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Abstract—In the traditional transmitting beamforming radar
system, the transmitting antennas send coherent waveforms which
form a highly focused beam. In the multiple-input multiple-output
(MIMO) radar system, the transmitter sends noncoherent (pos-
sibly orthogonal) broad (possibly omnidirectional) waveforms.
These waveforms can be extracted at the receiver by a matched
filterbank. The extracted signals can be used to obtain more di-
versity or to improve the spatial resolution for clutter. This paper
focuses on space–time adaptive processing (STAP) for MIMO
radar systems which improves the spatial resolution for clutter.
With a slight modification, STAP methods developed originally
for the single-input multiple-output (SIMO) radar (conventional
radar) can also be used in MIMO radar. However, in the MIMO
radar, the rank of the jammer-and-clutter subspace becomes
very large, especially the jammer subspace. It affects both the
complexity and the convergence of the STAP algorithm. In this
paper, the clutter space and its rank in the MIMO radar are
explored. By using the geometry of the problem rather than data,
the clutter subspace can be represented using prolate spheroidal
wave functions (PSWF). A new STAP algorithm is also proposed.
It computes the clutter space using the PSWF and utilizes the
block-diagonal property of the jammer covariance matrix. Be-
cause of fully utilizing the geometry and the structure of the
covariance matrix, the method has very good SINR performance
and low computational complexity.

Index Terms—Clutter subspaces, multiple-input mul-
tiple-output (MIMO) radar, prolate spheroidal wave function,
space–time adaptive processing (STAP).

I. INTRODUCTION

R
ECENTLY, the concept of multiple-input multiple-output

(MIMO) radars has drawn considerable attention [1]–[13].

MIMO radars emit orthogonal waveforms [1]–[10] or nonco-

herent [11]–[13] waveforms instead of transmitting coherent

waveforms which form a focused beam in traditional transmitter

based beamforming. In the MIMO radar receiver, a matched

filterbank is used to extract the orthogonal waveform compo-

nents. There are two different kinds of approaches for using the

noncoherent waveforms. First, increased spatial diversity can

be obtained [4], [5]. In this scenario, the transmitting antenna

elements are far enough from each other compared to the dis-

tance from the target. Therefore, the target radar cross sections

(RCS) are independent random variables for different transmit-

ting paths. When the orthogonal components are transmitted
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from different antennas, each orthogonal waveform will carry

independent information about the target. This spatial diversity

can be utilized to perform better detection [4], [5]. Second, a

better spatial resolution for clutter can be obtained. In this sce-

nario, the distances between transmitting antennas are small

enough compared to the distance between the target and the

radar station. Therefore, the target RCS is identical for all trans-

mitting paths. The phase differences caused by different trans-

mitting antennas along with the phase differences caused by dif-

ferent receiving antennas can form a new virtual array steering

vector. With judiciously designed antenna positions, one can

create a very long array steering vector with a small number of

antennas. Thus, the spatial resolution for clutter can be dramat-

ically increased at a small cost [1], [2]. In this paper, we focus

on this second advantage.

The adaptive techniques for processing the data from air-

borne antenna arrays are called space–time adaptive processing

(STAP) techniques. The basic theory of STAP for the traditional

single-input multiple-output (SIMO) radar has been well de-

veloped [32], [33]. There have been many algorithms proposed

in [27]–[33] and the references therein for improving the com-

plexity and convergence of the STAP in the SIMO radar. With

a slight modification, these methods can also be applied to the

MIMO radar case. The MIMO extension of STAP can be found

in [2]. The MIMO radar STAP for multipath clutter mitigation

can be found in [10]. However, in the MIMO radar, the STAP

becomes even more challenging because of the extra dimension

created by the orthogonal waveforms. On one hand, the extra

dimension increases the rank of the jammer and clutter sub-

space, especially the jammer subspace. This makes the STAP

more complex. On the other hand, the extra degrees of freedom

created by the MIMO radar allows us to filter out more clutter

subspace with little effect on signal-to-interference-plus-noise

ratio (SINR).

In this paper, we explore the clutter subspace and its rank in

MIMO radar. Using the geometry of the MIMO radar and the

prolate spheroidal wave function (PSWF), a method for com-

puting the clutter subspace is developed. Then we develop a

STAP algorithm which computes the clutter subspace using the

geometry of the problem rather than data and utilizes the block-

diagonal structure of the jammer covariance matrix. Because

of fully utilizing the geometry and the structure of the covari-

ance matrix, our method has very good SINR performance and

significantly lower computational complexity compared to fully

adaptive methods (Section V-B).

In practice, the clutter subspace might change because of

effects such as the internal clutter motion (ICM), velocity

misalignment, array manifold mismatch, and channel mismatch

[32]. In this paper, we consider an “ideal model,” which does

1053-587X/$25.00 © 2007 IEEE
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Fig. 1. Illustration of a MIMO radar system withM = 3 andN = 4.

not take these effects into account. When this model is not

valid, the performance of the algorithm will degrade. One way

to overcome this might be to estimate the clutter subspace by

using a combination of both the assumed geometry and the

received data. Another way might be to develop a more robust

algorithm against the clutter subspace mismatch. These ideas

will be explored in the future.

The rest of the paper is organized as follows. In Section II,

the concept of MIMO radar will be briefly reviewed. In

Section III, we formulate the STAP approach for MIMO radar.

In Section IV, we explore the clutter subspace and its rank in

the MIMO radar. Using PSWF, we construct a data-indepen-

dent basis for clutter signals. In Section V, we propose a new

STAP method for MIMO radar. This method utilizes the tech-

nique proposed in Section IV to find the clutter subspace and

estimates the jammer-plus-noise covariance matrix separately.

Finally, the beamformer is calculated by using matrix inversion

lemma. As we will see later, this method has very satisfactory

SINR performance. In Section VI, we compare the SINR

performance of different STAP methods based on numerical

simulations. Finally, Section VII concludes the paper.

Notations. Matrices are denoted by capital letters in boldface

(e.g., ). Vectors are denoted by lowercase letters in boldface

(e.g., ). Superscript denotes transpose conjugation. The nota-

tion denotes a block-diagonal matrix whose

diagonal blocks are . The notation is defined as the small-

estinteger larger than .

II. REVIEW OF THE MIMO RADAR

In this section, we briefly review the MIMO radar idea. More

detailed reviews can be found in [1], [2], [6]. We will focus on

using MIMO radar to increase the degrees of freedom. Fig. 1

illustrates a MIMO radar system. The transmitting antennas

emit orthogonal waveforms . At each receiving antenna,

these orthogonal waveforms can be extracted by matched

filters, where is the number of transmitting antennas. There-

fore, there are a total of extracted signals, where is

the number of receiving antennas. The signals reflected by the

target at direction can be expressed as

(1)

for , . Here is

the amplitude of the signal reflected by the target, is the

spacing between the receiving antennas, and is the spacing

between the transmit antennas. The phase differences are cre-

Fig. 2. Virtual array corresponding to the MIMO radar in Fig. 1.

ated by both transmitting and receiving antenna locations. De-

fine and . Equation (1) can be

further simplified as

If we choose , the set .

Thus, the signals in (1) can be viewed as the signals re-

ceived by a virtual array with elements [2], as shown

in Fig. 2. It is as if we have a receiving array of ele-

ments. Thus, degrees of freedom can be obtained with

only physical array elements. One can view the antenna

array as a way to sample the electromagnetic wave in the spa-

tial domain. The MIMO radar idea allows “sampling” in both

transmitter and receiver and creates a total of “samples.”

Taking advantage of these extra samples in spatial domain, a

better spatial resolution can be obtained.

III. STAP IN MIMO RADAR

In this section, we formulate the STAP problem in MIMO

radar. The MIMO extension for STAP first appeared in [2]. We

will focus on the idea of using the extra degrees of freedom to

increase the spatial resolution for clutter.

A. Signal Model

Fig. 3 shows the geometry of the MIMO radar STAP with

uniform linear arrays (ULAs), where:

1) is the spacing of the transmitting antennas;

2) is the spacing of the receiver antennas;

3) is the number of transmitting antennas;

4) is the number of the receiving antennas;

5) is the radar pulse period;

6) indicates the index of radar pulse (slow time);

7) represents the time within the pulse (fast time);

8) is the target speed toward the radar station;

9) is the speed of the radar station.

Notice that the model assumes the two antenna arrays are linear

and parallel. The transmitter and the receiver are close enough

so that they share the same angle variable . The radar station

movement is assumed to be parallel to the linear antenna array.

This assumption has been made in most of the airborne ground

moving target indicator (GMTI) systems. Each array is com-

posed of omnidirectional elements. The transmitted signals of

the th antenna can be expressed as

for , where is the baseband pulse

waveform, is the carrier frequency, and is the transmitted
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Fig. 3. This illustrates a MIMO radar system withM transmitting antennas and N receiving antennas. The radar station is moving with speed v.

energy for the pulse. The demodulated received signal of the th

antenna can be expressed as

(2)

where:

1) is the distance of the range bin of interest;

2) is the speed of light;

3) is the amplitude of the signal reflected by the target;

4) is the amplitude of the signal reflected by the th clutter;

5) is the looking direction of the target;

6) is the looking direction of the th clutter;

7) is the number of clutter signals;

8) is the jammer signal in the th antenna output;

9) is the white noise in the th antenna output.

For convenience, all of the parameters used in the signal model

are summarized in Table I. The first term in (2) represents the

signal reflected by the target. The second term is the signal re-

flected by the clutter. The last two terms represent the jammer

signal and white noise. We assume there is no ICM or antenna

array misalignment [32]. The phase differences in the reflected

signals are caused by the Doppler shift, the differences of the re-

ceiving antenna locations, and the differences of the transmitting

antenna locations. In the MIMO radar, the transmitting wave-

forms satisfy orthogonality:

(3)

TABLE I
LIST OF THE PARAMETERS USED IN THE SIGNAL MODEL

The sufficient statistics can be extracted by a bank of matched

filters as shown in Fig. 3. The extracted signals can be expressed

as

(4)

for and

, where is the corresponding jammer

signal, is the corresponding white noise, and is the

number of the pulses in a coherent processing interval (CPI).
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To simplify the above equation, we define the following nor-

malized spatial and Doppler frequencies:

(5)

One can observe that the normalized Doppler frequency of the

target is a function of both target looking direction and speed.

Throughout this paper we shall make the assumption

so that spatial aliasing is avoided. Using the above definition,

we can rewrite the extracted signal in (4) as

(6)

for , and

, where

and (7)

B. Fully Adaptive MIMO-STAP

The goal of space–time adaptive processing (STAP) is to find

a linear combination of the extracted signals so that the SINR

can be maximized. Thus, the target signal can be extracted from

the interferences, clutter, and noise to perform the detection.

Stacking the MIMO STAP signals in (6), we obtain the

vector

(8)

Then, the linear combination can be expressed as , where

is the weight vector for the linear combination. The SINR

maximization can be obtained by minimizing the total variance

under the constraint that the target response is unity. It can be

expressed as the following optimization problem:

subject to (9)

where , and is the size- MIMO

space–time steering vector, which consists of the elements

(10)

for , and

. This is called minimum variance distortion-

less response (MVDR) beamformer [20]. The covariance matrix

can be estimated by using the neighboring range bin cells. In

practice, in order to prevent self-nulling, a target-free covari-

ance matrix can be estimated by using guard cells [32]. The

well-known solution to the above problem is [20]

(11)

However, the covariance matrix is . It is much

larger than in the SIMO case because of the extra dimension.

The complexity of the inversion of such a large matrix is high.

The estimation of such a large covariance matrix also converges

slowly. To overcome these problems, partially adaptive tech-

niques can be applied. The methods described in Section VI are

examples of such partially adaptive techniques. In SIMO radar

literature such partially adaptive methods are commonly used

[32], [33].

C. Comparison With SIMO System

In the traditional transmit beamforming, or SIMO radar, the

transmitted waveforms are coherent and can be expressed as

for , where are the transmit beam-

forming weights. The sufficient statistics can be extracted by a

single matched filter for every receiving antenna. The extracted

signal can be expressed as

(12)

for , and , where is

the corresponding jammer signal, and is the corresponding

white noise. Comparing the MIMO signals in (6) and the SIMO

signals in (12), one can see that a linear combination with re-

spect to has been performed on the SIMO signal in the target

term and the clutter term. The MIMO radar, however, leaves

all degrees of freedom to the receiver. Note that in the receiver,

one can perform the same linear combination with respect to

on the MIMO signal in (6) to create the SIMO signal in (12).

The only difference is that the transmitting power for the SIMO

signal is less because of the focused beam used in the trans-

mitter. For the SIMO radar, the number of degrees of freedom is

in the transmitter and in the receiver. The total number of

degrees of freedom is . However, for the MIMO radar,

the number of degrees of freedom is which is much larger

than . These extra degrees of freedom can be used to

obtain a better spatial resolution for clutter.
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The MIMO radar transmits omnidirectional orthogonal wave-

forms from each antenna element. Therefore, it illuminates all

angles. The benefit of SIMO radar is that it transmits focused

beams which saves transmitting power. Therefore, for a partic-

ular angle of interest, the SIMO radar enjoys a processing gain

of compared to the MIMO radar. However, for some appli-

cations like scanning or imaging, it is necessary to illuminate

all angles. In this case, the benefit of a focused beam no longer

exists because both systems need to consume the same energy

for illuminating all angles. The SIMO system will need to steer

the focused transmit beam to illuminate all angles.

A second point is that for the computation of the MIMO

beamformer in (11), the matrix inversion needs to be com-

puted only once and it can be applied for all angles. The trans-

mitting array in a MIMO radar does not have a focused beam.

So, all the ground points within a range bin are uniformly illu-

minated. The clutter covariance seen by the receiving-antenna

array is, therefore, the same for all angles. In the SIMO case,

the matrix inversions need to be computed for different angles

because the clutter signal changes as the beam is steered through

all angles.

D. Virtual Array

Observing the MIMO space–time steering vector defined in

(10), one can view the first term as a sampled ver-

sion of the sinusoidal function . Recall that is defined

in (6) as the ratio of the antenna spacing of the transmitter and

receiver. To obtain a good spatial frequency resolution, these

signals should be critically sampled and have long enough du-

ration. One can choose because it maximizes the time

duration while maintaining critical sampling [2], as shown in

Fig. 2. Sorting the sample points for ,

and , we obtain the sorted sample points

. Thus, the target response in (10) can be

rewritten as

for , and . It is as if

we have a virtual receiving array with antennas. However,

the resolution is actually obtained by only antennas in the

transmitter and antennas in the receiver. Fig. 4 compares the

SINR performance of the MIMO system and the SIMO system

in the array looking direction of zero degree, that is, . The

optimal space–time beamformer described in (11) is used. The

parameter equals 16, and equals 1.5 in this example. In all

plots, it is assumed that the energy transmitted by any single an-

tenna element to illuminate all angles is fixed. The SINR drops

near zero Doppler frequency because it is not easy to distin-

guish the slowly moving target from the still ground clutter. The

MIMO system with has a slightly better performance

than the SIMO system with the same antenna structure. For the

virtual array structure where , the MIMO system has a

very good SINR performance, and it is close to the performance

of the SIMO system with antennas because they have the

same resolution for the target signal and the clutter signals. The

Fig. 4. SINR at looking direction zero as a function of the Doppler frequencies
for different SIMO and MIMO systems.

small difference comes from the fact that the SIMO system with

antennas has a better spatial resolution for the jammer sig-

nals. This example shows that the choice of is very crucial in

the MIMO radar. With the choice , the MIMO radar

with only 15 antenna elements has about the same performance

as the SIMO radar with 51 array elements. This example also

shows that the MIMO radar system has a much better spatial

resolution for clutter compared to the traditional SIMO system

with same number of physical antenna elements.

IV. CLUTTER SUBSPACE IN MIMO RADAR

In this section, we explore the clutter subspace and its rank in

the MIMO radar system. The covariance matrix in (9) can be

expressed as , where is the co-

variance matrix of the target signal, is the covariance matrix

of the clutter, is the covariance matrix of the jammer, and

is the variance of the white noise. The clutter subspace is de-

fined as the range space of and the clutter rank is defined as

the rank of . In the space–time adaptive processing (STAP)

literature, it is a well-known fact that the clutter subspace usu-

ally has a small rank. It was first pointed out by Klemm in [18],

that the clutter rank is approximately , where is the

number of receiving antennas and is the number of pulses in

a coherent processing interval (CPI). In [16] and [17], a rule for

estimating the clutter rank was proposed. The estimated rank is

approximately

(13)

where . This is called Brennan’s rule. In [15], this

rule has been extended to the case with arbitrary arrays. Taking

advantage of the low rank property, the STAP can be performed

in a lower dimensional space so that the complexity and the con-

vergence can be significantly improved [26]–[33]. This result

will now be extended to the MIMO radar. These techniques are

often called partially adaptive methods or subspace methods.
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A. Clutter Rank in MIMO Radar

We first study the clutter term in (6) which is expressed as

for , and

. Note that because .

Define and

(14)

By stacking the signals into a vector, one can obtain

Assume that are zero-mean independent random variables

with variance . The clutter covariance matrix can be ex-

pressed as

Therefore, span span where

The vector consists of the samples of at points

, where and are defined in (7). In general, is

a nonuniformly sampled version of the band-limited sinusoidal

waveform . If and are both integers, the sampled

points can only be integers in

If , there will be repetitions

in the sample points. In other words, some of the row vectors in

will be exactly the same and there will be at most

distinct row vectors in . Therefore, the rank of

is less than . So is the rank of .

We summarize this fact as the following

Theorem 1: If and are both integers, then rank

Usually and are much larger than

. Therefore, is a good

estimation of the clutter rank. This result can be viewed as an

extension of Brennan’s rule [16], given in (13), to the MIMO

radar case.

Fig. 5. Example of the signal c(x; f ). (a) Real part. (b) Magnitude response
of Fourier transform.

Now, we focus on the general case where and are real

numbers. The vector in (14) can be viewed as a nonuniformly

sampled version of the truncated sinusoidal function

otherwise
(15)

where . Furthermore,

because is often selected as in (5) to

avoid aliasing. Therefore, the energy of these signals is mostly

confined to a certain time-frequency region. Fig. 5 shows an

example of such a signal. Such signals can be well approximated

by linear combinations of orthogonal functions

[19], where is the one-sided bandwidth and is the duration

of the time-limited functions. In the next section, more details

on this will be discussed using PSWF. In this case, we have

and . The

vectors can be also approximated by a linear combination of

the nonuniformly sampled versions of these

orthogonal functions. Thus, in the case where and

are nonintegers, we can conclude that only

eigenvalues of the matrix are significant. In other

words

rank (16)

Note that the definition of this approximate rank is actually the

number of the dominant eigenvalues. This notation has been

widely used in the STAP literature [32], [33]. In the SIMO radar

case, using Brennan’s rule, the ratio of the clutter rank and the

total dimension of the space–time steering vector can be approx-

imated as
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In the MIMO radar case with , the corresponding ratio

becomes

One can observe that the clutter rank now becomes a smaller

portion of the total dimension because of the extra dimension

introduced by the MIMO radar. Thus the MIMO radar receiver

can null out the clutter subspace with little effect on SINR.

Therefore, a better spatial resolution for clutter can be obtained.

The result can be further generalized for the array with arbi-

trary linear antenna deployment. Let

be the transmitting antenna locations,

be the receiving antenna locations, and be the speed of the

radar station. Without loss of generality, we set and

. Then the clutter signals can be expressed as

for , and

, where is the looking-direction of the th

clutter. The term

can also be viewed as a nonuniform sampled version of the func-

tion . Using the same argument we have made in the

ULA case, one can obtain

rank

The quantity can be regarded

as the total aperture of the space–time virtual array. One can see

that the number of dominant eigenvalues is proportional to the

ratio of the total aperture of the space–time virtual array and the

wavelength.

B. Data-Independent Estimation of the Clutter Subspace

With PSWF

The clutter rank can be estimated by using (16) and the

parameters , and . However, the clutter subspace

is often estimated by using data samples instead of using these

parameters [26]–[33]. In this section, we propose a method

which estimates the clutter subspace using the geometry of the

problem rather than the received signal. The main advantage of

this method is that it is data independent. The clutter subspace

obtained by this method can be used to improve the conver-

gence of the STAP. Experiments also show that the estimated

subspace is very accurate in the ideal case (without ICM and

array misalignment).

In Fig. 5, one can see that the signal in (15) is time-limited

and most of its energy is concentrated on .

To approximate the subspace that contains such signals, we find

the basis functions which are time-limited and concentrate their

energy on the corresponding bandwidth. Such basis functions

are the solutions of the following integral equation [19]:

where and is a scalar to be solved. This

integral equation has infinite number of solutions and

for . The solution is called PSWF. By the

maximum principle [36], the solution satisfies

subject to

for

for . The function is orthogonal to the

previous basis components , for while concen-

trating most of its energy on the bandwidth . More-

over, only the first eigenvalues are significant

[19]. Therefore, the time-band-limited function in (15)

can be well approximated by linear combinations of for

. In this case, and

. Thus, the nonuniformly sampled

versions of , namely , can be approximated by

the linear combination

for some , where

(17)

Stacking the above elements into vectors, we have

where is a vector that consists of the elements

. Finally, we have

span span span (18)

where . Note that although

the functions are orthogonal, the vectors are in

general not orthogonal. This is because of the fact that

are obtained by nonuniform sampling which destroys orthog-

onality. In practice, the PSWF can be computed off-line

and stored in the memory. When the parameters change, one can

obtain the vectors by resampling the PSWF
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Fig. 6. Plot of the clutter power distributed in each of the orthogonal basis
elements.

to form the new clutter subspace. In this way, we can obtain the

clutter subspace by using the geometry of the problem.

Performing the Gram–Schmidt procedure on the basis ,

we obtain the orthonormal basis . The clutter power in each

orthonormal basis element can be expressed as . Fig. 6

shows the clutter power in the orthogonalized basis elements. In

this example, , and .

Note that there are a total of basis elements but

we only show the first 200 on the plot. The clutter covariance

matrix is generated using the model described in [15]. The

eigenvalues of are also shown in Fig. 6 for comparison. The

estimated clutter rank is .

One can see that the subspace obtained by the proposed method

captures almost all clutter power. The clutter power decays to

less than 200 dB for the basis index exceeding 90.

Compared to the eigendecomposition method, the subspace

obtained by our method is larger. This is because of the fact that

the clutter spatial bandwidth has been overestimated in this ex-

ample. More specifically, we have assumed the worst case sit-

uation that the clutter spatial frequencies range from to

. In actual fact however, the range is only from to

. This comes about because of the specific geometry as-

sumed in this example: the altitude is 9 km, the range of in-

terest is 12.728 km, and a flat ground model is used. Therefore,

the rank of the subspace is overestimated. It may seem that our

method loses some efficiency compared to the eigendecompo-

sition. However, note that the eigendecomposition requires per-

fect information of the clutter covariance matrix while our

method requires no data. In this example, we assume the per-

fect is known. In practice, has to be estimated from the

received signals and it might not be accurate if the number of

samples is not large enough. Note that, unlike the eigendecom-

position method, the proposed method based on PSWF does not

require the knowledge of .

V. NEW STAP METHOD FOR MIMO RADAR

In this section, we introduce a new STAP method for MIMO

radar which uses the clutter subspace estimation method de-

scribed in the last section. Because the clutter subspace can be

obtained by using the parameter information, the performance

and complexity can both be improved. Recall that the optimal

MVDR beamformer (11) requires knowledge of the covariance

matrix . In practice, this has to be estimated from data. For

example, it can be estimated as

(19)

where is the MIMO-STAP signal vector defined in (8) for the

th range bin, and is a set which contains the neighbor range

bin cells of the range bin of interest. However, some nearest cells

around the range bin of interest are excluded from in order to

avoid including the target signals [32]. There are two advantages

of using the target-free covariance matrix in (11). First, it is

more robust to steering vector mismatch. If there is mismatch in

the steering vector in (9), the target signal is no longer

protected by the constraint. Therefore, the target signal is sup-

pressed as interference. This effect is called self-nulling, and it

can be prevented by using a target-free covariance matrix. More

discussion about self-nulling and robust beamforming can be

found in [21] and [22] and the references therein. Second, using

the target-free covariance matrix, the beamformer in (11) con-

verges faster than the beamformer using the total covariance ma-

trix. The famous rapid convergence theorem proposed by Reed

et al. [25] states that a SINR loss of 3 dB can be obtained by

using the number of target-free snapshots equal to twice the size

of the covariance matrix. Note that the imprecise physical model

which causes steering vector mismatch does not just create the

self-nulling problem. It also affects the clutter subspace. There-

fore, it affects the accuracy of the clutter subspace estimation in

Section IV-B.

A. Proposed Method

The target-free covariance matrix can be expressed as

, where is the covariance matrix of the

jammer signals, is the covariance matrix of the clutter sig-

nals, and is the variance of the white noise. By (18), there

exists a matrix so that . Thus, the

covariance matrix can be approximated by

(20)

We assume the jammer signals in (6) are statistically in-

dependent in different pulses and different orthogonal waveform

components [32]. Therefore, they satisfy

otherwise

for , and

. Using this fact, the jammer-plus-noise covariance

matrix defined in (20) can be expressed as

(21)

where is an matrix with elements

for . Therefore, the covariance
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matrix in (20) consists of a low-rank clutter covariance matrix

and a block-diagonal jammer-pulse-noise. By using the matrix

inversion lemma [37], one can obtain

(22)

The inverse of the block-diagonal matrix is simply

, and the multiplication of

the block-diagonal matrix with another matrix is simple.

B. Complexity of the New Method

The complexity of directly inverting the

covariance matrix is . Taking advantage of

the block-diagonal matrix and the low rank matrix, in (22),

the complexity for computing is only and the

complexity for computing and is

only , where is defined in (17). The overall complexity

for computing (22) is thus reduced from to

. This is the complexity of the multiplication of

an matrix by an matrix.

C. Estimation of the Covariance Matrices

In (22), the matrix can be obtained by the nonuniform

sampling of the PSWF as described in the last section. The

jammer-pulse-noise covariance matrix and the matrix

both require further estimation from the received signals. Be-

cause of the block-diagonal structure, one can estimate the co-

variance matrix by estimating its submatrix defined in

(21). The matrix can be estimated when there are no clutter

and target signals. For this, the radar transmitter operates in pas-

sive mode so that the receiver can collect the signals with only

jammer signals and white noise [33]. The submatrix can be

estimated as

(23)

where is an vector which represents the target-free and

clutter-free signals received by receiving antennas. By (20),

one can express as

Therefore, one can estimate by using

(24)

where and is the MIMO-

STAP signal vector defined in (8). Substituting (23), (24) and

(22) into the MIMO-STAP beamformer in (11), we obtain

(25)

D. Zero-Forcing Method

Instead of estimating and computing the MVDR by (25),

one can directly “null out” the entire clutter subspace as de-

scribed next. Assume that the clutter-to-noise ratio is very large

and therefore all of the eigenvalues of approach infinity. We

obtain . Substituting it into (25), one can obtain the

MIMO-STAP beamformer as

(26)

Thus we obtain a “zero-forcing” beamformer that nulls out

the entire clutter subspace. The advantage of this zero-forcing

method is that it is no longer necessary to estimate . In

this method, we only need to estimate . The method is

independent of the range bin. The matrix computed by

this method can be used for all range bins. Because there are

lots of extra dimensions in MIMO radars, dropping the entire

clutter subspace will reduce only a small portion of the total

dimension. Therefore, it will not affect the SINR performance

significantly, as we shall demonstrate. Thus, this method can

be very effective in MIMO radars.

E. Comparison With Other Methods

In the sample matrix inversion (SMI) method [32], the covari-

ance matrix is estimated to be the quantity in (19) and

is directly used in (11) to obtain the MVDR beamformer. How-

ever, some important information about the covariance matrix

is unused in the SMI method. This information includes the pa-

rameters and , the structure of the clutter covariance matrix,

and the block-diagonal structure of the jammer covariance ma-

trix.

Our method in (25) utilizes this information. We first esti-

mate the clutter subspace by using parameters and in (18).

Because the jammer matrix is block diagonal and the clutter ma-

trix has low rank with known subspace, by using the matrix in-

version lemma, we could break the inversion of a large matrix

into the inversions of some smaller matrices. Therefore, the

computational complexity was significantly reduced. Moreover,

by using the structure, fewer parameters need to be estimated.

In our method, only the matrix and the ma-

trix need to be estimated rather than the

matrix in the SMI method. Therefore, our method also con-

verges much faster.

In subspace methods [27]–[33], the clutter and the jammer

subspace are both estimated simultaneously using the STAP sig-

nals rather than from problem geometry. Therefore, the param-

eters and and the block-diagonal structure of the jammer

covariance matrix are not fully utilized. In [26], the target-free

and clutter-free covariance matrix are also estimated using (23).

The jammer and clutter are filtered out in two separate stages.

Therefore, the block-diagonal property of the jammer covari-

ance matrix has been used in [26]. However, the clutter subspace

structure has not been fully utilized in this method.

VI. NUMERICAL EXAMPLES

In this section, we compare the SINR performance of our

methods and other existing methods. In the example, the pa-
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rameters are and .

The altitude is 9 km, and the range of interest is 12.728 km.

For this altitude and range, the clutter is generated by using the

model in [15]. The clutter-to-noise ratio (CNR) is 40 dB. There

are two jammers at 20 and 30 . The jammer-to-noise ratio

(JNR) for each jammer equals 50 dB. The SINR is normalized

so that the maximum SINR equals 0 dB. The jammers are mod-

elled as point sources which emit independent white Gaussian

signals. The clutter is modeled using discrete points as described

in (2). The clutter points are equally spaced on the range bin

and the RCS for each clutter is modelled as identical indepen-

dent Gaussian random variables. In general, the variance of

will vary along the ground, as we move within one range bin.

However, for simplicity we assume this variance is fixed. The

number of clutter points is 10 000. The clutter points for dif-

ferent range bins are also independent. The following methods

are compared.

1) Sample matrix inversion (SMI) method [32]: This method

estimates the covariance matrix using (9) and directly

substitutes it into (11).

2) Loaded sample matrix inversion (LSMI) method [23], [24]:

Before substituting into (11), a diagonal loading

is performed. In this example, is chosen as ten

times the white noise level.

3) Principal component (PC) method [32]: This method

uses a KLT filterbank to extract the jammer-plus-clutter

subspace. Then the space–time beamforming can be per-

formed in this subspace.

4) Separate jammer and clutter cancellation method [26] (ab-

breviated as SJCC below): This method also utilizes the

jammer-plus-noise covariance matrix , which can be

estimated as in (23). The covariance matrix can be used to

filter out the jammer and form a spatial beam. Then, the

clutter can be further filtered out by space–time filtering

[26]. In this example, a diagonal loading is used for the

space–time filtering with a loading factor, which equals ten

times the white noise level.

5) The new zero-forcing (ZF) method: This method directly

nulls out the clutter subspace as described in (26).

6) The new minimum variance method: This method es-

timates and and uses (25). In this example, a

diagonal loading is used for with a loading factor that

equals ten times the white noise level.

7) MVDR with perfectly known : This method is unreal-

izable because the perfect is always unavailable. It is

shown in the figure because it serves as an upper bound on

the SINR performance.

Fig. 7 shows the comparison of the SINR for as a func-

tion of the Doppler frequencies. The SINR is defined as

SINR

where is the target-free covariance matrix. To compare these

methods, we fix the number of samples and the number of

jammer-plus-noise samples . In all of the methods except the

SMI method, 300 samples and 20 jammer-plus-noise samples

are used. We use 2000 samples instead of 300 samples in the

Fig. 7. SINR performance of different STAP methods at looking direction zero
as a function of the Doppler frequency.

SMI method because the estimated covariance matrix in (19)

with 300 samples is not full-rank and therefore cannot be in-

verted. The spatial beampatterns and space–time beampatterns

for the target at and for four of these methods

are shown in Figs. 8 and 9, respectively. The spatial beampat-

tern is defined as

where is the spatial steering vector

and represents successive elements of

starting from . The space–time beampattern is defined

as

where is the space–time steering vector defined in

(10). The spatial beampattern represents the jammer and noise

rejection and the space–time beampattern represents the clutter

rejection. In Fig. 8, one can see the jammer notches at the

corresponding jammer arrival angles 30 and 20 . In Fig. 9,

one can also observe the clutter notch in the beampatterns. In

Fig. 7, lacking use of the covariance matrix structure, the SMI

method requires a lot of samples to obtain good performance.

It uses 2000 samples, but the proposed minimum variance

method, which has a comparable performance, uses only 300

samples. The PC method and LSMI method utilize the fact

that the jammer-plus-clutter covariance matrix has low rank.

Therefore, they require fewer samples than the SMI method.

The performance of these two are about the same. The SJCC

method further utilizes the fact that the jammer covariance

matrix is block diagonal and estimates the jammer-plus-noise

covariance matrix. Therefore, the SINR performance is slightly
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Fig. 8. Spatial beampatterns for four STAP methods.

better than the LSMI and PC methods. Our methods not only

utilize the low rank property and the block-diagonal property

but also the geometry of the problem. Therefore, our methods

have better SINR performance than the SJCC method. The

proposed ZF method has about the same performance as the

minimum variance method. It converges to a satisfactory SINR

with very few clutter-free samples. According to (16), the

clutter rank in this example is approximately

Thanks to the MIMO radar, the dimension of the space–time

steering vector is . The clutter rank is just a small

portion of the total dimension. This is the reason why the ZF

method, which directly nulls out the entire clutter space, works

so well.

VII. CONCLUSION

In this paper, we first studied the clutter subspace and its rank

in MIMO radars using the geometry of the system. We derived

an extension of Brennan’s rule for estimating the dimension of

the clutter subspace in MIMO radar systems. This rule is given

in (16). An algorithm for computing the clutter subspace using

nonuniform sampled PSWF was described. Then, we proposed

a space–time adaptive processing method in MIMO radars. This

method utilizes the knowledge of the geometry of the problem,

the structure of the clutter space, and the block-diagonal struc-

ture of the jammer covariance matrix. Using the fact that the

jammer matrix is block diagonal and the clutter matrix has low

rank with known subspace, we showed how to break the inver-

sion of a large matrix into the inversions of smaller matrices

using the matrix inversion lemma. Therefore, the new method

has much lower computational complexity. Moreover, we can

directly null out the entire clutter space for large clutter. In our

ZF method, only the jammer-plus-noise matrix

needs to be estimated instead of the matrix

in the SMI method, where is the number of receiving an-

tennas, is the number of transmitting antennas, and is the

Fig. 9. Space–time beampatterns for four methods: (a) Proposed zero-forcing
method; (b) principal component (PC) method [32]; (c) separate jammer and
clutter cancellation method (SJCC) [26]; and (d) SMI method [32].

number of pulses in a coherent processing interval. Therefore,

for a given number of data samples, the new method has better
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performance. In Section VI, we provided an example where

the number of training samples was reduced by a factor of 100

with no appreciable loss in performance compared to the SMI

method.

In practice, the clutter subspace might change because of ef-

fects such as the ICM, velocity misalignment, array manifold

mismatch, and channel mismatch [32]. In this paper, we con-

sidered an “ideal model,” which does not take these effects into

account. When this model is not valid, the performance of the

algorithm will degrade. One way to overcome this might be to

estimate the clutter subspace by using a combination of both the

assumed geometry and the received data. Another way might be

to develop a more robust algorithm against the clutter subspace

mismatch. These ideas will be explored in the future.

REFERENCES

[1] D. J. Rabideau and P. Parker, “Ubiquitous MIMO multifunction dig-
ital array radar,” in Proc. 37th IEEE Asilomar Conf. Signals, Systems,

Computers, Nov. 2003, vol. 1, pp. 1057–1064.
[2] D. W. Bliss and K. W. Forsythe, “Multiple-input multiple-output

(MIMO) radar and imaging: Degrees of freedom and resolution,” in
Proc. 37th IEEE Asilomar Conf. Signals, Systems, Computers, Nov.
2003, vol. 1, pp. 54–59.

[3] E. Fishler, A. Haimovich, R. S. Blum, D. Chizhik, L. J. Cimini, and R.
A. Valenzuela, “MIMO Radar: An idea whose time has come,” in Proc.

IEEE Radar Conf., Apr. 2004, pp. 71–78.
[4] E. Fishler, A. Haimovich, R. S. Blum, L. J. Cimini, D. Chizhik, and R.

A. Valenzuela, “Performance of MIMO radar systems: Advantages of
angular diversity,” in Proc. 38th IEEE Asilomar Conf. Signals, Systems,

Computers, Nov. 2004, vol. 1, pp. 305–309.
[5] E. Fishler, A. Haimovich, R. S. Blum, L. J. Cimini, D. Chizhik, and

R. A. Valenzuela, “Spatial diversity in radars—models and detection
performance,” IEEE Trans. Signal Process., vol. 54, no. 3, pp. 823–837,
Mar. 2007.

[6] F. C. Robey, S. Coutts, D. Weikle, J. C. McHarg, and K. Cuomo,
“MIMO radar theory and experimental results,” in Proc. 38th IEEE

Asilomar Conf. Signals, Systems, Computers, Nov. 2004, vol. 1, pp.
300–304.

[7] K. W. Forsythe, D. W. Bliss, and G. S. Fawcett, “Multiple-input mul-
tiple-output (MIMO) radar performance issues,” in Proc. 38th IEEE

Asilomar Conf. Signals, Systems, Computers, Nov. 2004, pp. 310–315.
[8] H. A. Khan, W. Q. Malik, D. J. Edwards, and C. J. Stevens, “Ultra wide-

band multiple-input multiple-output radar,” in Proc. IEEE Int. Radar

Conf., May 2005, pp. 900–904.
[9] H. A. Khan and D. J. Edwards, “Doppler problems in orthogonal

MIMO radars,” in Proc. IEEE Int. Radar Conf., Apr. 2007, pp. 24–27.
[10] V. F. Mecca, D. Ramakrishnan, and J. L. Krolik, “MIMO radar

space–time adaptive processing for multipath clutter mitigation,”
Proc. IEEE Workshop Sensor Array Multichannel Signal Processing,
pp. 249–253, Jul. 2007.

[11] D. R. Fuhrmann and G. S. Antonio, “Transmit beamforming for
MIMO radar systems using partial signal correlation,” in Proc. 38th

IEEE Asilomar Conf. Signals, Systems, Computers, Nov. 2004, pp.
295–299.

[12] G. S. Antonio and D. R. Fuhrmann, “Beampattern synthesis for wide-
band MIMO radar systems,” Proc. 1st IEEE Int. Workshop Compu-

tational Advances in Multi-Sensor Adaptive Processing, pp. 105–108,
Dec. 2005.

[13] K. W. Forsythe and D. W. Bliss, “Waveform correlation and optimiza-
tion issues for MIMO radar,” in Proc. 39th IEEE Asilomar Conf. Sig-

nals, Systems, Computers, Nov. 2005, pp. 1306–1310.
[14] Q. Zhang and W. B. Mikhael, “Estimation of the clutter rank in the case

of subarraying for space–time adaptive processing,” Electron. Lett.,
vol. 33, no. 5, pp. 419–420, Feb. 27, 1997.

[15] N. A. Goodman and J. M. Stiles, “On clutter rank observed by arbitrary
arrays,” IEEE Trans. Signal Process., vol. 55, no. 1, pp. 178–186, Jan.
2007.

[16] J. Ward, “Space–time adaptive processing for airborne radar,” Lincoln
Laboratory, Lexington, MA, Tech. Rep. 1015, Dec. 1994.

[17] L. E. Brennan and F. M. Staudaher, “Subclutter visibility demon-
stration,” Adeptive Sensors, Inc., Santa Monica, CA, Tech. Rep.
RL-TR-92-21, 1992.

[18] R. Klemm, “Adaptive clutter suppression for airborne phased array
radars,” Proc. Inst. Elect. Eng. F, vol. 130, no. 1, pp. 125–132, 1983.

[19] D. Slepian and H. O. Pollak, “Prolate spheroidal wave functions,
Fourier analysis and uncertainty—III: The dimension of the space
of essentially time-and-band-limited signals,” Bell Syst. Tech. J., pp.
1295–1336, Jul. 1962.

[20] J. Capon, “High-resolution frequency-wavenumber spectrum anal-
ysis,” Proc. IEEE, vol. 57, no. 8, pp. 1408–1418, Aug. 1969.

[21] C. Y. Chen and P. P. Vaidyanathan, “Quadratically constrained beam-
forming robust against direction-of-arrival mismatch,” IEEE Trans.

Signal Process., accepted for publication.
[22] R. G. Lorenz and S. P. Boyd, “Robust minimum variance beam-

forming,” IEEE Trans. Signal Process., vol. 53, no. 5, pp. 1684–1696,
May 2005.

[23] Y. I. Abramovich, “Controlled method for adaptive optimization of fil-
ters using the criterion of maximum SNR,” Radio Eng. Electron. Phys.,
vol. 26, pp. 87–95, Mar. 1981.

[24] B. D. Carlson, “Covariance matrix estimation errors and diagonal
loading in adaptive arrays,” IEEE Trans. Aerosp. Electron. Syst., vol.
24, no. 4, pp. 397–401, Jul. 1988.

[25] J. S. Reed, J. D. Mallett, and L. E. Brennan, “Rapid convergence rate
in adaptive arrays,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-10,
no. 6, pp. 853–863, Nov. 1974.

[26] R. Klemm, “Adaptive air- and spaceborne MTI under jamming condi-
tions,” in Proc. IEEE Nat. Radar Conf., Apr. 1993, pp. 167–172.

[27] J. R. Guerci, J. S. Goldstein, and I. S. Reed, “Optimal and adaptive re-
duced-rank STAP,” IEEE Trans. Aerosp. Electron. Syst. (Special Sec-

tion on Space–Time Adaptive Processing), vol. 36, no. 2, pp. 647–663,
Apr. 2000.

[28] A. M. Haimovich and M. Berin, “Eigenanalysis-based space–time
adaptive radar: performance analysis,” IEEE Trans. Aerosp. Electron.

Syst., vol. 33, no. 4, pp. 1170–1179, Oct. 1997.
[29] J. S. Goldstein, I. Si. Reed, and L. L. Scharf, “A multistage representa-

tion of the Wiener filter based on orthogonal projections,” IEEE Trans.

Inf. Theory, vol. 44, no. 7, pp. 2943–2959, Nov. 1998.
[30] B. Friedlander, “A subspace method for space time adaptive pro-

cessing,” IEEE Trans. Signal Process., vol. 53, no. 1, pp. 74–82, Jan.
2005.

[31] X. Wen, A. Wang, L. Li, and C. Han, “Direct data domain approach
to space–time adaptive signal processing,” Proc. Int. Conf. Control,

Automation, Robotics, Vision (ICARCV), vol. 3, pp. 2070–2075, Dec.
2004.

[32] J. R. Guerci, Space–Time Adaptive Processing. Norwood, MA:
Artech House, 2003.

[33] R. Klemm, Principles of Space–Time Adaptive Processing. London,
U.K.: IEE, 2002.

[34] M. A. Richards, Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

[35] H. L. Van Trees, Optimum Array Processing: Part IV of Detection

Estimation and Modulation Theory. New York: Wiley Interscience,
2002.

[36] J. P. Keener, Principles of Applied Mathematics. Reading, MA: Ad-
dison-Welsley, 1988.

[37] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, U.K.:
Cambridge Univ. Press, 1985.

Chun-Yang Chen (S’06) was born in Taipei, Taiwan,
R.O.C., on November 22, 1977. He received the B.S.
and M.S. degrees in electrical engineering and com-
munication engineering, both from National Taiwan
University (NTU), Taipei, Taiwan, R.O.C., in 2000
and 2002, respectively. He is currently working to-
wards the Ph.D. degree in electrical engineering in
the field of digital signal processing at California In-
stitute of Technology (Caltech), Pasadena.

His interests currently include signal processing in
MIMO communications, ultra-wideband communi-

cations, and radar applications.



CHEN AND VAIDYANATHAN: MIMO RADAR STAP USING PSWF 635

P. P. Vaidyanathan (S’80–M’83–SM’88–F’91)
was born in Calcutta, India, on October 16, 1954.
He received the B.Sc. (Hons.) degree in physics and
the B.Tech. and M.Tech. degrees in radiophysics
and electronics, all from the University of Calcutta,
India, in 1974, 1977, and 1979, respectively, and the
Ph.D. degree in electrical and computer engineering
from the University of California at Santa Barbara
in 1982.

He was a Postdoctoral Fellow at the University of
California, Santa Barbara, from September 1982 to

March 1983. In March 1983, he joined the Electrical Engineering Department
of the California Institute of Technology, Pasadena, as an Assistant Professor,
where he has been a Professor of electrical engineering since 1993. His main
research interests are in digital signal processing, multirate systems, wavelet
transforms, and signal processing for digital communications. He has authored
a number of papers in IEEE journals and is the author of the book Multirate

Systems and Filter Banks (Englewood Cliffs, NJ: Prentice-Hall, 1993). He has
written several chapters for various signal processing handbooks.

Dr. Vaidyanathan served as Vice-Chairman of the Technical Program Com-
mittee for the 1983 IEEE International Symposium on Circuits and Systems,
and as the Technical Program Chairman for the 1992 IEEE International
Symposium on Circuits and Systems. He was an Associate Editor for the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS for the period 1985 to
1987, and is currently an Associate Editor for the IEEE SIGNAL PROCESSING

LETTERS and a Consulting Editor for the journal Applied and Computational

Harmonic Analysis. He was a Guest Editor in 1998 for special issues of the
IEEE TRANSACTIONS ON SIGNAL PROCESSING and the IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS II, on the topics of filter banks, wavelets, and subband
coders. He was a recipient of the Award for Excellence in Teaching at the
California Institute of Technology for the years 1983–1984, 1992–1993, and
1993–1994. He also received the NSF’s Presidential Young Investigator Award
in 1986. In 1989, he received the IEEE Acoustics, Speech and Signal Pro-
cessing (ASSP) Senior Award for his paper on multirate perfect-reconstruction
filter banks. In 1990, he was recipient of the S. K. Mitra Memorial Award from
the Institute of Electronics and Telecommunications Engineers, India, for his
joint paper in the Institution of Electronics and Telecommunication Engineers

(IETE) journal. He was also the coauthor of a paper on linear-phase perfect
reconstruction filter banks in the IEEE TRANSACTIONS ON SIGNAL PROCESSING,
for which the first author (T. Nguyen) received the Young Outstanding Author
Award in 1993. He received the 1995 F. E. Terman Award of the American
Society for Engineering Education, sponsored by Hewlett-Packard Company,
for his contributions to engineering education, especially for the book Mul-

tirate Systems and Filter Banks. He has given several plenary talks, at such
conferences on signal processing as SAMPTA’01, EUSIPCO’98, SPCOM’95,
and Asilomar’88. He has been chosen a Distinguished Lecturer for the IEEE
Signal Processing Society for the year 1996–1997. In 1999, he was chosen to
receive the IEEE Circuits and System Society’s Golden Jubilee Medal. He is
a recipient of the IEEE Signal Processing Society’s Technical Achievement
Award for the year 2002.


