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MIMO Full-Duplex Relaying in the Presence of

Co-Channel Interference
Ahmed Almradi, Student Member, IEEE, and Khairi Ashour Hamdi, Senior Member, IEEE

Abstract—This paper studies the deployment of multiple-input
multiple-output (MIMO) full-duplex (FD) relaying systems in a
multi-cell environment, where the source and destination nodes
are equipped with single antenna and communicating via a dual-
hop amplify-and-forward (AF) relay station with multiple receive
and transmit antennas in the presence of co-channel interference
(CCI). This paper addresses the fundamental challenges of
loopback self-interference (LI) and CCI when incorporating
FD relaying in cellular systems. Due to the higher frequency
reuse in FD relaying compared to its half-duplex (HD) relaying
counterpart, the CCI is expected to double as the FD relay station
simultaneously schedule uplink and downlink transmission on
the same channel. The optimal design of relay receive and
transmit precoding weight vectors which maximizes the over-
all signal-to-interefernce-plus-noise ratio (SINR) is formulated
by a proper optimization problem, then a closed-form sub-
optimal solution based on null space projection is proposed.
The proposed precoding vectors are based on the added receive
and transmit zero-forcing (ZF) constraints used to suppress the
co-channel interference and loopback self-interfernce, respec-
tively. To this end, exact closed-form expressions for the outage
probability and ergodic capacity are derived, where a simpler
lower-bound expressions are also presented. In addition, the
asymptotic high signal-to-noise ratio (SNR) outage probability
approximation is also considered, through which the diversity
order of the null space projection (ZF/ZF) scheme is found
to achieve min (NR −M, NT − 1), where NR and NT are the
number of relay receive and transmit antennas, respectively,
and M is the number of CCI interferers. Numerical results
sustained by Monte-Carlo simulations show the exactness of
the proposed analytical expressions as well as the tightness of
the proposed lower-bound expressions. In addition, simulation
results for the minimum mean square error (MMSE)/ZF scheme
is also considered for comparison purposes. Our results reveal
that MIMO FD relaying could substantially boost the system
performance compared to its conventional MIMO HD relaying
counterpart.

Index Terms—MIMO relaying, full-duplex relaying, half-
duplex relaying, zero-forcing (ZF), minimum mean square error
(MMSE), outage probability, ergodic capacity, co-channel inter-
ference.

I. INTRODUCTION

C
OOPERATIVE relaying techniques have recently gained

a great deal of attention due to their ability to extend net-

work coverage, connectivity and attain higher capacity without
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sacrificing extra power resources. In a dual-hop relaying

systems, an intermediate idle node operates as a relay between

the source and destination nodes when the direct link between

the source and destination is in deep fade. Two orthogonal

channels are required for communications to take place in the

conventional dual-hop one-way relaying networks. As a result,

a significant loss of spectrum efficiency is incurred because of

the inherent half-duplex (HD) relaying transmission constraint

at the relay, where time-division duplex or frequency-division

duplex is used by the conventional wireless communication

systems to operate in out-of-band full-duplex (half-duplex).

Recently, full-duplex (FD) relaying, also known as in-band

full-duplex, has received a lot of research interest because

of its potential to double spectral efficiency (e.g., [1]–[14]).

This is due to the fact that full-duplex relays receive and

re-transmit its information at the same time over the same

frequency. Hence, efficiently utilizing the spectrum resources

of the system. However, the main limitation of FD relaying

is the loopback self-interference (LI) caused by the signal

leakage from the relay’s transmission to its own reception,

namely, the large power differences between the LI (power

transmitted from the FD relay) and the FD relay received

signal (which is much weaker than the transmitted signal

due to path loss and fading) exceeds the dynamic range of

the analoge-to-digital converter. Therefore, LI mitigation and

cancellation is vital in the implementation of FD relaying

operation [1]–[6], [15].

Linking multiple-input-multiple-output (MIMO) techniques

with full-duplex relaying systems provide a powerful capabil-

ity of suppressing LI in the spatial domain and can offer higher

capacity when compared to its MIMO HD relaying counterpart

(see e.g., [10], [11], [16], [17]). Therefore, in the presence of

MIMO FD relaying systems, joint optimization by decoding

and precoding at the receiver and transmitter, respectively, can

be used to mitigate the LI effects at the relay. Due to its

implementation simplicity and mathematical tractability, zero-

forcing (ZF) technique is utilized to completely cancel out

the LI interference and disconnect the closed-loop between

the relay’s transmission and reception. Numerous papers have

studied the spatial LI mitigation problem, for instance, ZF

precoding and decoding vectors based on the conventional

singular value decomposition (SVD) of the LI channel is

proposed in [10], [16] to null out the LI at the relay, where [10]

presented different spatial LI suppression techniques, namely,

antenna selection, beam selection, and null space projection.

In addition, a low complexity joint precoding/decoding design

for maximizing the overall signal-to-noise ratio (SNR) is

investigated in [11], where a closed-form overall SNR is

derived. More specifically, both receive ZF precoding with
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maximum-ratio transmission (MRT) scheme, and maximal-

ratio combining (MRC) with transmit ZF scheme have been

presented. More recently, a massive receive antenna array or a

massive transmit antenna array is used to significantly reduce

the LI effect is introduced in [9], where ZF/ZF scheme or

MRC/MRT scheme is used at the FD relay. In [18], dif-

ferent optimaization problems which maximaizes the overall

SNR of MIMO FD relaying are inestigated. The authors in

[19] analyzed the performance of MIMO FD relaying when

null space projection via SVD is used to mitigate the LI

interference. In [20], the degrees of freedom of bidirectional

interference network is considered by utilizing interference

alignment, assuming that the LI is known to the receiver and

therefore can be subtracted off completely. However, to the

best of our knowledge, the impact of co-channel interference

( CCI)1 on the performance of MIMO full-duplex relaying has

not been investigated yet.

Due to the aggressive frequency reuse in the conventional

HD cellular relaying systems, the impact of CCI on the system

performance has been extensively studied in the literature (see

e.g., [21]–[23]). However, FD cellular relaying systems are

more vulnerable to CCI owing to the higher frequency reuse

compared to its traditional HD relaying counterpart. For in-

stance, in a multi-cell environment with FD relay base stations

and HD users, a much higher CCI is seen from adjacent cells

as compared to its HD counterpart [2], [24]–[26]. Therefore,

analyzing the detrimental effect of CCI on the performance of

MIMO FD relaying transmission is of theoretical and practical

importance. In [25], [26], the performance analysis of FD

relaying subject to CCI have been investigated, namely, the

outage probability of a decode-and-forward FD relay with

single antenna nodes have been presented. In [24], the average

spectral efficiency of a stochastic geometry small cell network,

where the base stations and user equipments operate in full-

duplex mode (i.e., nodes have dedicated antennas for transmis-

sion and reception) is investigated. It is to be emphasized that

all these works are limited to single antenna nodes. However,

the deployment of multiple receive and transmit antennas at

the FD relay not only improve reliability and increase capacity,

it yields a powerful technique for suppressing both, the CCI

and LI channels at the FD relay.

Motivated by the above mentioned limitations, this paper

investigates the impact of co-channel interference on the

performance of MIMO amplify-and-forward FD relaying sys-

tems with ZF/ZF scheme, where its performance is compared

against simulation results for the minimum mean square error

(MMSE)/ZF scheme.

The main contributions of this paper are summarized as

follows:

1) The optimization problem for the design of relay receive

and transmit precoding weight vectors that maximizes

the overall signal-to-interefernce-plus-noise ratio (SINR)

is formulated, then a sub-optimal solution based on

1The frequency resue deployment to enhance the spectrum efficiency of
wireless systems cause the harmful effect of CCI in the HD multi-cell
environment case, where a greater frequency resue is seen in the FD multi-
cell environment case which causes the challenge of doubling CCI in the
neighboring cells.

the added receive and transmit zero-forcing (null space

projection) constraints is proposed, through which a

sub-optimal precoding and decoding weight vectors are

presented. The receive and transmit ZF precoding weight

vectors (ZF/ZF scheme) is designed as follows; the

receive ZF weight vector is designed to suppress the

CCI, while the transmit ZF weight vector is designed to

null out the LI.

2) A new exact closed-form expression for the outage

probability of MIMO FD relaying systems with CCI is

presented for the derived overall SINR, where ZF/ZF

scheme is applied. In addition, a simpler tight closed-

form lower-bound outage probability expression is also

included. Besides, the asymptotic analysis of the system

under consideration is also studied, where the charac-

terization of high SNR outage probability show that the

achievable diversity order is min (NR −M, NT − 1),
where NR and NT are the number of relay receive and

transmit antennas, respectively, and M is the number of

CCI interferers.

3) A new exact closed-form ergodic capacity expression

is derived for the proposed overall SINR, where a

simpler tight closed-form lower-bound ergodic capacity

expression is also presented.

The structure of the rest of the paper is as follows. In

section II, we introduce the system model. In section III,

the instantaneous overall SNR is addressed. In section IV,

the outage probability analysis is considered. In section V,

the ergodic capacity analysis is investigated. The MMSE/ZF

scheme is introduced in section VI. Numerical results are

provided in section VII. Finally, section VIII concludes the

paper.

II. THE SYSTEM MODEL

We consider a MIMO full-duplex AF relaying system,

where a single antenna source S is communicating with a

single antenna destination D through a multi-antenna FD relay

R with NR receiving antennas and NT transmitting antennas,

where the relay is subject to loopback self-interference in

addition to M co-channel interferers (CCI) as depicted in

Fig. 1. Throughout this paper, the following assumptions

are considered: 1) As our main focus on this paper is on

network coverage extension (see e.g., [18], [21], [27], [28]),

it is assumed that the source does not have a direct link to

the destination due to heavy path loss and shadowing2. 2)

A single MIMO full-duplex AF relay is considered, where

the full-duplex relay receive and re-transmit its information

at the same time over the same frequency. 3) It is also

assumed that the relay suffers M CCI interferers in addition to

additive white Gaussian noise (AWGN), while the destination

is corrupted by AWGN. The practical justification of such

an assumption is that two mobile users which are far from

the cell edge exchange information with the aid of a relay

2In the case of single antenna nodes and in the absence of CCI, the effect of
the direct link between the source and destination on the system performance
has been investigated in [27].
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that is close to the cell edge3. 4) Channels are modeled

as quasi-static block flat fading and remain constant over

the block time T , and varies independently and identically

from one block to the next. The source → relay (S → R)

channel h1 with NR × 1 vector, the relay → destination

(R → D) channel h2 with NT × 1 vector, the relay →
relay (R → R) residual LI channel HR, which models

the resultant error due to imperfect LI mitigation performed

by antennas isolation, and analog and digital cancellation at

the FD relay, the ith interferer channel at the relay gi with

NR × 1 vector are modeled by independent Rayleigh fading

with entries follow independent and identically distributed

random variables (i. i. d.) with CN (0, 1). Full channel state

information (CSI) of the S → R channel h1, the R → D

channel h2, the R → R residual LI channel HR, and the ith

interferer channel gi with i = 1, . . . , M are assumed to be

available at the relay for the ZF/ZF scheme to be implemented.

5) In order to completely eliminate the CCI channel at the

relay, the number of relay receive antennas is assumed to be

greater than the number of interferers (i.e., NR > M ). This

is a necessary condition for the deployment of receive ZF

scheme4. Similarly, in order to completely eliminate the LI

channel at the relay, the number of relay transmit antennas

is supposed to be larger than one (i.e., NT > 1). This is an

essential condition for ensuring the feasibility of transmit ZF

scheme.

� �

D

R

S

Figure 1: The MIMO FD relaying system model.

III. THE INSTANTANEOUS OVERALL SNR

The received signal at the relay after the receive precoding

vector can be written as

w
†
RyR = w

†
R

(

h1xS +HRwTxR +
M∑

i=1

gixi + nR

)

(1)

where xS is the source information signal with average power

ES = E [xSx
⋆
S ], with E (·) denotes the expectation operator,

(·)⋆ denotes the conjugate operator, xR is the relay signal

3Note that our analysis can be easily extended to the case where the
destination also suffers multiple CCI interferers. However, the purpose of
this paper is to analyze the effect of MIMO FD relay on combating both, the
CCI and LI interferences compared to its MIMO HD relaying couterpart. It is
to be emphasized that users are operating in the HD mode while the relay is
operating in the FD mode. Therefore, including CCI at the destination would
only make the analysis complicated without any additional insights.

4In section (VI), the case of MMSE/ZF scheme is also considered for
comparison purposes.

with average power ER = E [xRx
⋆
R], xi is the ith inter-

ferer signal at the relay with average power Ei = E [xix
⋆
i ],

nR is an NR × 1 vector which denotes the additive white

Gaussian noise (AWGN) at the relay, distributed according

to nR ∼ CN
(
0, σ2

RINR

)
, wR is the receive beamform-

ing weight vector, and (·)† denotes the conjugate transpose

operator. Let G = [g1, g2, . . . , gM ] be the co-channel

interference (CCI) matrix with dimension NR×M . Then, the

term
∑M

i=1 w
†
Rgixi in (1) can be re-written as w

†
RGxI where

xI = [x1, x2, . . . , xM ]T , with (·)T denotes the transpose

operator.

The received signal at the destination can be written as

yD =
√

ERh
†
2wTxR + nD (2)

where wT is the transmit beamforming weight vector, and nD

is the AWGN at the destination and distributed according to

nD ∼ CN
(
0, σ2

D

)
.

From (1) and (2), the S → R SINR and R → D SNR

(respectively) can be obtained as

γ1 =
γ1

∥
∥
∥w

†
Rh1

∥
∥
∥

2

γ2

∥
∥
∥w

†
RHRwT

∥
∥
∥

2

+ 1
σ2
R

E

(∥
∥
∥w

†
RGxI

∥
∥
∥

2
)

+ 1

(3)

and

γ2 = γ2

∥
∥
∥h

†
2wT

∥
∥
∥

2

(4)

where γ1 = ES

σ2
R

, γ2 = ER

σ2
D

, ‖·‖ denotes the Euclidean norm

operator, and E

(∥
∥
∥w

†
RGxI

∥
∥
∥

2
)

=
∑M

i=1

∥
∥
∥w

†
Rgi

∥
∥
∥

2

Ei.

Therefore, the overall SINR can be simplified to

γ =
γ1γ2

γ1 + γ2 + 1
(5)

where γ1 is the first-hop SNR given in (3), and γ2 is the

second-hop SNR given in (4).

Our Objective is to find an optimal transmit and receive

precoding vectors, {wT , wR} so that the overall SINR in (5)

is maximized. Therefore, the optimization problem may be

formulated as

w⋆
T , w

⋆
R = argmax

wT , wR

γ (in Eq. (5))

s. t. ‖wT ‖ = ‖wR‖ = 1
. (6)

It is well known that in the absence of interfer-

ence, maximum-ratio combining (MRC) at the receiver and

maximum-ratio transmission (MRT) at the transmitter are op-

timal precoding schemes as they result in the maximum overall

SINR. However, due to the aggressive frequency reuse in FD

relaying systems, through which a higher and deleterious effect

of CCI is seen as it is expected to double compared to its

conventional HD relaying counterpart [2], MRC and MRT are

sub-optimal as they treat the interference as additive noise.

Therefore, the presence of CCI can severely deteriorate the

performance of FD relaying systems and its mitigation is of

theoretical and practical interest. Owing to the complexity of

the optimization problem in (6), the optimal receive and trans-

mit precoding vectors at the MIMO FD relay are nontrivial



4

to solve in closed-form. Therefore, as far as a closed-form

simple analytically tractable overall SINR is concern, a sub-

optimal solution is found by adding a receive and transmit

ZF constraints to the optimization problem in (6)5. These

constraints force the loopback self and co-channel interference

terms at the MIMO FD relay to zero, i.e., w
†
RHRwT = 0

and w
†
RG = 0, assuming that NR > M and NT > 1. To this

end, due to the separability of the resultant constraint problem,

the optimization problem could be separated into two simpler

problems as follows

w⋆
R = argmax

wR

∥
∥
∥w

†
Rh1

∥
∥
∥

2

s. t. w
†
RG = 0 & ‖wR‖ = 1

. (7)

and

w⋆
T = argmax

wT

∥
∥
∥h

†
2wT

∥
∥
∥

2

s. t. w
†
RHRwT = 0 & ‖wT ‖ = 1

. (8)

Proposition 1. The optimal solution to the constraint opti-

mization problems in (7) and (8) are (respectively) derived

as

w⋆
R =

Ph1

‖Ph1‖
(9)

where P = INR
−G

(

G†G
)−1

G†, and

w⋆
T =

Bh2

‖Bh2‖
(10)

where B = INT
−

H
†
R
Ph1(H†

R
Ph1)

†

(H†
R
Ph1)

†
H

†
R
Ph1

.

Proof: The proof is given in Appendix A.

Therefore, the overall SINR of MIMO FD relaying with CCI

utilizing null-space projection (ZF/ZF scheme) can be derived

as

γZF/ZF =
γZF
1 γZF

2

γZF
1 + γZF

2 + 1
(11)

where γZF
1 = γ1

∣
∣
∣h

†
1Ph1

∣
∣
∣ = γ1 ‖Ph1‖

2
, γZF

2 =

γ2

∣
∣
∣h

†
2Bh2

∣
∣
∣ = γ2 ‖Bh2‖

2
.

Note that the matrices P and B are idempotent orthogonal

projection (null-space projection) matrices (all their eigen-

values are either one or zero, where the number of ones

is determined by the rank of the matrix6) which are used

to eliminate the co-channel interference and loopback self-

interference channel, respectively. For instance, in the case of

idempotent orthogonal projection matrix P , we have tr (P ) =
rank (P ) because of idempotency, where tr (·) denotes the

5It is to be emphasized that the asymptotic results of the ZF scheme is
optimal, i.e., the ZF scheme is optimal in the high interferer-to-noise ratio
(INR) regime. This is proved through simulation results of the MMSE/ZF
scheme presented in section VI.

6It is well known that the rank of an M × N matrix A is rank (A) ≤
min (M, N), where equality holds if and only if A is full rank.

trace operation. Hence, we have

rank (P ) = rank

(

INR
−G

(

G†G
)−1

G†

)

= rank (INR
)− rank

(

G
(

G†G
)−1

G†

)

. (12)

It can be easily shown that rank (INR
) = NR and

rank

(

G
(

G†G
)−1

G†

)

= rank (G) = M . Hence,

rank (P ) = NR −M .

Therefore, the vector Ph1 has the same statistics as h1

with dimensionality reduced by the number of interferers

M , hence Ph1 ∼ CN (0, INR−M ). Similarly, it can be

shown that the vector Bh2 has the same statistics as h2

with dimensionality reduced by one (i.e., rank (B) = NT −

rank
(

H
†
RPh1

)

, where rank
(

H
†
RPh1

)

= 1). Hence,

Bh2 ∼ CN (0, INT−1). More specifically, the probabil-

ity density function (PDF) of ‖Ph1‖
2

and ‖Bh2‖
2

are

given as f‖Ph1‖
2 (x) = xNR−M−1

(NR−M−1)!e
−x and f‖Bh2‖

2 (y) =
yNT −2

(NT−2)!e
−y , respectively.

IV. OUTAGE PROBABILITY ANALYSIS

In this section, the information outage probability of MIMO

FD relaying systems with null space projection (ZF/ZF

scheme) is investigated. An exact as well as a simpler lower-

bound expressions for the the outage probability are derived

in closed-form, where the asymptotic high SNR regime is also

included, through which the achievable diversity order is ob-

tained. The outage probability is defined as the probability that

the instantaneous mutual information, I = log2
(
1 + γZF/ZF

)
,

falls below a target rate of R0 bits per channel use7

PZF
out (R0) = Pr

(

log2

(

1 + γZF/ZF
)

< R0

)

= FZF
γ (γT ) . (13)

where γT = 2R0 − 1, and FZF
γ (·) denotes the cumulative

distribution function (CDF) of the overall SINR.

The CDF and PDF of the random variables (RVs) γZF
1 and

γZF
2 are (respectively) given as

FZF
γ1

(x) = 1− e
− x

γ1

NR−M−1∑

k=0

1

k!

(
x

γ1

)k

, x ≥ 0 (14)

and

fZF
γ2

(y) =
γ2

−NT+1

(NT − 2)!
yNT−2e

− y
γ2 , y ≥ 0. (15)

7Note that in contrast to (13), the SINR outage probability can be defined as
the probability that the instantaneous overall γZF/ZF falls below a threshold
γT ; Pr

(

γZF/ZF < γT
)

= FZF
γ (γT ). Note that according to (13), γT in

the case of HD relaying is given as γT = 22R0 − 1.
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A. Exact Outage Probability

The CDF of the overall SINR γZF/ZF can be derived as

[28, Appendix I]

FZF
γ (γT ) = Pr

(
γZF
1 γZF

2

γZF
1 + γZF

2 + 1
< γT

)

= 1−

∞̂

0

FZF
γ1

(
γT (γT + w + 1)

w

)

fZF
γ2

(γT + w) dw (16)

where FZF
γ1

(·) is the complementary CDF of γZF
1 .

Proposition 2. The exact outage probability of the overall

SINR γZF/ZF for MIMO FD relaying systems with M co-

channel interferers and receive and transmit ZF scheme, can

be derived as show in (17) at the top of next page, where

Kv (z) is the modified bessel function of the second kind of

order v.

Proof: The proof is given in Appendix B.

B. Lower-Bound Outage Probability

Note that though proposition 2 provides an efficient means

for analyzing the exact outage probability of the system, this

formula is quite complicated as it does not provide simple

insights onto the performance analysis of the system. There-

fore, in order to gain a better insights onto the performance

analysis of the system. The overall SINR in (11) can be tightly

upper-bounded by8

γZF/ZF ≤ γZF/ZF
up = min

(
γZF
1 , γZF

2

)
. (18)

Therefore, the lower-bound outage probability expression

of the overall SINR γZF/ZF (exact for the outage probability

of the overall SINR upper-bound γ
ZF/ZF
up ) for the MIMO FD

relaying system with ZF/ZF scheme can be expressed as

FZF
γup

(γT ) = 1−
Γ
(

NR −M, γT

γ1

)

Γ (NR −M)

Γ
(

NT − 1, γT

γ2

)

Γ (NT − 1)
. (19)

Proof: The proof is given in Appendix C.

Next, the lower-bound outage probability expression (19) is

then used to derive the asymtotic outage probability of MIMO

FD relaying systems with ZF/ZF scheme.

1) Asymptotic Analysis: To validate and characterize the

achievable diversity order of the MIMO FD relaying systems

with CCI and ZF/ZF scheme at the AF relay, we approximate

(19) in the asymptotic high SNR regime assuming γ2 = κγ1,

with κ denotes a finite constant number and γ1 → ∞. Hence,

the asymptotic outage probability of the overall SINR γZF/ZF

8Note that in order to simplify the mathematical tractability as to gain
a better insights onto the performance analysis of the system, it is well
known in the conventional half-duplex relaying literature that the overall
SNR γ = γ1γ2

γ1+γ2+1
can be tightly upper-bounded by

γ1γ2

γ1+γ2
(see e.g., [29,

Eq. (6)]). In addition, the upper-bound
γ1γ2

γ1+γ2
can be further upper-bounded

by min (γ1, γ2) (see e.g., [22, Eq. (8)]). It is to be emphasized that the
asymptotic results of these bounds are exact.

can be expressed as

F∞
γ (γT ) =

(
γT

γ1

)NR−M

Γ (NR −M + 1)
+

(
γT

γ1

)NT−1

Γ (NT )

(
1

κ

)NT−1

+O

((
γT

γ1

)min(NR−M+1, NT )
)

. (20)

Proof: The proof is given in Appendix D.

Equation (20) can be further simplified as in (21), shown at

the top of next page.

It is straight forward to show from (21) that the achievable

diversity order of the MIMO FD relaying systems with ZF/ZF

scheme is min (NR −M, NT − 1).

V. ERGODIC CAPACITY ANALYSIS

The capacity analysis is an important performance measure

for any wireless communication system as it results in the

maximum achievable rate. In this section, we present a rig-

orous investigation on the ergodic capacity of MIMO FD-AF

relaying systems with ZF/ZF scheme. The ergodic capacity

is defined as the expected value of the instantaneous mutual

information between the source and destination, and is given

by

CZF =
1

ln 2
E

[

ln
(

1 + γZF/ZF
)]

=
1

ln 2
E

[

ln

(

1 +
γZF
1 γZF

2

γZF
1 + γZF

2 + 1

)]

. (22)

In order to reduce the required computational complexity,

we rely on the following lemma to transform (22) into a

more convenient form which facilitates the calculation of the

required average by using known results of moment generating

functions (MGFs).

Lemma 3. For any X ≥ 0, Y ≥ 0, and X is independent of

Y , we have [30, Lemma 1]

EX, Y

[

ln

(

1 +
XY

X + Y + 1

)]

=

ˆ ∞

0

1

z
(1−MX (z)) (1−MY (z)) e−zdz. (23)

where MX (z) = EX

(
e−zX

)
denotes the MGF of the RV X ,

and MY (z) = EY

(
e−zY

)
denotes the MGF of the RV Y .

Once letting X = γZF
1 and Y = γZF

2 , the MGFs of γZF
i is

given as [30, Eq. (16)]

MZF
γi

(z) =

(
1

1 + γiz

)Ni

(24)

where i ∈ {1, 2}, N1 = NR −M and N2 = NT − 1.

Proposition 4. The exact closed-form ergodic capacity ex-

pression of the overall SINR γZF/ZF for the MIMO full-duplex

relaying systems with M CCI interferers and ZF/ZF scheme
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FZF
γ (γT ) = 1−

2e
−γT

(

1
γ1

+ 1
γ2

)

(NT − 2)!γ2
NT−1

NR−M−1∑

k=0

1

k!

(
γT

γ1

)k k∑

n=0

(
k

n

)

(γT + 1)
n

NT−2∑

m=0

(
NT − 2

m

)

γNT−m−2
T

×

(
γT γ2 (γT + 1)

γ1

)m−n+1

2

Km−n+1

(

2

√

γT (γT + 1)

γ1γ2

)

. (17)

F∞
γ (γT ) =







(

γT
γ1

)NR−M

Γ(NR−M+1) , NR −M < NT − 1
(

γT
γ1

)NR−M

Γ(NR−M+1) +

(

γT
γ2

)NT −1

Γ(NT ) , NR −M = NT − 1
(

γT
γ2

)NT −1

Γ(NT ) , NR −M > NT − 1

. (21)

at the AF relay can be written as

CZF =
γ1 γ2

ln 2

NR−M−1∑

k=0

NT−2∑

m=0

1

Γ (k + 1)Γ (m+ 1)

×G
1, 1, 1, 1, 1
1,[1:1], 0, [1:1]







γ1
γ2

∣
∣
∣
∣
∣
∣
∣
∣

2
−k; −m

−
0; 0







. (25)

where G., .
., . (. |. ) denotes the Meijer’s G-function [31, Eq.

(9.301)], G
1, 1, 1, 1, 1
1,[1:1], 0, [1:1] (. |. ) denotes the extended generalized

bivariate Meijer’s G-function [32].

Proof: The proof is given in Appendix E.

Note that in the special case when γ1 = γ2 = γ, from (47)

and with the help of [31, Eq. (9.211.4)], the ergodic capacity

expression can be simplified to

CZF =
γ2

ln 2

NR−M−1∑

k=0

NT−2∑

m=0

∞̂

0

z

(
1

1 + γz

)k+m+2

e−zdz

=
1

ln 2

NR−M−1∑

k=0

NT−2∑

m=0

Ψ

(

2, 1− k −m;
1

γ

)

(26)

where Ψ(α, γ; z) is the Tricomi confluent hypergeometric

function of the second kind.

A. Lower-Bound Ergodic Capacity

In order to find a simpler closed-form lower-bound of the

ergodic capacity (22), let us first re-write (22) in a simpler

alternative form as follows

CZF = E

[

log2

((
1 + γZF

1

) (
1 + γZF

2

)

γZF
1 + γZF

2 + 1

)]

= CZF
γ1

+ CZF
γ2

− CZF
γT

(27)

where CZF
γi

= E
[
log2

(
1 + γZF

i

)]
, for i ∈ {1, 2}, and

CZF
γT

= E
[
log2

(
1 + γZF

1 + γZF
2

)]
. Due to the computational

complexity of CZF
γT

which led to the extended generalized

bivariate Meijer’s G-function in (25), a simpler lower-bound

expression can be derived here by applying Jensen’s inequality

to CZF
γT

as follows

CZF
γT

≤ log2
(
1 + E

(
γZF
1

)
+ E

(
γZF
2

))
. (28)

Therefore, a simpler closed-form lower-bound expression

for the ergodic capacity (22) can be expressed as in (29),

shown at the top of next page, where En (·) is the exponential

integral function [33, Eq. (5.1.4)].

Proof: The proof is given in Appendix F.

VI. MMSE/ZF SCHEME

It is well known that the ZF scheme compelely eliminates

the CCI interferers and hence produces noise amplification at

low interferer-to-noise ratio (INR). Meanwhile, MMSE yields

an optimum trade-off between CCI interference suppression

and noise amplification. Note here that the MMSE scheme

requires the knowledge of σ2
R in addition to the full CSI that

ZF requires (i.e., in addition to h1, h2, HR, and gi with

i = 1, . . . , M ). For simplicity, it is assumed that the interferer

signals have the same average power Ei = EI ∀ i = 1, . . . , M .

Hence, according to [21], the MMSE combiner is given as

wR = h
†
1

(

h1h
†
1 +GG† + 1

ρI
INR

)−1

, where ρI = EI

σ2
R

.

Therefore, the overall SINR of MIMO FD relaying with

CCI utilizing MMSE/ZF scheme can be expressed as

γMMSE/ZF =
γMMSE
1 γZF

2

γMMSE
1 + γZF

2 + 1
(30)

where γMMSE
1 = γ1

ρI
h
†
1R

−1h1, R = GG† + 1
ρI
INR

, and

γZF
2 = γ2 ‖Bh2‖

2
.

It is to be emphasized that analyzing the performance of

the overall SINR of MMSE/ZF scheme in (30) is much

more complicated than that of the overall SINR of ZF/ZF

scheme in (11). Therefore, only simulation results for the

outage probability and ergodic capacity are presented here for

comparison purposes.

VII. NUMERICAL RESULTS

In this section, we analyze and validate the presented theo-

retical results with Monte Carlo simulations. In addition, the
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CZF ≥
1

ln 2

NR−M−1∑

k=0

e
1
γ1 E1+k

(
1

γ1

)

+
1

ln 2

NT−2∑

k=0

e
1
γ2 E1+k

(
1

γ2

)

− log2 (1 + (NR −M) γ1 + (NT − 1) γ2) (29)
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I
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Figure 2: MIMO FD relaying outage probability of ZF/ZF

and MMSE/ZF schemes against the first-hop SNR (γ1) where

γ1 = γ2, with (NR, NT ) in the presence of one inteferer

M = 1, where both weak and strong interferers are considered

(i.e., ρI = 0 dB and ρI = 20 dB).

impact of key system parameters on the outage probability and

ergodic capacity are investigated. Without loss of generality, a

symmetric settings of per-hop SNR is assumed, i.e., γ1 = γ2.

In addition, the source transmission rate is set to R0 = 2
bits/sec/Hz. Hence, the pre-defined SNR threshold is given

by9 γT = 2R0 − 1 = 3. Besides, in the case of fixed

M , NR and NT are denoted in the figures as (NR, NT ).
However, in the presence of different M , NR, NT and M

are denoted in the figures as (NR, NT , M). For comparison

purposes, results for the case of MIMO HD relaying with

CCI and ZF/MRT scheme, i.e., [34, Eq. (16)] for the outage

probability analysis and [21, Eq. (20)] for the ergodic capacity

analysis, are included with the constraint that the total number

of antennas at the relay is N = NR + NT . However, as the

number of interferers doubles in FD relaying as compared

to its HD relaying counterpart, the number of antennas and

interferers in the HD relaying is denoted as
(
NR +NT ,

M
2

)
.

In Fig. 2, the outage probability of MIMO FD relaying with

ZF/ZF and MMSE/ZF schemes against the first-hop SNR is

presented for fixed M CCI interferers with weak (ρI = 0
dB) and strong interferers (ρI = 20 dB), where Monte Carlo

simulations of (13) is used to validate the new closed-form

exact and lower-bound analytical expressions in (17) and

(19), respectively. It is seen that the simulation and proposed

9In the case of HD relaying, it is given as γT = 22R0 − 1 = 15.
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(6, 4, 4) & (8, 3, 5)

Figure 3: MIMO FD relaying outage probability against the

first-hop SNR (γ1) where γ1 = γ2, with (NR, NT , M).

analytical expression in (17) provide a perfect match which

corroborate the exactness of the proposed exact closed-form

analytical expression. In addition, the tightness of the proposed

lower-bound analytical expression in (19) is also verified,

where it becomes exact at high SNR. Our analysis reveals

an interesting observation which is beneficial for designing a

system. The achievable diversity orders in Fig. 2, which is

given by min (NR −M, NT − 1), are one and three. As a

result, it is clearly seen that for fixed M , increasing NR and

NT yields a significant outage probability improvement due to

the increase in diversity order. It is also seen that the outage

probability of MMSE/ZF scheme become closer to that of the

ZF/ZF scheme as the interferer-to-noise ratio ρI gets higher.

Fig. 3 shows the outage probability for different antenna

configurations and number of interferers. It is seen that the

diversity order has a higher impact on the outage probability

improvement compared to the case of array gain. For instance,

the settings (2, 2, 1) and (4, 2, 1) have the same diversity

order of one. However, the latter has slightly superior perfor-

mance as a result of higher array gain. Meanwhile, the settings

(2, 2, 1) and (4, 4, 1) have a diversity order of one and

three, respectively. Consequently, the latter enjoys a significant

outage performance improvement. Note that in the case of

equal per-hop SNR, i.e., γ1 = γ2, system settings with the

same diversity order and array gain (degrees of freedom) have

the same performance. For example, (4, 2, 1) and (4, 4, 3)
have the same outage performance. Therefore, for superior

system performance, a system designer has to carefully select

NR and NT so as to gain the highest possible diversity order,

i.e., choosing NR and NT such that NR −M ≈ NT − 1.



8

0 5 10 15 20 25 30

10
−4

10
−3

10
−2

10
−1

10
0

Average per hop SNR in dBs

O
ut

ag
e 

P
ro

ba
bi

lit
y

 

 

FD (3, 2, 2)

HD (5, 1)

FD (6, 4, 4)

HD (10, 2)

FD (6, 6, 2)

HD (12, 1)

Figure 4: MIMO FD and HD relaying outage probabil-

ity against the first-hop SNR (γ1) where γ1 = γ2, with

(NR, NT , M) in the FD relaying case, and
(
NR +NT ,

M
2

)

in the HD relaying case.

In Fig. 4, a comparison between the outage probability

of MIMO FD and HD relaying systems is presented. We

refer to the so called RF chain preserved condition, where

the number of HD relay antennas is N = NR + NT . In

addition, it is assumed here as stated in [2] that the number

of interferers in FD systems is doubled compared to its HD

systems counterpart. It is seen that the outage probability of

FD relaying mode outperforms that of the HD relaying mode

at low SNR. However, at high SNR, the outage probability

of HD relaying mode is superior to that of the FD relaying

mode. The detrimental effect of the number of interferers on

the outage probability performance of FD relaying is clearly

observed. Therefore, a hybrid MIMO FD/HD relaying mode

may be recommended for superior system performance, where

a simple sub-optimal mode selection algorithm could be that

in the case of low diversity order, high SNR or high number

of interferers M , the system is switched to the HD mode,

otherwise, it works in the FD mode. The outage probability

outperform region of FD relaying can be derived by solving

PFD
out (R0) − PHD

out (R0) ≤ 0. Note that the outage probability

expression for a hybrid relaying mode that switches to the

appropriate mode according to the instantaneous CSI is given

by10

PHybrid
out (R0) = Pr

(
max

(
CFD

Inst, C
HD
Inst

)
< R0

)
(31)

where CFD
Inst = log2

(
1 + γFD

)
, CHD

Inst = log2

(√

1 + γHD
)

,

γFD = γZF/ZF is the overall SINR in the case of FD relaying

mode, defined in (11), and γHD = γZF is the overall SINR in

the case of HD relaying mode, given in [21, Eq. (8)].

10Note that as far as a closed-form outage probability expression is concern,
the analysis of such hybrid relaying mode is a challenging mathematical
problem due to the presence of correlation between γHD and γFD.
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I
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Figure 5: MIMO FD relaying ergodic capacity of ZF/ZF and

MMSE/ZF schemes against the first-hop SNR (γ1) where γ1 =
γ2, with (NR, NT ) in the presence of one inteferer M = 1,

where both weak and strong interferers are considered (i.e.,

ρI = 0 dB and ρI = 20 dB).

Fig. 5 shows the ergodic capacity of MIMO FD relaying

with ZF/ZF and MMSE/ZF schemes against the first-hop SNR

for fixed M CCI interferers with weak (ρI = 0 dB) and

strong interferers (ρI = 20 dB). Monte Carlo simulations of

(22) is used to validate the new closed-form exact and lower-

bound analytical expressions in (25) and (29), respectively. It is

seen that the simulation and proposed analytical expression in

(25) provide a perfect match which corroborate the exactness

of the proposed exact closed-form analytical expression. In

addition, the tightness of the proposed lower-bound analytical

expression in (29) is also verified, where it is shown to improve

as NR and NT increase. It is clearly observed that for fixed M ,

increasing NR and NT results in a superior ergodic capacity

improvement owing to the increase in diversity order. It is

also observed that the ergodic capacity of MMSE/ZF scheme

become closer to that of the ZF/ZF scheme as ρI gets higher.

In Fig. 6, the ergodic capacity for different antenna con-

figurations and number of interferers is presented. It is seen

that in system settings with equal diversity order, a slight

ergodic capacity improvement is observed as a result of

higher array gain. However, a significant ergodic capacity

improvement is seen as a result of higher diversity order. Note

that similarly to Fig. 3, the settings (4, 2, 1) and (4, 4, 3)
have the same ergodic capacity as they have the same number

of overall equivalent antennas. Likewise, for superior system

performance, NR and NT should be chosen as to gain the

highest possible diversity order.

Fig. 7 shows a comparison between the ergodic capacity of

MIMO FD and HD relaying systems. It is observed that at low

diversity order, the ergodic capacity of FD relaying mode is

superior to that of the HD relaying mode at high SNR. How-
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Figure 6: MIMO FD relaying ergodic capacity against the first-

hop SNR (γ1) where γ1 = γ2, with (NR, NT , M).
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Figure 7: MIMO FD and HD relaying ergodic capacity against

the first-hop SNR (γ1) where γ1 = γ2, with (NR, NT , M) in

the FD relaying case, and
(
NR +NT ,

M
2

)
in the HD relaying

case.

ever, at low SNR, the ergodic capacity of HD relaying mode

outperforms that of the FD relaying mode. The detrimental

effect of the number of interferers on the ergodic capacity

performance of FD relaying is clearly seen. Meanwhile, at

high diversity order, i.e., high min (NR −M, NT − 1), the

performance of FD relaying mode is superior to its HD

relaying counterpart at all SNR values. To validate this, let us

assume that we have NR + NT = 26 antennas and M = 10
CCI at the FD relay, allocated according to the settings

(12, 14, 10) and (18, 8, 10). Evidently the latter outperforms

the HD relaying mode at all SNR values owing to the high

achievable diversity order of 7, while the former is superior to

the HD relaying mode at high SNR due to the low achievable

diversity order of 2. Therefore, for systems with low diversity

order, a hybrid MIMO FD/HD relaying mode is recommended

for superior system performance, where a simple sub-optimal

mode selection scheme is that at low SNR, the system is

switched to the HD relaying mode, otherwise, it works in the

FD relaying mode. The ergodic capacity outperform region of

FD relaying can be derived by solving CFD−CHD ≥ 0. Note

that a hybrid relaying mode which switches to the appropriate

mode according to the instantaneous CSI is expressed as11

[27]

C
Hybrid
Inst = max

(
CFD

Inst, C
HD
Inst

)
. (32)

Therefore, according to the instantaneous CSI which as-

sumed constant at any given coherence time, the FD relay-

ing mode outperforms the HD relaying mode iff γFD >√

γHD + 1− 1, otherwise, the opposite is true.

VIII. CONCLUSIONS

In this paper, the performance of MIMO full-duplex relaying

systems with co-channel interference is investigated, where

the ZF/ZF scheme is applied at the amplify-and-forward

relay to suppress the co-channel interference and loopback

self-interference. Our analysis achieved closed-form results,

through which several interesting system insights have been

revealed. Exact and tight lower-bound analytical expressions

for the outage probability and ergodic capacity were derived

in closed-form. In addition, the asymptotic high SNR outage

probability is also included to unveil the achievable diversity

order of the system. These expressions provide an efficient

means for the evaluation of the outage probability and ergodic

capacity of MIMO FD relaying systems with co-channel in-

terference. Therefore, without resorting to the time consuming

Monte Carlo simulations, the impact of key system parameters

such as the number of relay receive and transmit antennas, the

number of interferers, and the source transmit power on the

system performance are investigated. It is observed that the

performances of the MMSE/ZF scheme and ZF/ZF scheme

coincide in the asymptotically high interference-to-noise ratio

regime. Our analysis reveals that although the number of co-

channel interferers is doubled in full-duplex relaying systems

compared to the conventional half-duplex relaying systems,

full-duplex relaying can significantly improve the system per-

formance.

APPENDIX A

PROOF OF PROPOSITION 1

Let us first consider the following constraint optimization

problem

w⋆ = argmax
w

∥
∥w†h

∥
∥
2

s. t. w†H = 0 & ‖w‖ = 1
. (33)

The required solution may be expressed in the following

form w = Px

‖Px‖ , where both constraints are included in

the desired form, namely, 1) the projection matrix P which

11Note that as far as a closed-form ergodic capacity expression is concern,
the analysis of such hybrid relaying mode is a challenging mathematical
problem due to the presence of correlation between γHD and γFD.
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assures that w ⊥ H (owing to the fact that w†H = 0),

hence, P = I −H
(

H†H
)−1

H†, 2) the division by ‖Px‖

assures that the norm of w equals one, ‖w‖ = 1. Note that

the maximization problem is now over x instead of w. Hence,

(33) can be re-written as

x⋆ = argmax
x

∥
∥x†Ph

∥
∥
2

x†Px
. (34)

Therefore, once differentiating (34) with respect to x and

equating the result to zero, we get

x⋆†Px⋆Ph = x⋆†PhPx⋆. (35)

It is easily seen that the optimal solution for the vector x

is12 x⋆ = h.

Hence, the optimal weight vector to (33) can be expressed

as

w⋆ =
Ph

‖Ph‖
. (36)

Note that similar results have been derived in [35, Proposi-

tion 1].

From (7), based on the optimal solution given in (36), it is

straight forward to show that w⋆
R = Ph1

‖Ph1‖
is the optimal

solution to the constraint problem in (7), where P is an

idempotent projection matrix which assures that w⋆
R ⊥ G

(due to w
†
RG = 0), and P = I−G

(

G†G
)−1

G†. Note that

Ph1 ⊥ (I − P )h1, where P 2 = P and P † = P .

Meanwhile, from (8), it is easy to show that w⋆
T = Bh2

‖Bh2‖
is the optimal solution to the constraint problem in (8), where

B is an idempotent projection matrix which assures that

w⋆
T ⊥ H

†
RPh1 (due to w

†
RHRwT = 0, where w⋆

R is already

derived above), and B = I −
H

†
R
Ph1(H†

R
Ph1)

†

(H†
R
Ph1)

†
H

†
R
Ph1

.

APPENDIX B

PROOF OF PROPOSITION 2

From (16), the CDF of the overall SINR γZF/ZF is given

as

FZF
γ (γT ) = 1−

∞̂

0

FZF
γ1

(
γT (γT + w + 1)

w

)

× fZF
γ2

(γT + w) dw. (37)

Now with the help of the CDF and PDF of the RVs γZF
1

and γZF
2 defined in (14) and (15), we arrive at

FZF
γ (γT ) = 1−

∞̂

0

e
−

γT (γT +w+1)
γ1w

NR−M−1∑

k=0

1

k!

×

(
γT (γT + w + 1)

γ1w

)k
γ2

−NT+1

(NT − 2)!
(γT + w)

NT−2

× e
−

γT +w

γ2 dw. (38)

12Note that this result can be attained directly once applying

Cauchy–Schwarz inequality to (34);
∥

∥x
†
Ph

∥

∥

2
≤ ‖Px‖2 ‖h‖2, where

equality holds if and only if x is proportional to h, i.e., x⋆ = h.

After some tedious mathematical manipulations, (38) can

be expressed as

FZF
γ (γT ) = 1−

e
−γT

(

1
γ1

+ 1
γ2

)

(NT − 2)!γ2
NT−1

NR−M−1∑

k=0

1

k!

(
γT

γ1

)k

×

∞̂

0

e
−

γT (γT +1)
γ1w

− w
γ2 w−k (γT + w + 1)

k
(γT + w)

NT−2
dw.

(39)

Therefore, once applying the binomial expansions

(γT + w + 1)
k

=
∑k

n=0

(
k

n

)

wk−n (γT + 1)
n

and

(γT + w)
NT−2

=
∑NT−2

m=0

(
NT − 2

m

)

γNT−m−2
T wm,

equation (39) reduces to

FZF
γ (γT ) = 1−

e
−γT

(

1
γ1

+ 1
γ2

)

(NT − 2)!γ2
NT−1

NR−M−1∑

k=0

1

k!

(
γT

γ1

)k

×
k∑

n=0

(
k

n

)

(γT + 1)
n

NT−2∑

m=0

(
NT − 2

m

)

γNT−m−2
T

×

∞̂

0

e
−

γT (γT +1)
γ1w

− w
γ2 wm−ndw

︸ ︷︷ ︸

I1

. (40)

To this end, the integral I1 is solved by utilizing [31, Eq.

(3.471.9)], which upon substituting I1 into (40), results in (17),

that concludes the proof.

APPENDIX C

PROOF OF EQUATION (19)

From the overall SINR upper-bound (18), we have

FZF
γup

(γT ) = Pr
(
min

(
γZF
1 , γZF

2

)
< γT

)

= 1−
(
1− FZF

γ1
(γT )

) (
1− FZF

γ2
(γT )

)

= 1− e
−

γT
γ1

NR−M−1∑

k=0

1

k!

(
γT

γ1

)k

e
−

γT
γ2

NT−2∑

m=0

1

m!

(
γT

γ2

)m

(41)

upon substituting the CDF of γZF
1 and γZF

2 and utilizing [31,

Eq. (8.352.4)], reduces to (19), that concludes the proof.

APPENDIX D

PROOF OF EQUATION (20)

The asymptotic results can be easily obtained once invoking

the asymptotic expansion of the incomplete gamma function

[31, Eq. (8.354.1)]. Hence, in the high SNR regime where

γ2 = κγ1 and γ1 → ∞, we have

γ

(

NR −M,
γT

γ1

)

=

(
γT

γ1

)NR−M

NR −M
+O

((
γT

γ1

)NR−M+1
)

(42)
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where γ
(

NR −M, γT

γ1

)

+ Γ
(

NR −M, γT

γ1

)

=

Γ (NR −M). Therefore,

Γ
(

NR −M, γT

γ1

)

Γ (NR −M)

= 1−

(
γT

γ1

)NR−M

Γ (NR −M + 1)
+O

((
γT

γ1

)NR−M+1
)

. (43)

Similarly, we have

Γ
(

NT − 1, γT

γ2

)

Γ (NT − 1)

= 1−

(
γT

γ1

)NT−1

Γ (NT )

(
1

κ

)NT−1

+O

((
γT

γ1

)NT

)

. (44)

Substituting (43) and (44) into (19) yields (20), that con-

cludes the proof.

APPENDIX E

PROOF OF PROPOSITION 4

To get a closed-form solution to (23), it is more convenient

to use an alternative form for the MGF expressions given

in (24). Hence, with the help of the cumulative distribution

function (CDF) of γZF
i in (14) and (15), an alternative form

for the MGF in (24) can be derived as

MZF
γi

(z) = z

∞̂

0

e−zγiFZF
γi

(γ) dγ

= 1− zγi

Ni−1∑

k=0

(
1

1 + γiz

)k+1

(45)

where i ∈ {1, 2}, N1 = NR −M , and N2 = NT − 1.

Therefore, from (22)-(23), the ergodic capacity may be

defined as

CZF =
1

ln 2
E

[

ln

(

1 +
γZF
1 γZF

2

γZF
1 + γZF

2 + 1

)]

=
1

ln 2

∞̂

0

1

z

(
1−MZF

γ1
(z)
) (

1−MZF
γ2

(z)
)
e−zdz. (46)

Hence, once substituting MZF
γ1

(z) and MZF
γ2

(z) from (45)

into (46), we arrive at

CZF =
γ1 γ2

ln 2

NR−M−1∑

k=0

NT−2∑

m=0

×

∞̂

0

z

(
1

1 + γ1z

)k+1(
1

1 + γ2z

)m+1

e−zdz

︸ ︷︷ ︸

I2

. (47)

Now, with the aid of the identity
(

1

1 + λx

)α

=
1

Γ (α)
G

1, 1
1, 1

(

λx

∣
∣
∣
∣

1− α

0

)

. (48)

The integral I2 in (47) can be simplified to

I2 =
1

Γ (k + 1)

1

Γ (m+ 1)

×

∞̂

0

z G
1, 1
1, 1

(

γ1z

∣
∣
∣
∣

−k

0

)

G
1, 1
1, 1

(

γ2z

∣
∣
∣
∣

−m

0

)

e−zdz

︸ ︷︷ ︸

I3

=
1

Γ (k + 1)

1

Γ (m+ 1)
G

1, 1, 1, 1, 1
1,[1:1], 0, [1:1]







γ1
γ2

∣
∣
∣
∣
∣
∣
∣
∣

2
−k; −m

−
0; 0







.

(49)

The integral I3 is simplified to (49) by utilizing [36, Eq.

(2.6.2)]. Now, substituting (49) into (47) yields (25), that

concludes the proof.

APPENDIX F

PROOF OF EQUATION (29)

The evaluation of CZF
γi

= E
[
log2

(
1 + γZF

i

)]
can be done

by utilizing [37, Lemma 1] which says, for any x ≥ 0, we

have

E
[
ln
(
1 + γZF

i

)]
=

∞̂

0

1

z

(
1−MZF

γi
(z)
)
e−zdz (50)

Note that in order to attain a closed-form expression to

the integral in (50), the alternative form for the MGF of γZF
i

derived in (45) is used. Therefore, upon substituting the MGF

(45) into (50), we arrive at

E
[
ln
(
1 + γZF

i

)]
= γi

Ni−1∑

k=0

∞̂

0

(
1

1 + γiz

)k+1

e−zdz (51)

=

Ni−1∑

k=0

Ψ

(

1, 1− k;
1

γi

)

(52)

=

Ni−1∑

k=0

e
1
γi E1+k

(
1

γi

)

. (53)

The integral in (51) is solved by utilizing [31, Eq. (9.211.4)],

which upon simplifying Ψ
(

1, 1− k; 1
γi

)

to e
1
γi E1+k

(
1
γi

)

,

reduces to (53), that concludes the proof.

The expectations in (28) can be easily solved by utilizing

[31, Eq. (3.381.4)], as follows

E
[
γZF
1

]
= γ1

∞̂

0

xNR−M

Γ (NR −M)
e−xdx

= (NR −M) γ1 (54)

and

E
[
γZF
2

]
= γ2

∞̂

0

yNT−1

Γ (NT − 1)
e−ydy

= (NT − 1) γ2. (55)
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