities [17]. Moreover,
the success over the years of the maximum entropy approach,
see Boltzmann’s kinetic gas law, [19] for the estimate of a
single stationary sinusoidal frequency, [12] for estimating the
spectrum density of a stochastic process subject to autocorrela-
tion constraints, [20] for estimating parameters in the context
of image reconstruction and restoration problems, has shown
that this is the right tool to express our uncertainty. Recently,
the maximum entropy principle has even been advocated to
describe wave propagation. In [21], Franceschetti et al. show

that the probability laws that describe electromagnetic waves
are simply maximum entropy distributions with appropriate
moment constraints.

It is noteworthy to say that if a prior distribution of the
estimated distribution is available in addition to the expected
values constraints, then the principle of minimum cross entropy
which generalizes maximum entropy, should be applied.

In this paper, we provide guidelines for creating models from
an information-theoretic point of view and therefore make ex-
tensive use of the principle of maximum entropy together with
the consistency axiom. For various states of knowledge, such as
DoA, DoD, the number of scatterers, the powers of the steering
directions, a model is derived. In addition, the asymptotic mu-
tual information for perfect channel knowledge at the receiver
side is calculated. The general procedure is explained with the
simplest example of no knowledge except for energy constraints
on the path gains in Section III. Various degrees of knowledge
on the DoA, the DoD, and the powers of steering directions are
addressed in Section IV. Models for additional knowledge on
path delay times, frequency selectivity, and time variance are
given in Sectionn V. In Section VI, channel models developed in
the literature on considerations different from the maximum en-
tropy framework are linked to our models by determining which
states of knowledge are needed to make these models be solu-
tions of entropy maximization. In Section VII, we address some
limitations of the maximum entropy approach when it comes to
calculation of channel capacities of the modeled channel, before
we draw some conclusions in Sectionn VIII.

Throughout the paper, for the sake of simplicity, we will often
write instead of without forgetting the dependency on
frequency and time. In the following, upper case and lower case
boldface symbols will be used for matrices and column vectors,
respectively. will denote the transpose operator, con-
jugation, and Hermitian transpose. denotes
the expectation operator. is the natural logarithm such that

. When this notation is used, the mutual information
is given in nats per second. When the notation
is used, the results are given in bits per second. The Stieltjes
transform of a distribution is defined as

(3)

is the Dirac distribution whereas denotes the
Kronecker product

if
otherwise.

(4)

The operator stacks all the columns of matrix into
a single column.

II. PRELIMINARIES

For almost all the models we construct based on maximum
entropy and consistency arguments, we will derive analytical
expressions for the mutual information. For the convenience of
the reader, we use this section to sharpen the notions of mutual
informations which are used later.
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A. MIMO Considerations

Let us first review the pioneering work of Telatar [6] (later
published as [22]) that triggered research in multiple-antenna
systems. In his paper, Telatar derives the channel capacity of a
general MIMO channel. Assuming perfect knowledge of at
the receiver, the ergodic capacity of an MIMO channel
with input covariance matrix is

(5)

with

(6)

where the maximization is over the set of positive semidefinite
Hermitian matrices satisfying the power constraint

and the expectation is with respect to the random channel
matrix. In the original paper [6], Telatar exploits the isotropic
property of Gaussian i.i.d. to show that in this case, ergodic
capacity is achieved with .

In correlated fading, is called the average mutual in-
formation with covariance . In general [23]–[29], ca-
pacity is not close to this mutual information except for certain
particular cases, see [22], [28]. Often underestimates the
achievable rate: indeed, even though the channel realization is
not known, the knowledge of the channel model statistics can
be taken into account in order to optimize the coding scheme at
the transmitter.

The dependency of the optimum on the distribution of
is one more motivation to study the probability distribution of
the matrix . Such distributions can be very helpful for system
design. One of the visions of future wireless communications
the authors would like to advocate (for which the maximum-en-
tropy framework is useful) is the following: suppose that the
type of environment (dense buildings, field, street, number of
chairs, etc.), is provided to the user’s terminal. This can be au-
tomated by downloading localization information from the base
station. Based on that state of knowledge, a channel model is
created on-line using the maximum entropy approach which in-
corporates only the available information and nothing more. The
transmitted signal and the coding scheme is then (on-line) op-
timized for that specific scenario, e.g., by deriving a new rank
and determinant criteria. Such a service could be called “user
customized channel model coding service.” From a software-de-
fined radio perspective, this scenario is completely viable.

B. Outage Mutual Information

For a wireless content provider, the most important crite-
rion is the quality of service to be delivered to customers. This
quality of service can be quantified through measures such as
outage capacity: if is the probability of having an
outage capacity of , then this means that the provider is able
to ensure a rate of in 99% of the cases. Since the channels are
rarely ergodic, the derivations of ergodic capacities are of lim-
ited use for content providers.

In fact, if the channels are static, there is only one channel
realization and an outage capacity defined as

(7)

is the measure of interest.
The covariance matrix which optimizes the ergodic ca-

pacity does not necessarily optimize the outage capacity. If the
channel distribution is known, then the transmitter should opti-
mize its signaling to this distribution even if the channel realiza-
tion is unknown. Since this is not an obvious task, in general, in
all of the following we will derive the outage mutual informa-
tion with Gaussian input covariance matrix . In general,
this is only a lower bound to the outage capacity. Although not
optimum, the mutual information with covariance can
be useful in the analysis of systems where the codebook cannot
be changed according to the wireless environment and therefore
remains the same during the whole transmission. For further de-
tails on outage capacity the reader is referred to [30]–[34].

III. GAUSSIAN I.I.D CHANNEL MODEL

A. Model

In this section, we give a precise justification on why and
when the Gaussian i.i.d. model should be used. We recall the
general model

(8)

Imagine now that the modeler is in a situation where he has no
measurements and no knowledge where the transmission took
place. The only thing the modeler knows is that the channel
carries some energy , in other words,

Knowing only this information, the modeler is faced with the
following question: what is the consistent model one can make
knowing only the energy (but not the correlation even though
it may exist)? In other words, based on the fact that

finite energy (9)

is a probability distribution (10)

What distribution 1 should the modeler assign to the
channel? The modeler would like to derive the most general
model complying with those constraints, in other words, the one
which maximizes our uncertainty while being certain of the en-
ergy. This statement can simply be expressed if one tries to max-

1It is important to note that we are concerned with P (HHH j I) where I rep-
resents the general background knowledge (here the energy) used to formulate
the problem. However, for simplicity sake, P (HHH j I) will be denoted P (HHH).
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imize the following expression using Lagrange multipliers with
respect to :

(11)

If we differentiate with respect to , we get

(12)

then this yields

(13)

(14)

(15)

with

(16)

One of the most important conclusions of the maximum-en-
tropy principle is that while we have only assumed the energy,
this assumption implies independent entries since the joint prob-
ability distribution simplifies into products of .
Therefore, based on the previous state of knowledge, the only
maximizer of the entropy is the i.i.d. one. This does not mean
that we have supposed independence in the model. In the gen-
eralized expression, there is no constraint on the indepen-
dence. Another interesting result is that the distribution achieved
is Gaussian. Once again, gaussianity is not an assumption but a
consequence of the fact that the channel has finite energy. When
only the energy of the channel is known (but not the frequency
bandwidth, nor knowledge of how waves propagate, nor the fact
that scatterers exist ) then the only consistent model one can
make is the Gaussian i.i.d. model. Hence, instead of saying that
this model represents a rich scattering environment, it should be
more correct to say that the model makes allowance for every
case that could be present to happen since we have imposed no
constraints besides the energy. The maximum entropy approach
is appealing in the sense that if correlated scattering is given as
a prior knowledge, then it can be immediately integrated in the
channel modeling approach (as a constraint on the covariance
matrix, for example).

In order to fully derive , we need to calculate the coef-
ficients and . The coefficients are solutions of the following
constraint equations:

(17)

(18)

Solving the previous equations yields the following proba-
bility distribution:

Of course, if one has any additional knowledge, then this in-
formation should be integrated in the criteria and would
lead to a different result.

As a typical example, suppose that the modeler knows that
the frequency paths have different energies such as

. Using the same methodology, it can be shown that

(19)

with

The principle of maximum entropy still attributes indepen-
dent Gaussian entries to the channel matrix but with different
variances.

Suppose now that the modeler knows that the path has a
mean equal to and energy

, all the other paths having different variances (but nothing
is said about the mean). Using the same methodology as before,
we show that

(20)

with for all ,

and

Once again, different but still independent Gaussian distribu-
tions are attributed to the MIMO channel matrix.

The previous examples can be extended and applied when-
ever a modeler has some new source of information in terms
of expected values on the propagation environment. The
case where information is not given in terms of expected
values is treated in Section IV. In the general case, if con-
straints are given on the expected values of certain functions

for , then the principle of
maximum entropy attributes the distribution [35]

(21)

where the values of and for can be obtained
by solving the constraint equations.

B. Asymptotic Mutual Information

In [6], Telatar derives the ergodic capacity for the i.i.d.
channel model when the channel is known at the receiver only.
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For the outage probability, no simple tractable closed-form
solution is available. However, in the asymptotic limit, i.e.,
letting the number of transmit antennas and the number of
receive antennas grow large with fixed ratio, the following
result was shown by Kamath et al. [30] which we recall for
usefulness purposes.2

Theorem 1: With the Gaussian i.i.d. model, as with
, converges in distribution to

a random variable where

(22)

and

(23)

with

(24)

It is noteworthy to note that in this case, the capacity is
achieved for . The theorem has been proved using a
lemma in [37] (recalled in the Appendix as Lemma 1) which
deals with linear spectral statistics of the form

(25)

where denotes the eigenvalues of matrix

and is a function on . Note that in the high-SNR regime
, converges in distribution to a Gaussian

random variable

(26)

if

if
(27)

C. How Far is Asymptotic?

Large random matrices were first proposed by Wigner in
quantum mechanics to explain the measured energy levels of
nuclei in terms of the eigenvalues of random matrices. With the
works of Telatar [6], Grant and Alexander [38], Tse and Hanly
[39], Verdú and Shamai [40], and Rapajic and Popescu [41],
random matrix theory entered the field of telecommunications.3

Since then, random matrix theory has become a standard tool

2The mean and the variance of the mutual information were also derived using
the replica method in [32], [33], [36].

3It should be noted that in the field of array processing, Silverstein used al-
ready in 1992 random matrix theory [42] for signal detection and estimation.

for the analysis of code-division multiple access (CDMA) in its
various fashions and applications [43]–[48]. All these results
are striking in terms of closeness to simulations with reason-
able matrix size and enable to derive performance measures of
communication systems as a function of only a few meaningful
parameters. In the following, we will briefly illustrate how
many antennas are required for large system approximations to
be reasonably tight.

The cumulative distribution function (CDF) of the capacity is
given by Theorem 1 as

(28)

In Fig. 2, the CDF is plotted for a system with , ,
and antennas for an SNR of 10 dB. There is a quite
good match between the asymptotic theoretical formulas and
the finite size simulated system with a system which
shows the usefulness of the random matrix approach. We note
that similar arguments can be found in [49], [36], [31], [50],
[51]. To give further evidence on the closeness of asymptotic
results with MIMO systems with only a few antenna elements,
we note that, in a and MIMO system operating at
10-dB SNR, the asymptotic mean shows only 0.02% and 0.6%
relative error, respectively, and the asymptotic variance has only
1% and 4% relative error, respectively.

As far as mutual information is concerned, infinity is only a
couple of antennas and the results can be immediately used for
designing future mobile systems. However, results are different
for the SINR as shown in [52].

IV. KNOWLEDGE OF THE DIRECTIONS OF

ARRIVAL AND DEPARTURE

In this section, we address thoroughly the double-directional
model. Cases with lesser knowledge, e.g., single-directional
models will be handled as special cases of the double-direc-
tional model.

A. Model Construction

Imagine that the modeler is in a situation where he knows
that the channel matrix has a certain energy. There is no
knowledge on the mean. The case where the paths have different
nonzero means can be treated in the same way. The modeler is
now interested in deriving a consistent double directional model,
i.e., taking into account simultaneously the directions of arrival
and the directions of departure. The motivation of such an ap-
proach lies in the fact that when a single bounce on a scatterer
occurs, the directions of arrival and departure are deterministi-
cally related by Descartes’s laws and, therefore, the distribution
of the channel matrix depends on the joint DoA-DoD spectrum.
The channel statistics are supposed not to change during the
modeling phase. However, the channel realizations do vary. The
modeler has knowledge of the directions of departure
from the transmitting antennas to a set of scatterers . He
also knows the directions of arrival from a set of scat-
terers to the receiving antennas, see Fig. 3. The modeler
also knows the powers of the steering directions. However, the
modeler has no knowledge of what happens between the two
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Fig. 2. CDF of mutual information for the i.i.d. Gaussian model at 10-dB SNR. Dashed lines and solid lines show the true simulated CDF and the theoretical
asymptotic limit, respectively.

Fig. 3. Double-directional based model.

set of scatterers and . In fact, the sets and may
be equal, may be included in , or there may be no rela-
tion between the two. The waves might bounce several times on
other scatterers before arriving on the final scatterers or they
might directly propagate to them. Moreover, the modeler knows
from electromagnetic theory that when a wave propagates from
a scatterer to the receiving antennas, the signal can be written in
an exponential form

(29)

which is the plane-wave solution of the Maxwell equations in
free nondispersive space for wave vector and loca-
tion vector . The reader must note that other solu-
tions to the Maxwell equations exist and therefore the modeler

is making an important restriction. The direction of the vector
gives us knowledge on the polarization of the wave while the

direction of the wave vector gives us knowledge on the direc-
tion of propagation. The phase of the signal results in .
The modeler knows (or considers for sake of simplicity) that the
scatterers and the antennas lie in the same plane. The modeler
makes use of the knowledge that the steering vector is known
up to a multiplicative complex constant that is the same for all
antennas.

Although correlation might exist between the scatterers, the
modeler is not aware of that fact. Based on this state of knowl-
edge, the modeler wants to derive a model which takes into ac-
count all the previous constraints while leaving as many degrees
of freedom as possible to the other parameters to avoid the in-
troduction of unjustified information.
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Based on the fact that

(30)

the modeler must attribute a probability distribution to .
The steering matrices

...
. . .

... (31)

and

...
. . .

... (32)

represent the directions of arrival from scatterers to the re-
ceiving antennas and the directions of departure from the trans-
mitting antennas to scatterers , respectively, see also Fig. 3.
The phases and are given
as scalar products between the respective wave vectors and the
respective locations of the scatterers. The powers of the steering
directions are given by the diagonal matrices and

. . .
...

(33)

. . .
...

(34)

Remark 1: In the Introduction, we have recalled the work of
Shore and Johnson [18] which shows that maximizing entropy
leads to consistent solutions. However, incorporating informa-
tion in the entropy criteria which is not given in terms of ex-
pected values is not an easy task. As a consequence, we will
not maximize entropy based only on the information we have
(expected values and the directions of arrival): we will maxi-
mize entropy based on the expected values and a structured form
of the channel based on the product of five matrices. This is
more than the information we have since the directions of ar-
rival and departure are not constraint equations in the entropy
criteria. This ad hoc procedure is used because it is extremely
difficult to incorporate knowledge on physical considerations
(number of chairs, type of room, ) in the entropy criteria. As
a consequence, each time this ad hoc procedure is used, we will
verify that, although we maximize entropy under a structured
constraint, we remain consistent. This will lead to a maximum
entropy solution. With the maximum entropy approach, every
new information on the environment should be incorporated in
a consistent way: adding or retrieving information takes us one
step forward or back but always in a consistent way. The models
are somewhat like Russian dolls, nested one into the other.

The consistency argument, see Axiom 1, states that if the
DoAs, the powers and , and the DoDs are unknown, then
the channel matrix in (30) should be assigned an i.i.d. zero
mean Gaussian distribution, see Sectionn III-A, since the mod-
eler is in the same state of knowledge as before where only the

energy was known. Based on this consistency requirement, we
can determine the distribution of .

The probability distribution of is given by

(35)

• When are known:
, ,

,
and

(36)

• Suppose now that are unknown, we must find
(by solving (35)) the matrix such as each entry
of has an i.i.d. zero mean Gaussian distribution. In this
case, the following result holds.

Proposition 1: i.i.d. zero-mean Gaussian with vari-
ance 4 is solution of the consistency argument and maximizes
entropy.

Proof: Since and are unknown, the principle of max-
imum entropy attributes i.i.d. uniformly distributed angles over

to the entries and . In this case, if one chooses
to be i.i.d. zero-mean Gaussian with variance and knowing that

then

(since and (due to power
normalization)).

Therefore,

(37)

Moreover, we have

(38)

4We suppose for simplicty sake that the energy E = 1.
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(39)

Therefore,

(40)

(41)

(42)

(43)

which proves that is the solution of the consistency
argument. One interesting point of the maximum-entropy
approach is that while we have not assumed uncorrelated
scattering, the above methodology will automatically assign a
model with uncorrelated scatterers in order to have as many
degrees of freedom as possible. But this does not mean that
correlation is not taken into account. The model in fact leaves
free degrees for correlation to exist or not. Note that in this
model, the entries of are correlated, for general DoAs and
DoDs.

B. Mutual Information: General Case

In this subsection, we are interested in the analysis of the
scaling of the mutual information with respect to the numbers
of scatterers. Denote , , , . Let
us first make some assumptions5 on the matrix of the directions
of arrival and the matrix of directions of departure.

Assumption:

• When the matrix size grows
large with remaining fixed, the empirical eigen-

value distribution of
converges in distribution to a fixed distribution

• When the matrix size grows
large with remaining fixed, the empirical eigen-

value distribution of
converges in distribution to a fixed distribution

The asymptotic mutual information per transmitting antenna
is given by

5Note that the assumption is here used in a mathematical meaning, not in a
modeling perspective.

where are the eigenvalues of matrix and is

the empirical eigenvalue distribution of matrix defined
by

The asymptotic mutual information per transmitting antenna
with two-sided correlation has been derived previously in [53],
[29], [54], [32], [33]6 using either results of Girko [55], the
replica method [56] or free probability theory7 [60]. The results
can be applied to model (30) and yield the following.

Proposition 2: As the size of the system grows large but ,
, , remain fixed, then the asymptotic mutual information

per transmitting antenna is given by

(44)

with

(45)

and

(46)

Proposition 2 is general enough to be applied for the i.i.d.
Gaussian case, the DoA-based model, and the DoD-based
model. The formula is extremely useful as it shows that only
the limiting eigenvalue distribution of the steering directions
with powers matters: in other words, two antenna configura-
tions can yield the same throughput as long as they give rise to
the same eigenvalue distribution for the steering matrix. Based
on this result, a future mobile scenario the authors would like
to advocate is the following: imagine a set of reconfigurable
antennas that can move on a grid. The antennas are at the

6In contributions [32], [33], the second moment of the mutual information
of MIMO correlated channels is also derived using the replica method. In this
paper, for some particular cases (see the following sections), the distribution of
the mutual information is proved to be asymptotically Gaussian and the variance
is provided using random matrix theory.

7Free probability [57], [58] is a noncommutative probability theory, in which
the concept of independence of classical probability is replaced by that of free-
ness. Voiculescu [59]–[61] discovered very important relations between the free
probability theory and the random matrix theory. He showed in particular that
random matrices can be considered as typical noncommutative random vari-
ables. To the authors’ knowledge, the first use of free probability in the telecom-
munication field was made by Evans and Tse in 1999 [62]. Since that date, it
has been used for the performance analysis of several transmission schemes
(CDMA [63], [64], orthogonal frequency-division multiplexing (OFDM) [44],
[47], [45], and MIMO [65], [66], [48]). Note that free probability is not only a
prediction tool but has been proved by several authors to be very useful in the
practical design of low-complex detectors [67]–[69] (multistage detectors, etc.).
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beginning disposed in a Uniform Linear Array (ULA) geom-
etry. Once the transmission starts, the angles of arrival and the
distances of the scatterers to the antennas are determined. The
position of the antennas (for fixed scatterers) on the grid are
then optimized in order to increase mutual information using
the previous formulas. This is once more a viable scenario from
a software-defined radio perspective and gives means for future
research in the field of antenna design. The antenna design
problem can therefore be related to an eigenvalue optimization
problem. What really governs the transmission limits of dif-
ferent scenarios are only the properties of the eigenvalues of
the steering matrix.

Although we have no formal proof on the uniqueness except
in the case of the DoA-based model, see Section IV-E (the mean
mutual information of Proposition 2 has in fact multiple solu-
tions. Therefore, only some physical arguments can be given to
withdraw some solutions), one of the solutions of the mean mu-
tual information for the double directional model can be easily
(see the example proof of Proposition 6 in the DoA case) shown
to scale at high SNR as

The integral is on the support of nonzero eigenvalues and
and express, respectively, the

correlation factor of the and scatterers. Hence, the previous
result generalizes the multiplexing gain of i.i.d. MIMO systems
[6] and gives an upper bound on the number of antennas to be
used for a given scattering environment.

C. Mutual Information: ULA and Fourier Directions Case

In this subsection, the modeler takes into account the ge-
ometry of the receiving and transmitting antenna (as he knows
it) to derive the steering vectors: in the case of a uniform
linear array, the steering DoA vector has the following form:

. is the antenna
spacing and is the direction of arrival8 which is defined as the
angle between a line perpendicular to the incoming wavefront
and a reference line through the array. The same holds for the
directions of departure

...
. . .

...

(47)
and

...
. . .

... (48)

For the sake of simplicity, we will take . We will also
suppose that and . In order to have tractable ex-
plicit formulas, we will analyze the distribution of scatterers in
the case where for any there exists a such that

8Note that the modeler is making a strong assumption based on the fact that
the scatterers are far from the antenna. We assume in this case that the modeler
has some evidence that he is not closely surrounded by obstacles.

Fig. 4. Simple case: scatterers positioned on special directions.

(see Fig. 4) and for any there exists a such that .
This case can be seen as an extreme case where all the scat-
terers are maximally distant from each other called here the
Maxent Fourier model (related to the virtual representation, see
Section VI-B).

1) Equal Power Case: We will assume in this part that
and . As a consequence, the DoA and DoD steering

matrices have the following limiting eigenvalue distribution:

(49)

and

(50)

Proposition 3: The asymptotic mutual information per trans-
mitting antenna and the asymptotic variance of the mutual infor-
mation for the double directional model in the equal power and
Fourier directions case are, respectively, given by

(51)

(52)

with

(53)

Proof: One can notice that:
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Fig. 5. Mutual information cumulative distribution in the case of the double-directional model with equal power on Fourier directions.

Therefore, since is an i.i.d. Gaussian matrix, results of
Section III-B can be applied. In particular, making the variable
change

in the formulas of Theorem 1 then the result is proved.

At high SNR, it can be easily shown that

(54)

if

if
(55)

Therefore, the limiting factor is only the number of scatterers
at the transmitting and receiving side.

In Fig. 5, simulations have been conducted with
antennas. Three cases have been plotted:

• and ,
• and ,
• and .
In each case, a close match between the theoretical predic-

tions and the simulations occurs. In order to determine the im-
pact of the number of scatterers on the mutual information per
transmitting antennas, we have plotted in Fig. 6 the mutual in-
formation versus and for . One can
observe that due to the fact that , the scatterers have
the same effect on both the receiving and transmitting side. The
maximum rate is achieved when .

2) Nonequal Power Case: We consider the case where there
is a finite set of distinct amplitudes of the receiving
steering vectors with weight (such that ) and

distinct amplitudes of the transmitting steering vectors
with weight (such that ). As a consequence, the
limiting eigenvalue distribution of has
the following expression:

(56)

and the limiting eigenvalue distribution of

has the following expression:

(57)

Proposition 4: In this case, is equal to

(58)

with

(59)
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and

(60)

Proof: The proof is an application of the general Proposi-
tion 2 to the case of interest.

An important question concerns the power profile of the scat-
terers which optimizes the mean mutual information. The fol-
lowing proposition provides the optimum power profile.

Proposition 5: The mean of the mutual information in the
case of the double directional model with ULA and Fourier di-
rections is maximized for and .

Proof: The proof is provided in Appendix B.

The result acknowledges the fact that the best throughput
is obtained when all the steering directions have the same
power on both sides. Intuitively, one can easily understand this
observation: any imbalance of power will reduce the effective
number of scatterers and therefore the diversity generated by
the environment.

D. Mutual Information: Fourier Versus Random Directions,
Equal Power Case

In this section, we would like to quantify the impact of the
steering matrix on the ergodic mutual information. The answer
has a direct impact on the understanding and the design of fu-
ture mobile systems. In this respect, two extreme cases are com-
pared, the Fourier and random directions case. For the random
directions context, we will suppose that the entries of matrix
and

1: are a realization of independent and uniformly distributed
exponential variables with zero mean and unit variance.
This can be seen as a limiting case of near-field scat-
tering (all the rays, for a given scatterer do not come
from the same direction). We agree on the fact that the
near-field case is more complicated as the phases are not
completely independent but linked through the geometry
of the antenna. We mainly use the random approach in
order to have tractable mutual information formulas. This
case will be referred to random i.i.d. directions.

2: represent ULA antennas with the far-field approximation
where the scatterers are randomly located. In this case,
the and phases of respectively matrices and
are uniformly distributed over . This case will be
referred to as random directions with ULA.

For the random i.i.d. directions, we can derive an explicit expres-
sion of the mean mutual information. The limiting eigenvalue
distributions of and are well known in the lit-
erature [70] and Proposition 2 can be applied straightforwardly.
However, we will take Müller’s approach, as our framework is a
particular case of [71] where he introduces an -fold scattering
model as a product of i.i.d. random matrices .
Using free probability theory, he proves the almost-sure con-
vergence of the limiting eigenvalue distribution of matrix
and gives an explicit form of its Stieltjes transform. In the case
considered here, is the product of three random

matrices. Using the results in [71], it can be easily shown that
the Stieltjes transform is a solution of the following
equation:

(61)
where . Since

the asymptotic mutual information per transmitting
antenna can be obtained by solving the following equation:

and numerical integration of through

with the boundary condition: .
We have plotted in Fig. 7 the theoretical asymptotic mean mu-

tual information per receiving antenna of the random i.i.d. di-
rections scenario at 10 dB for various ratio of scatterers (
ranges from to ): as a matter of fact, since , it does
not matter whether one plots the mutual information with re-
spect to or . has been chosen to be equal to . We have
also plotted a simulated curve with a system of antennas.
The angles of arrival were generated randomly according to a
uniform distribution and kept fixed during all the trials. A close
match between the theoretical formula and the simulations is
obtained. We have also plotted the asymptotic mean mutual in-
formation of the far field ULA scenario where the scatterers are
given by Fourier directions (see Section IV-C1). One can ob-
serve that scatterers on Fourier directions yield better perfor-
mance than scatterers on random i.i.d. directions. In fact, in the
Fourier direction case and in the case of ,
the DoA matrix , and DoD matrix are unitary Fourier ma-
trices and have therefore no effect on . However, in the
random i.i.d. directions scenario, the nonunitary steering matrix

and have a correlation effect on matrix . We have
also plotted the case of random directions with ULA, which
is outperformed by the random i.i.d. directions case. When the
scatterers are randomly located, this last example argues in favor
of scatterers located near the antenna with antennas having no
structured geometry.

E. Some Considerations on the Directions of
Arrival/Departure-Based Model

Imagine that the modeler has knowledge of the directions of
arrival and their respective power as well as the fact that the
channel carries some energy. Without going into detailed cal-
culus (the proof is a special case of Proposition 1), it can be
shown that the resulting model has the following form:

(62)

and the principle of maximum entropy will assign independent
zero-mean complex Gaussian entries to the matrix .

1) General Case: We are interested in the behavior of
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Fig. 6. Mutual Information per transmitting antenna versus � and � for the double-directional model with equal power on Fourier directions.

Fig. 7. Fourier versus random directions at 10 dB.
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and, in particular, the eigenvalue distribution of

Theorem 2: With the DoA model, as with

converges in distribution to a random variable
where

(63)

(64)

(65)

(66)

and are any closed contours that enclose the support of
but not .

is the limiting eigenvalue distribution of in the
DoA-based model while is the limiting eigenvalue distri-
bution of . This result is based on
[37]. Hence, if the directions of arrival and the powers can be
estimated, one can completely determine the distribution of the
mutual information by solving the previous equations. From a
practical point of view, the receiver estimates the angles of ar-
rival and determines the mean and the variance of the mutual in-
formation. This information is then sent back to the transmitter
for scheduling purposes.9 One interesting point of the feedback
mechanism is that asymptotically only two values (the mean and
the variance) are needed. This reduces drastically the overhead
of feedback transmissions.

Suppose that the DoA distribution is given (using DoA
channel estimation techniques for example). In this case, how
does one derive without explicitly knowing ? One
can first of all notice that

(67)

Therefore, and based on the
result of Theorem 2, we have

(68)

9Some results on the capacity of a MIMO multiuser network (where all the
users have different angles of arrival) in the large system limit (high number of
antennas) can be found in [72].

and

(69)

In the high-SNR regime, the following result holds.

Proposition 6: In the high-SNR regime, the mean mutual in-
formation of the DoA-based model converges to

(70)

Proof: Let ( denotes in fact the mul-
tiplexing gain).

According to (68), we have

(71)

and at high SNR

(72)

which yields

if
otherwise

(73)

and proves the result.

2) Nonequal Power Case on Fourier Directions: We con-
sider in this case that there is a finite set of distinct am-
plitudes with weight such as . As
a consequence, the limiting eigenvalue distribution of

has the following expression:

(74)

Proposition 7: In the nonequal power case with Fourier di-
rections, and are equal to

(75)

and

(76)

with

(77)

Proof: The proof is provided in Appendix C. For the mean
, the proof is an application of the general Proposition 4 in

the case of interest and is provided in the Appendix. For the
variance, results of [37] are used.

Note that is related to the Stieltjes transform of
by

(78)
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Fig. 8. Mean capacity per transmitting antenna versus P at 10 dB for an 8 � 8 DoA-based model.

In Fig. 8, simulations have been conducted in the two power
case with . We impose ,

, and . In this case, we have (
and )

(79)

with

(80)

and (81) at the bottom of the page.
In Fig. 8, the asymptotic mean mutual information has been

plotted versus the amplitude . A close match between
theoretical predictions and simulations is obtained for a low
number of antennas ( MIMO system). More importantly,
one can observe that the best throughput is obtained when
all the steering directions have equal power. Note that the
close match pertains also for the variance. In terms of outage
mutual information, the equal-power case is also the one which
maximizes that criteria (see Fig. 9).

3) Remarks on the Directions of Departure-Based Model: If
only the directions of departure (with their respective power)

and channel energy are known, the previous methodology yields
the following DoD-based model:

(82)

is an matrix ( is the number of scatterers)
which represents the directions of departure from the transmit-
ting antennas to randomly positioned scatterers with respective
powers . is an i.i.d. zero-mean Gaussian ma-
trix which represents the scattering environment between the re-
ceiving antennas and the scatterers.

In order to derive the mutual information, it is straightforward
to notice that the same result (due to the duality between the
directions of arrival and departure based model) as the DoA
based model is obtained if one

• normalizes the mutual information with respect to the
number of receive antennas,

• exchanges , , with , , and
• replaces the SNR by .

In other words, the asymptotic Gaussian behavior remains
valid and we have

(83)

Remark: The preceding expression shows that in the case
where , mutual information compliance is not a good

(81)
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Fig. 9. Outage mutual information versus P at 10 dB for an 8 � 8 DoA based model.

metric for model validation as the DoA- and DoD-based
models give the same mutual information values. This point
explains in particular why so many models comply with mea-
surements in the literature and some discussions can be found
in [73].

V. KNOWLEDGE OF THE DIRECTIONS OF ARRIVAL, DEPARTURE,
DELAY, BANDWIDTH, POWER: FREQUENCY-SELECTIVE

CHANNEL MODEL WITH TIME VARIANCE

A. Model

The modeler wants to derive a consistent model taking into
account the directions of arrival and respective power profile,
directions of departure and respective power profile, delay, and
Doppler effect. As a starting point, the modeler assumes that the
positions of the transmitter and receiver change in time. How-
ever, the scattering environment (the buildings, trees, etc.) does
not change and remains in the same position during the trans-
mission. Let and be respectively the vector speed of the
transmitter and the receiver with respect to a terrestrial reference
(see Fig. 10). Let be the signal between the transmitting an-
tenna and the first scatterer . Assuming that the signal can
be written in an exponential form (plane-wave solution of the
Maxwell equations) then

(84)

Here, is the carrier frequency, is the initial vector dis-

tance between antenna and scatterer ( is the

scalar product between vector and vector ), is such

as . The quantity represents
the Doppler effect.

In the same way, if we define as the signal between the
receiving antenna and the scatterer , then

(85)

In all the following, the modeler assumes as a state of knowl-
edge the following parameters:

• speed ,
• speed ,
• the angle of departure from the transmitting antenna to the

scatterers and power ,
• the angle of arrival from the scatterers to the receiving

antenna and power .
The modeler has however no knowledge of what happens in
between except for the fact that a signal going from a steering
vector of departure to a steering vector of arrival has a certain
delay due to possible single bounce or multiple bounces on
different objects. The modeler also knows that objects do not
move between the two sets of scatterers. The delay matrix
linking each DoA and DoD has the following structure:

...
. . .

... (86)

The modeler also supposes as a given state of knowledge
the fact that matrix has a certain energy. Based on this state
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Fig. 10. Moving antennas.

of knowledge, the modeler wants to model the matrix
in the following representation:

(87)

with

...
. . .

...

and

...
. . .

...

represents the Hadamard product defined as
for a product matrix . As previously stated, one has
to comply with the following constraints.

• Matrix has a certain energy.
• Consistency argument: if the DoA, DoD, powers, the de-

lays, and the Doppler effects are unknown then matrix
should be assigned an i.i.d. Gaussian distribution.

Proposition 8: i.i.d. zero-mean Gaussian with vari-
ance is the solution of the consistency argument and maxi-
mizes entropy.10

Proof: We will not go into the details but only provide
guidelines of the proof. First, note that if and are unknown,
then the principle of maximum entropy attributes i.i.d. uniform
distribution to the angles and . But what probability

10Why does normality always appear in our models? The answer is quite
simple. Throughout this paper, we have always limited ourselves to the second
moment (energy) of the channel. If more moments are available, then normal
distributions would not appear in general.

distribution should the modeler attribute to the delays and the
Doppler effects when no information is available?

• Delays: The modeler knows that there is, due to measure-
ments performed in the area, a maximum possible delay
for the information to go from the transmitter to the re-
ceiver . The principle of maximum entropy attributes
therefore a uniform distribution to all the delays such
as with .

• Doppler effect: The modeler knows that the speed of
the transmitter and receiver cannot exceed a certain limit

(in the least favorable case, would be equal to
the speed of light) but if the transmission occurs in a city,
the usual car speed limit can be taken as an upper bound.
In this case, the speed and have also a uniform dis-
tribution such as . Moreover, if

and

the modeler will attribute a uniform distribution over
to the angles , , , and .

With all these probability distributions derived and using
the same methodology as in the narrow band (in terms of
frequency selectivity) MIMO model proof, one can easily show
that i.i.d. Gaussian is the solution of the consistency
argument and maximizes entropy.

Note that in the case , , and , the
same model as the narrow-band model is obtained. If more in-
formation is available on correlation or different variances of
frequency paths, then this information can be incorporated in
the matrix , also known as the channel pattern mask [24].
Note that in the case of a ULA geometry and in the Fourier di-
rections, we have (any column of matrix has a given
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direction) and (any line of matrix has a given direc-
tion). Therefore, the channel model simplifies to

...
. . .

...

...
. . .

... (88)

In this case, the pattern mask with elements
has the following form:

(89)

Although we take into account many parameters, the final
model is quite simple. It is the product of three matrices: ma-
trices and taking into account the directions of arrival and
departure; matrix which is an independent
Gaussian matrix with different variances. The frequency selec-
tivity of the channel is therefore taken into account in the phase
of each entry of the matrix .

Remark: In the case of a one antenna system link (
and ), we obtain

(90)

where are indepen-
dent Gaussian variable with zero mean and variance

, represents the Doppler
effect, and are the delays. This previous result is a general-
ization of the single-input single-output (SISO) wireless model
in the case of multifold scattering with the power profile taken
into account.

B. Frequency Selectivity

In this section, we are interested in the ergodic mutual in-
formation of the frequency-selective channel. The mutual infor-
mation per transmitting antenna with input covariance is
given by

Note that the mutual information depends on due to the
Doppler effect and has therefore no real meaning. Indeed, the
perfect channel knowledge assumption at the receiver is not
valid (since the channel varies) and a noncoherent mutual infor-
mation should be calculated. This is not an easy task and an open
problem even for simple channel models. A first step in this di-
rection is the work of Marzetta and Hochwald [74], Zheng and
Tse [27] for block-fading channels, and Liang and Veeravalli
for more advanced time-varying models [75]. An even more
difficult problem concerns the practical schemes for achieving
the noncoherent mutual information. Recently, in [76], Has-
sibi and Hochwald have shown that simple on-the-shelf training

schemes can be optimal at high SNR (for the i.i.d. Gaussian
model) which therefore circumvents the need of using blind or
semiblind techniques in that regime.

Therefore, in the following, only the mutual information with
no Doppler effect will be considered. In order to derive the mu-
tual information, let us show that the spatial statistics of
are independent of . Since is Gaussian, all the statistics
are described by the mean and the covariance matrix.

• Mean: Since the entries of matrix have zero mean

(91)

for every and is therefore independent of .
• Covariance: Let us derive

(92)

Since , then

(93)

which is independent of .
Since the statistics of are independent of , the ergodic

mutual information over the bandwidth is given by

(94)

One can observe that frequency selectivity does not affect the
ergodic mutual information per transmitting antenna. Similar
results have been reported in [24], [66]. In the wide-band case
with no Doppler effect, the ergodic mutual information is the
same as in the narrowband case and all the results of Section IV
remain valid.

VI. OTHER MODELS IN VIEW OF THE MAXIMUM

ENTROPY FRAMEWORK

A. Müller’s Model

In [66], Müller develops a channel model based on the
product of two random matrices

(95)

where and are two random matrices with zero mean unit
variance i.i.d. entries and is a diagonal matrix (representing
the attenuations). This model is intended to represent the fact
that each signal bounces off a scattering object exactly once
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(also known as the single bounce model).11 represents the
steering directions from the scatterers to the receiving antennas
while represents the steering directions from the transmit-
ting antennas to the scatterers. Measurements in [66] confirmed
the model quite accurately. Should we conclude that signals in
day-to-day life bounce only once on the scattering objects?

With the maximum entropy approach developed in this con-
tribution, new insights can be given on this model and explana-
tions can be provided on why Müller’s model works so well. In
the maximum-entropy framework, Müller’s model can be seen
as one of three constructions.

• A DoA-based model with random directions, i.e., matrix
with different powers (represented by matrix ) for

each angle of arrival. In fact, the signal can bounce freely
several times from the transmitting antennas to the final
scatterers (matrix ). Contrary to past belief, this model
takes into account multifold scattering and answers the
following question from a maximum entropy standpoint:
what is the consistent model when the state of knowledge
is limited to

random directions scattering at the receiving side,
each steering vector has a certain power,
the channel carries a certain energy.

• A corresponding DoD-based model with random direc-
tions, i.e., matrix with different powers (represented by
matrix ) for each angle of departure. The model permits
also in this case the signal to bounce several times from
the scatterers to the receiving antennas.

• A DoA-DoD-based model with random directions where
the following question is answered: What is the consistent
model when the state of knowledge is limited to

random directions scattering at the receiving side,
random directions scattering at the transmitting side,
each angle of arrival is linked to one angle of
departure.

As one can see, Müller’s model is broad enough to include
several maximum-entropy directional models and this fact ex-
plains why the model complies so accurately with the measure-
ments performed in [77].

B. Virtual Representation Model

In [78], Sayeed proposes a virtual representation of the
channel. The model is the following:

(96)

Matrices and are discrete Fourier matrices and is
an matrix which represents the contribution of each of
the fixed DoAs and DoDs. The representation is virtual in the
sense that it does not represent the real directions but only the
contribution of the channel to those fixed directions. The model
is somewhat a projection of the real steering directions onto a
Fourier basis. The virtual representation is quite appealing in
terms of simplicity and analysis. In this case, also, we can re-

11Note that the terminology is misleading. Indeed, the modeler never assumed
a single bounce but only a one-to-one mapping between DoAs and DoDs. It
makes allowance for several bounces as long as each DoA is linked to one and
only one DoD whatever happens in between.

visit the virtual representation in light of our framework. We
can show that in each case, the virtual representation answers a
specific question based on a given assumption.

• Suppose matrix has i.i.d. zero-mean Gaussian en-
tries then the virtual representation model answers the
following question: what is the consistent model for a
ULA when the modeler assumes that the channel carries
energy, the DoA and DoD are on Fourier directions but
one does not know what happens in between.

• Suppose now that matrix has a certain correlation struc-
ture, then the virtual representation model answers the fol-
lowing question: what is the consistent model for a ULA
when the modeler assumes that the channel carries energy,
the DoA and DoD are on Fourier directions, but assumes
that the paths in between have a certain correlation.

As one can see, the virtual representation has a simple in-
terpretation in the maximum-entropy framework: it considers a
ULA geometry with Fourier directions. Although it may seem
strange to restrict oneself to this case, we do have an explanation
for this fact. In the paper [24], the authors were mostly interested
in the capacity scaling of MIMO channels and not the joint dis-
tribution of the elements. From that perspective, only the statis-
tics of the uncorrelated scatterers is of interest since they are the
ones which scale the capacity. The correlated scatterers have a
very small effect on capacity. However, the entropy framework
is not limited to the ULA case (for which the Fourier vector ap-
proach is valid) and can be used for any kind of antenna and
field approximation. One of the great features of the maximum
entropy approach is the simplicity of translating any additional
physical information into probability assignment in the model.
A one-to-one mapping between information and model repre-
sentation is possible.

C. The “Kronecker” Model

In [26], Chuah et al. study the following Kronecker12 model

(97)

Here, is an i.i.d. zero-mean Gaussian matrix,
is an receiving correlation matrix, while is an

transmitting correlation matrix. The correlation is sup-
posed to decrease sufficiently fast for and to have a
Toeplitz band structure. Using a software tool (Wireless System
Engineering [81]), they demonstrate the validity of the model.
Quite remarkably, although designed to take into account the
receiving and the transmitting correlation, the Kronecker model
falls within the double directional framework. As shown in [24],
since and are band Toeplitz then these matrices are
asymptotically diagonalized in a Fourier basis . Therefore,
can be rewritten as

12The model is called a Kronecker model because (vec(HHH) vec(HHH)) =
RRR RRR is a Kronecker product. The justification of this approach relies
on the fact that only the immediate surroundings of the antenna array impose
correlation between array elements and have no impact on correlations observed
between the elements of the array at the other end of the link. Some discussions
can be found in [79], [80].
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Fig. 11. Channel modeling approach and derivation of capacity.

(98)

where is an zero-mean i.i.d. Gaussian
matrix and is a pattern mask matrix defined by

...
. . .

...
(99)

Here again, the previous model can be reinterpreted in light
of the maximum entropy approach. The model answers the fol-
lowing question: what is the consistent model one can make
when the DoAs are on Fourier directions and have respective
power , the DoDs are on Fourier directions and have re-
spective power , each path has zero mean and a certain
variance.

D. “Keyhole” Model

In [82], Gesbert et al. show that low-correlation13 is not a
guarantee of high capacity: cases where the channel is rank defi-
cient can appear while having uncorrelated entries (for example,
when a screen with a small keyhole is placed between the trans-
mitting and receiving antennas). In [84], they propose the fol-
lowing model for a rank one channel:

(100)

Here, is an receiving correlation matrix while
is an transmitting correlation matrix. and

are two independent transmit and receiving fading vectors. Here
again, this model has connections with the previous maximum
entropy model

(101)

The Keyhole model can be either

• a double direction model with and

In this case, where is
zero mean i.i.d. Gaussian; or

• a double direction model with and

13“Keyhole” channels are MIMO channels with uncorrelated spatial fading at
the transmitter and the receiver but have a reduced channel rank (also known as
uncorrelated low rank models). They were shown to arise in roof-edge diffrac-
tion scenarios [83].

In this case, where is
zero mean i.i.d. Gaussian.

As one can observe, the maximum-entropy model can take
into account rank-deficient channels.

VII. LIMITATIONS OF THE MAXIMUM ENTROPY APPROACH

In the previous paragraphs, the mutual information was
derived based on the assumption that the channel model is
adequate with reality. For example, knowing that the fre-
quency paths are Gaussian i.i.d. and the noise is additive
white Gaussian, the transmitter will design codes to ensure a
reliable transmission on such channels achieving that rate. But
whenever we are misrepresenting the channel with our state of
knowledge, the formula

(102)

will mis-estimate the rate. Indeed, a surprising fact in our max-
imum entropy approach is that although it gives us a consistent
model with our state of knowledge, it will also lead to mis-esti-
mating the rate with (102). The problem is formulated in Fig. 11.

• Transition 1: the modeler creates a model maximizing
entropy.

• Transition 2: the modeler mis-estimates the real achiev-
able rate because even though the created model is the
best possible, based on the state of knowledge, it derives
the mutual information of the channel based on the as-
sumption that the model is reality.

• Transition 3: a new measure of the information rate should
be derived based only on our state of knowledge, taking
into account the fact that the model does not represent re-
ality, but only our knowledge (which is scarce) of reality.14

As a matter of fact, for deriving the mutual information, a
channel model is not required but only the state of knowledge.
One can derive more useful information rate criteria which cir-
cumvent the need of a channel model such as the “worst case
mean channel capacity”

(103)

is the infinite set of matrices with the same initial physical
constraints (mean and variance, for example). Of course, other
measures of capacity performance can be derived.

So, is there a contradiction in our maximum-entropy mod-
eling approach? No, as long as we understand the meaning of
transition 2 in Fig. 11. With the maximum entropy approach, we
derive a channel model having as much degrees of freedom as
possible (but still with the constraints of our state of knowledge)

14Quantifying the gap between transitions 1 + 2 and 3 is still an open issue.
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in order to cope with all the cases when they happen. We do this
because we need a unique model consistent with our state of
knowledge. Any other approach will add unjustified constraints.
Suppose, for the sake of simplicity, that each frequency path of
the channel has zero mean and a given variance (the mean and
variance are here our state of knowledge). Transition 1 + 2 will
give us a measure of the rate one can transmit on a “maximum
entropy channel state knowledge.”

The problem stems from the fact that although models are
consistent, functionals of the model are not. Indeed, consider the
DoA-based model ( is i.i.d. Gaussian), then using
Jensen’s inequality

(104)

For example, when the directions of arrival are unknown, the
mutual information averaged across the unknown directions of
arrival (here ) does not yield
the mutual information of the Gaussian i.i.d. model

The model is consistent but not the functional. A remarkable
feature of the previous result is that whenever we have more
information (and therefore more constraints on the channel
model), mutual information will be reduced as it constrains the
degrees of freedom. This explains why, under the same initial
constraints (as an example the mean and the variance of each
path), correlated fading reduces the mutual information with
respect to the completely i.i.d. case. As an example, the fact that
we take into account the DoA, mean, and variance will reduce
the mutual information compared with the case where only
the same mean and the same variance are taken into account.
In fact, if one is interested only in particular functions of the
model, then he should construct a model which is consistent
with those functionals and not with respect to axiom 1. A
consistent model is for the case where we do not know which
functions we (or others who we construct the model for) are
interested in.

VIII. CONCLUSION

Where do we stand on channel modeling ?15 This question is
not simple to answer as many models have been proposed and
each of them validated by measurements. Channel models are
not getting better and better but they only answer different ques-
tions based on different states of knowledge. A generic method
for creating models based on the principle of maximum entropy
has been provided and proved to be theoretically sound. At every
step, we create a model incorporating only our prior information
and not more. The model achieved is broad as it complies at its
best with any case having more constraints (but at least includes
the same prior constraints). The channel modeling method is
summarized hereafter.

15This question has to be taken in light of the talk “Where do we stand on
maximum entropy?” made by E. T. Jaynes in 1978 at MIT [85].

• prior information
• Consistency argument.

The consistency argument is extremely important as it shows
that two channel modeling methods based on the same state of
knowledge should lead to the same channel model. This fact has
not always been fulfilled in the past. However, one must bear in
mind that the fewer things are assumed as a priori information
the greater are the chances that the model will comply with any
mismatched representation. Finally, note that recent campaign
measures at 2.1 and 5.2 GHz in [73] have shown that Maxent
Fourier models are mutual information compliant.

APPENDIX A
PRELIMINARIES

Lemma 1: Consider the matrix (see Bai and Silverstein
[37])

• is an matrix with i.i.d. complex stan-
dardized entries having finite fourth moments,

and with .
• is an nonrandom Hermitian nonnegative def-

inite matrix, with empirical eigenvalue distribution that
converges in distribution almost surely to a fixed , and
the sequence of spectral norms is bounded.

• is continuously differentiable with a bounded first
derivative and analytic on an open interval containing

with and respectively the smallest and the
largest eigenvalues of .

Then as and

in distribution

In other words, the empirical spectral distribution of is shown
to have a Gaussian limit.

• , is the limiting distribution of ,
the solution of the implicit equation

through its Stieltjes transform

• is a real-valued, zero-mean Gaussian random
variable with asymptotic variance

and and are any closed positive contours that en-
close the support of .
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APPENDIX B
PROOF OF PROPOSITION 5

In this proof, we show that the optimal power profile which
maximizes the mean mutual information in the case of the
double directional model with ULA and Fourier directions is

and .
Let us maximize with respect to with the

constraints

and

This corresponds to maximizing the following function:

(105)

Therefore,

(106)

Since

(107)

and

(108)

then

(109)

Therefore,

(110)

and

(111)

The last inequality holds for every . Therefore, all are
equal (to due to the normalization constraint). The same proof
holds for by taking the derivative with respect to .

APPENDIX C
PROOF OF PROPOSITION 7

Let us first derive . In the DoA-based model, one can
apply straightforwardly Proposition 4 if , ,

, , , . Therefore,

(112)

with

(113)

and

(114)

Notice that

(115)

and therefore,

(116)

which yields

(117)

We can therefore rewrite as

(118)

which yields

(119)
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We also have using (116)

(120)

which can be simplified to

(121)

Let us now derive :
To this end, we will apply Theorem 2. Since

we have

(122)

The asymptotic variance is therefore equal to

(123)

For fixed , let us calculate over the contour the fol-
lowing expression:

(124)

(125)

(126)

where, for notational simplicity, we denote by the fol-
lowing polynomial of degree :

(127)

and are the roots of (the fact that is a
root stems form (122)).

Therefore, if we define:

(128)

then

(129)

The result stems from the fact that the contour is chosen
to include and but not and for all .

Notice that

(130)

The last equation comes from the fact that (see (122))

(131)

Therefore,

(132)

The first integral is zero since the integrand has a primitive
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Therefore, the asymptotic variance is equal to

(133)
Since

(product of the roots of polynomial which is equal to
) and

(The previous result comes from (130.))
We have therefore,

(134)

The last equation stems from the fact that .16
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