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Abstract

A MIMO radar system is proposed for obtaining angle and Doppler information on potential targets. Transmitters

and receivers are nodes of a small scale wireless network and are assumed to be randomly scattered on a disk. The

transmit nodes transmit uncorrelated waveforms. Each receive node applies compressive sampling to the received

signal to obtain a small number of samples, which the node subsequently forwards to a fusion center. Assuming

that the targets are sparsely located in the angle-Doppler space, based on the samples forwarded by the receive

nodes the fusion center formulates an ℓ1-optimization problem, the solution of which yields target angle and Doppler

information. The proposed approach achieves the superior resolution of MIMO radar with far fewer samples than

required by other approaches. This implies power savings during the communication phase between the receive nodes

and the fusion center. Performance in the presence of a jammer is analyzed for the case of slowly moving targets.

Issues related to forming the basis matrix that spans the angle-Doppler space, and for selecting a grid for that space

are discussed. Extensive simulation results are provided to demonstrate the performance of the proposed approach at

difference jammer and noise levels.

Keywords: Compressive sampling, MIMO Radar, DOA estimation, Doppler estimation

I. INTRODUCTION

Multiple-input multiple-output (MIMO) radar systems have received considerable recent attention, e.g., [1]-[3].

Unlike a conventional transmit beamforming radar system that uses highly correlated waveforms, a MIMO radar

system transmits multiple independent waveforms via its antennas. A MIMO radar system is advantageous in two

different scenarios [4]-[6]. In the first one [4], the transmit antennas are located far apart from each other relative to

their distance to the target. This enables the radar to view the target from different directions simultaneously. The

MIMO radar system transmits independent probing signals from decorrelated transmitters through different paths,

and thus each target return carries independent information about the target. Combining these independent target

returns results in a diversity gain, which enables the MIMO radar system to reduce target radar cross section (RCS)

scintillations and achieve high target resolution. In the second scenario [5], a MIMO radar is equipped with Mt

transmit and Nr receive antennas that are close to each other relative to the target, so that the RCS does not vary

1Copyright c©2008 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must

be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
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between the different paths. In this scenario, the phase differences induced by transmit and receive antennas can

be exploited to form a long virtual array with MtNr elements. This enables the MIMO radar system to achieve

superior spatial resolution as compared to a traditional radar system. MIMO radar can achieve a desired beampattern

by transmitting correlated waveforms [7]-[9]. This is useful in cases where the radar system wishes to avoid certain

directions because they either correspond to eavesdroppers, or are known to be of no interest. In this paper we

consider closely spaced transmit and receive antennas and uncorrelated transmit waveforms.

Compressive sampling (CS) [10]-[12] has received considerable attention recently, and has been applied suc-

cessfully in diverse fields, e.g., image processing [14] and wireless communications [15][16]. The theory of CS

states that a K-sparse signal x of length N can be recovered exactly with high probability from O(K logN)

measurements via ℓ1-optimization. Let Ψ denote the basis matrix that spans this sparse space, and let Φ denote a

measurement matrix. The convex optimization problem arising from CS is formulated as follows

min ‖s‖1, s.t. to y = Φx = ΦΨs (1)

where s is a sparse vector with K principal elements and the remaining elements can be ignored; Φ is an M ×N

matrix with M ≪ N , that is incoherent with Ψ.

The application of compressive sampling to a radar system was recently investigated in [17], [18] and [19].

In [17], in the context of radar imaging, compressive sampling was shown to have the potential to reduce the

typically required sampling rate and even render matched filtering unnecessary. In [18], a CS-based data acquisition

and imaging algorithm for ground penetrating radar was proposed to exploit the sparsity of targets in the spatial

dimension. The approach of [18] was shown to require fewer measurements than standard backprojection methods.

In [19], CS was applied in a radar system with a small number of targets, exploiting target sparseness in the time-

frequency shift plane. The work of [20] considered direction of arrival (DOA) estimation of signal sources using

CS. Although [20] focussed on communication systems, the proposed approach can be straightforwardly extended

to radar systems. In [20], the basis matrix Ψ was formed by the discretization of the angle space. The source

signals were assumed to be unknown, and an approximate version of the basis matrix was obtained based on the

signal received by a reference vector. The signal at the reference sensor would have to be sampled at a very high

rate in order to construct a good basis matrix.

In this paper, we consider a small scale network that acts as a MIMO radar system. Each node is equipped with

one antenna, and the nodes are distributed at random on a disk of a certain radius. Without any fixed infrastructure,

the distributed antennas in this small network render such MIMO radar more flexible than a fixed antenna array

since we can choose the nodes freely. For example, the network nodes could be soldiers that carry antennas on

their backpacks. We refer to such a MIMO radar system a distributed MIMO radar. The nodes transmit independent

waveforms. We extend the idea of [20] to the problem of angle-Doppler estimation for MIMO radar. Since the

number of targets is typically smaller than the number of snapshots that can be obtained, angle-Doppler estimation

can be formulated as that of recovery of a sparse vector using CS. Unlike the scenario considered in [20], in MIMO

radar the transmitted waveforms are known at each receive node. This information, and also information on the
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location of transmit nodes, if available, enables each receive node to construct the basis matrix locally, without

knowledge of the received signal at a reference sensor or any other antenna. In cases in which the receive nodes

do not have location information about the transmitters, or they do not have the computational power, or they

face significant interference, the received samples are transmitted to a fusion center which has access to location

information and also to computational power. Based on the received data, the fusion center formulates an augmented

ℓ1-optimization problem the solution of which provides target angle and Doppler information. The performance of

ℓ1-optimization depends on the noise level. A potential jammer would act as noise, and thus affect performance. We

provide analytical expressions for the average signal-to-jammer ratio (SJR) and propose a modified measurement

matrix that improves the SJR. For the case of stationary targets, the proposed approach is compared to existing

methods, such as the Capon, amplitude and phase estimation (APES), generalized likelihood ratio test (GLRT) [2]

and multiple signal classification (MUSIC) methods, while for moving targets, comparison to the matched filter

method [21] is conducted.

Preliminary results of our work were published in [22]. Independently derived results for MIMO radar using

compressive sampling were also published in the same proceedings [23]. The difference between our work and [23]

is that in [23] a uniform linear array was considered as a transmit and receive antenna configuration, while in our

work we focus on randomly placed transmit and receive antennas, i.e., an infrastructure-less MIMO radar system.

Further we study the effects of a jammer on estimation performance.

The paper is organized as follows. In Section II we provide the signal model of a distributed MIMO radar system.

In Section III, the proposed approach for angle-Doppler estimation is presented. In Section IV we derive the average

SJR for the proposed approach and also discuss a modification of the random measurement matrix that can further

improve the SJR. Simulation results are given in Section V for the cases of stationary targets and moving targets.

Finally, we make some concluding remarks in Section VI.

Notation: Lower case and capital letters in bold denote respectively vectors and matrices. The expectation of a

random variable is denoted by E{·}. The superscript (·)H and Tr(·) denote respectively the Hermitian transpose

and trace of a matrix.

II. SIGNAL MODEL FOR MIMO RADAR

We consider a MIMO radar system with Mt transmit nodes and Nr receive nodes that are uniformly distributed

on a disk of a small radius r. This particular assumption will be used in Section IV for the analytical evaluation

of the proposed approach. For simplicity, we assume that targets and nodes lie on the same plane and we consider

a clutter-free environment. Perfect synchronization and localization of nodes is also assumed. The extension to the

case in which targets and nodes lie in 3-dimension space is straightforward. Let (rti , α
t
i) and (rri , α

r
i ) denote the

locations in polar coordinates of the i-th transmit and receive antenna, respectively. Then the probability density

February 13, 2022 DRAFT
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functions of r
t/r
i and α

t/r
i are

f
r
t/r
i

(r
t/r
i ) =

2r
t/r
i

r2
, 0 < r

t/r
i < r

and f
α

t/r
i

(α
t/r
i ) =

1

2π
, −π ≤ α

t/r
i < π. (2)

Let us assume that there are K point targets present. The k-th target is at azimuth angle θk and moves with

constant radial speed vk. Its range equals dk(t) = dk(0)− vkt, where dk(0) is the distance between this target and

the origin at time equal to zero. Under the far-field assumption, i.e., dk(t) ≫ r
t/r
i , the distance between the ith

transmit/receive antenna and the k-th target dtik/drik can be approximated as

d
t/r
ik (t) ≈ dk(t)− η

t/r
i (θk) = dk(0)− vkt− η

t/r
i (θk) (3)

where η
t/r
i (θk) = r

t/r
i cos(θk − α

t/r
i ).

Let xi(t)e
j2πft denote the continuous-time waveform transmitted by the i-th transmit antenna, where f is the

carrier frequency; we assume that all transmit nodes use the same carrier frequency and also that the xi(t) is

periodic with period T and narrowband. Besides, we also assume the slowly moving targets, i.e., vk
c ≪ 1.

The received signal at the k-th target equals

yk(t) = βk

Mt∑

i=1

xi(t− dtik(t)/c) exp(j2πf(t−
dtik(t)

c
)), k = 1, . . . ,K (4)

where {βk, k = 1, . . . ,K} are complex amplitudes proportional to the RCS and are assumed to be the same for

all the receivers. The latter assumption is consistent with a small network in which the distances between network

nodes are much smaller than the distances between the nodes and the targets, i.e., dk(t) ≫ r
t/r
i . Thus, since they

are closely spaced, all receive nodes see the same aspect of the target.

Due to reflection by the target, the l-th antenna element receives

zl(t) =

K∑

k=1

yk(t−
drlk(t)

c
) + ǫl(t)

=

K∑

k=1

βk

Mt∑

i=1

xi(t−
dtik(t) + drlk(t)

c
)ej2πf(t−

dtik(t)+drlk(t)

c ) + ǫl(t), l = 1, . . . ,Mr (5)

where ǫl(t) represents noise, which is assumed to be independent and identically distributed (i.i.d.) Gaussian with

zero mean and variance σ2.

The narrowband assumption on the transmit waveforms allows us to ignore the delay in xi(t), and consider the

delay in the phase term only. Thus, the received baseband signal at the l-th antenna can be approximated as

zl(t) ≈
K∑

k=1

βk

Mt∑

i=1

xi(t)e
j2πfktej

2π
λ (−2dk(0)+ηt

i (θk)+ηr
l (θk)) + ǫl(t)

=

K∑

k=1

βke
−j 2π

λ 2dk(0)ej
2π
λ ηr

l (θk)ej2πfktxT (t)v(θk) + ǫl(t) (6)
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where λ is the transmitted signal wavelength, fk = 2vkf/c is the Doppler shift caused by the k-th target, and

v(θk) = [ej
2π
λ ηt

1(θk), ..., ej
2π
λ ηt

Mt
(θk)]T (7)

and x(t) = [x1(t), ..., xMt(t)]
T . (8)

On letting L denote the number of snapshots and Ts the sampling period, the received samples collected during

the m-th pulse are given by

zlm =








zl((m− 1)T + 0Ts)
...

zl((m− 1)T + (L− 1)Ts)







=

K∑

k=1

γke
j 2π

λ ηr
l (θk)ej2πfk(m−1)TD(fk)Xv(θk) + elm (9)

where

γk = βke
−j 2π

λ 2dk(0),

D(fk) = diag{[ej2πfk0Ts , . . . , ej2πfk(L−1)Ts ]},

elm = [ǫl((m− 1)T + 0Ts), . . . , ǫl((m− 1)T + (L− 1)Ts)]
T ,

and X = [x(0Ts), . . . ,x((L− 1)Ts)]
T (L×Mt). (10)

In this paper we assume that the Doppler shift is small, i.e., fkTs << 1 for k = 1, ...,K , due to slowly moving

targets.

III. COMPRESSIVE SENSING FOR MIMO RADAR

Let us discretize the angle-Doppler plane on a fine grid:

a = [(a1, b1), . . . , (aN , bN)]. (11)

We can rewrite (9) as

zlm =

N∑

n=1

sne
j 2π

λ ηr
l (an)ej2πbn(m−1)TD(bn)Xv(an) + elm (12)

where

sn =







γk, if the k-th target is at (an, bn)

0, otherwise
. (13)

In matrix form we have

zlm = Ψlms + elm (14)

where s = [s1, . . . , sN ]T and

Ψlm = [ej
2π
λ ηr

l (a1)ej2πb1(m−1)TD(b1)Xv(a1), . . . , e
j 2π

λ ηr
l (aN )ej2πbN (m−1)TD(bN )Xv(aN )]. (15)

Assuming that there are only a small number of targets, the positions of targets are sparse in the angle-Doppler

plane, i.e., s is a sparse vector. Let us measure linear projections of zlm as

rlm = Φlmzlm = ΦlmΨlms + ẽlm, (16)

February 13, 2022 DRAFT
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where Φlm is an M × L (M < L) zero-mean Gaussian random matrix that has small correlation with Ψlm, and

ẽlm = Φlmelm. M must be larger than the number of targets.

If the l-th node in the network knows who the transmit nodes are and also knows the transmitters’ coordinates

relative to a fixed point in the network, then the node can construct the matrix Ψlm (15) and recover s via l1-

optimization based on the node’s own received data rlm (see (16)). Information on other nodes’ locations could

be provided by higher network layers. If no such location information is available to the node, or the interference

is strong, then the receive node will pass the linear projections rlm to a fusion center, which has global and local

information. Combining the output of Np pulses at Nr receive antennas the fusion center can formulate the equation

r = [rT11, . . . , r
T
1Np

, . . . , rTNr1, . . . , r
T
NrNp

]T = Θs+E (17)

where Θ = [(Φ11Ψ11)
T , . . . , (Φ1(Np−1)Ψ1(Np−1))

T , . . . , (ΦNr1ΨNr1)
T , . . . , (ΦNr(Np−1)ΨNr(Np−1))

T ]T and E =

[ẽT11, . . . , ẽ
T
1Np

, . . . , ẽTNr1
, . . . , ẽTNrNp

]T . Thus, the fusion center can recover s by applying the Dantzig selector to

the convex problem of (17) as ([24])

ŝ = min ‖s‖1 s.t. ‖ΘH(r−Θs)‖∞ < µ. (18)

According to [24], the sparse vector s can be recovered with very high probability if µ = (1+t−1)
√

2 logNσ̃2σmax,

where t is a positive scalar, σmax is the maximum norm of columns in the sensing matrix Θ and σ̃2 is the variance

of the noise in (17). If ΦΦH = I then σ̃2 = σ2. Determining the best value of µ requires some experimentation.

A method that requires an exhaustive search was described in [24]. A lower bound is readily available, i.e., µ >
√

2 logNσ̃2σmax. Also, µ should not be too large because in that case the trivial solution s = 0 is obtained. Thus,

we may set µ < ‖ΘHr‖∞.

A. Resolution

The uniform uncertainty principle (UUP) [11][12] indicates that if every set of columns with cardinality less than

the sparsity of the signal of interest of the sensing matrix (Θ defined in (17)) are approximately orthogonal, then

the sparse signal can be exactly recovered with high probability. For a fixed M the correlation of columns of the

sensing matrix can be reduced if the number of pulses Np and/or the number of receive nodes Nr is increased.

Intuitively, the increase in Np and Nr increases the dimension of the sensing matrix columns, thereby rendering

the columns less similar to each other. A more formal proof is provided in Appendix I. Moreover, increasing the

number of transmit nodes, i.e., Mt, also reduces the correlation of columns; this is also shown in Appendix I.

In general, to achieve high resolution a fine grid is required. However, for fixed Np, Nr and Mt, decreasing

the distance between the grid points would result in more correlated columns in the sensing matrix. Based on the

above discussion, the column correlation can be reduced by increasing Np, Nr or Mt. Also, based on the theory

of CS, the effects of a higher column correlation can be mitigated by using a larger number of measurements, i.e.,

by increasing M . In particular, it was shown in [11] that M should satisfy M ≥ Kǫ2(logN)4

C , where ǫ denotes the

maximum mutual coherence between the two columns of the sensing matrix and C is a positive constant.

February 13, 2022 DRAFT
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One might tend to think that in order to achieve good resolution one has to involve a lot of measurements, or

trasnmit/receive antennas, or pulses, which in turn would involve high complexity. However, extensive simulations

suggest that this is not the case. In fact, the proposed approach can match the resolution that can be achieved with

conventional methods, while using far fewer received samples, than those used by the conventional methods.

B. Maximum grid size for the angle-Doppler space

The grid in the angle-Doppler space must be selected so that the targets that do not fall on the chosen grid points

can still be captured by the closest grid points. This requires sufficiently high correlation of the signal reflected by

each target with the columns of Θ corresponding to grid points close to the targets in the angle-Doppler plane.

However, this requirement goes against the UUP, which requires that every set of columns with cardinality less

than the sparsity of the signal of interest be approximately orthogonal. Thus, there is a tradeoff of the correlation

of columns of the sensing matrix and the grid size.

Absent prior information about the targets, we can determine the maximum spacing of adjacent grids in the angle-

Doppler space by considering the worst case. Assume that we discretize the angle-Doppler space uniformly with

the spacing (∆a,∆b) as a = [(a1, b1), . . . , (aN , bN )]. The worst case scenario is that the targets fall in the middle

between two adjacent grid points. Therefore, a practical approach of selecting the grid points is to calculate the

correlation of columns corresponding to (ai+
∆a
2 , bi+

∆b
2 ) with the columns corresponding to (ai, bi), i = 1, . . . , N .

This can be done by computing the correlation at lag zero of columns corresponding to (ai +
∆a
2 , bi +

∆b
2 ) with

the columns corresponding to (ai, bi), for i = 1, . . . , N , and then taking the average. Then, we can vary the step

(∆a,∆b) until the average correlation reaches some threshold. This threshold should be high enough to capture

the targets that do not fall on the grid in the angle-Doppler space, and at the same time, it should satisfy the UUP.

The adoption of such grid points would ensure that the angle-Doppler estimates of targets would always fall on the

grid of the constructed basis matrix.

When the targets are between grid points, the increase in Np or Nr will not necessarily improve performance.

However, simulations show that we can obtain very good performances with very small Np and Nr. To achieve a

similar performance, the conventional matched filter method will require much greater Np and Nr.

C. Range of unambiguous speed

Let us assume that the Doppler shift change over the duration (T ) of the pulse is negligible as compared to the

change between pulses. This is a reasonable assumption given that we have assumed fkTs << 1, k = 1, . . . ,K .

Given two grid points (ai, bi) and (ai, bj) in the angle-Doppler space, where bi 6= bj , the corresponding columns

of Ψ are different if ej2πbiT 6= ej2πbjT . Let vi be the speed corresponding to the Doppler frequency bi and

∆ij
v = vj − vi. It holds that

ej2πbiT 6= ej2πbjT ⇒ 2∆ij
v fT

c
6= n, n = ±1,±2, . . . (19)
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Therefore, the range of the unambiguous relative speed between two targets that appear at the same angle satisfies

2∆ij
v fT

c
≤ 1 ⇒ ∆ij

v ≤ c

2fT
. (20)

The selection of T affects the range of the unambiguous speed; the smaller the T the larger the range of the

unambiguous speed is. We also need a relatively small T to satisfy the assumption that the Doppler shift does

not change within the duration of the pulse. On the other hand, a larger T is needed to satisfy the narrowband

assumption about the transmitted waveforms. Therefore, T needs to be chosen to balance the above requirements.

D. Complexity

The proposed approach requires solving the convex programming problem of (18). The more targets one would

hope to be able to detect the higher the complexity would be. Further, the signals involved are complex. In this case

(18) can be recast as a second-order cone program (SOCP) [13], which requires polynomial time in the dimension

of the unknown vector.

The requirement of a fine grid further increases the computational complexity. This problem can be mitigated by

first performing an initial angle-Doppler estimation using a coarse grid, and then refining the grid points around

the initial estimate. Restricting the candidate angle-Doppler space reduces the samples in the angle-Doppler space

that are required for constructing the basis matrix, thus reducing the complexity of the ℓ1-optimization step.

In addition to the computation complexity, the receiver for obtaining the required samples is also more complex.

The schematic diagram of the receiver is shown in Fig. 1 (see also [18]).

IV. PERFORMANCE ANALYSIS IN THE PRESENCE OF A JAMMER SIGNAL

In [24], Candes and Tao showed that if the basis matrix obeys the UUP and the signal of interest s is sufficiently

sparse, then the square estimation error of the Dantzig selector satisfies with very high probability

‖ ŝ− s ‖2ℓ2≤ C22logN × (σ2 +

N∑

i

min(s2(i), σ2)) (21)

where C is a constant, N denotes the length of s and σ2 is the variance of the noise. It can be easily seen from (21)

that an increase in the interference power degrades the performance of the Dantzig selector. Thus, in the presence

of a jammer that transmits a waveform uncorrelated with the radar transmit waveforms, the performance of the

proposed CS method will deteriorate. Next, we provide analytical expressions for the signal-to-jammer ratio at the

receive nodes, and propose a modified measurement matrix to suppress the jammer.
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A. Analysis of Signal-to-Jammer Ratio

Suppose that each transmitter transmits Np pulses. In the presence of a jammer at location (d, θ) the signal

received at the l-th receive antenna can be expressed as

rl =








rl1
...

rlNp








=
K∑

k=1

γke
j 2π

λ ηr
l (θk)








Φl1e
j2πfk0T

...

ΦlNpe
j2πfk(Np−1)T







D(fk)Xv(θk)

︸ ︷︷ ︸

rls

+ e−j 2π
λ (d−ηr

l (θ))β








Φl1x̃1

...

ΦlNp x̃Np








︸ ︷︷ ︸

rlj

+








Φl1el1
...

ΦlNpelNp








︸ ︷︷ ︸

rln

(22)

where x̃m = [x̃m(0Ts), . . . , x̃m((L− 1)Ts)]
T contains the samples of the signal transmitted by the jammer during

the m-th pulse, and β denotes the square root of the power of the jammer over the duration of one signal pulse.

We assume that for all m, E{x̃∗m(i)x̃m(j)} = 1/L for i = j, and 0 otherwise. Thus, E{x̃H
mx̃m} = 1. Also, we

assume that x̃m, m = 0, . . . , Np are uncorrelated with the main period of the transmitted waveforms. Thus, the

effect of the jammer signal is similar to that of additive noise. In the following analysis we assume that the jammer

contribution is much stronger than that of additive noise, and therefore we ignore the third term rln on the right

hand side of (22). Later, in our simulations we will consider additive noise in addition to a jammer signal.

We assume that all receive nodes use the same random measurement matrix over Np pulses, i.e., Φl = Φl1 =

Φl2 = . . . = ΦlNp . Let A
k,k′

l = XHDH(fk)Φ
H
l ΦlD(fk′)X and qk,k

′

i,j denote the (i, j)-th element of Akk′

l . Thus,

the average power of the desirable signal conditioned on the transmitted waveform can be represented by

Ps(l) = E{rHlsrls|X} = E{
K∑

k,k′=1

γ∗kγk′e−j 2π
λ (ηr

l (θk)−ηr
l (θk′))

︸ ︷︷ ︸

ρl(k,k′)

(

Np−1
∑

m=0

e−j2π(fk−fk′ )mT )

︸ ︷︷ ︸

µkk′

vH(θk)A
kk′

l v(θk′ )
︸ ︷︷ ︸

Qkk′

}

= NpE{
K∑

k=1

|βk|2Qkk}+ E{
∑

k 6=k′

ρl(k, k
′)µkk′Qkk′} (23)

where ρl(k, k
′) and Qkk′ can be further written as

ρl(k, k
′) = ej

2π
λ [2(dk(0)−dk′(0))−(ηr

l (θk)−ηr
l (θk′))β∗

kβk′ (24)

and Qkk′ =
∑

i,j

qk,k
′

i,j ej
2π
λ (ηt

j(θk′)−ηt
i (θk)) . (25)

As defined in Section II, the position of the ith transmit or receive (TX/RX) node is denoted by (r
t/r
i , α

t/r
i ) in

polar coordinates. Thus it holds that

ak
′k

ji = η
t/r
j (θk′)− η

t/r
i (θk) =







2r
t/r
i sin( θk′−θk

2 ) sin(αi − θk′+θk
2 ) i = j

r
t/r
j cos(θk′ − αj)− r

t/r
i cos(θk − αi) i 6= j

(26)
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Let ψ0 be deterministic. Based on the assumed statistics of ri and αi (see (2)), the distribution of h =

r
t/r
i

r sin(α
t/r
i − ψ0) is given by ([26])

fh(h) =
2

π

√

1− h2,−1 < h < 1 (27)

and

E
{
ejαh

}
= 2

J1(α)

α
(28)

where J1(·) is the first-order Bessel function of the first kind. Thus, based on (28) we can obtain

E
{

ej
2π
λ ak′k

ji

}

= E

{

ej
2πr
λ

ak′k
ji
r

}

=







1 i = j and k = k′

ς(4 sin( θk′−θk
2 )) i = j and k 6= k′

ς2(2) i 6= j

(29)

where ς(x) = 2
J1(x

πr
λ )

x πr
λ

.

Therefore, the average power of the desirable signal Ps(l) taken over the positions of TX/RX nodes can be found

to be

Ps(l) = NpE

{
K∑

k=1

|βk|2Qkk

}

+ E







∑

k 6=k′

ρl(k, k
′)µkk′Qkk′







= Np

K∑

k=1

|βk|2E {Qkk}+
∑

k 6=k′

E {ρl(k, k′)}µkk′E {Qkk′}

= Np

K∑

k=1

|βk|2
∑

i,j

qk,ki,j E{ej 2π
λ akk

ji }+
∑

k 6=k′

β∗
kβk′ej

4π
λ (dk(0)−dk′(0))E{ej 2π

λ ak′k
ll }µkk′

∑

i,j

qk,k
′

i,j E{ej 2π
λ ak′k

ji }

= Np

K∑

k=1

|βk|2[
∑

i

qk,ki,i +
∑

i6=j

qk,ki,j ς
2(2)]

+
∑

k 6=k′

β∗
kβk′ej

4π
λ (dk(0)−dk′(0))ςkk′µkk′ [ςkk′

∑

i

qk,k
′

i,i +
∑

i6=j

qk,k
′

i,j ς2(2)]

(30)

where ςkk′ = ς(4 sin( θk′−θk
2 )).

For many practical radar systems with wavelength λ less than 0.1m, (e.g., most military multimode airborne

radars), 2πr/λ is a large number if r > 5m. Since the function ς(x) decreases rapidly as x increases, the terms

multiplied by ς2(2) are small enough to be neglected in the above equation. Therefore, (30) can be approximated

by

Ps(l) ≈ Np

K∑

k=1

|βk|2
∑

i

qk,ki,i +
∑

k 6=k′

β∗
kβk′ej

4π
λ (dk(0)−dk′(0))ςkk′

2µkk′

∑

i

qk,k
′

i,i . (31)
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Similarly, the average power of the jammer signal over TR/TX locations is given by

Pj(l) = E{rHlj rlj} = (e−j 2π
λ (d−ηr

l (θ))β)(e−j 2π
λ (d−ηr

l (θ))β)∗
Np∑

m=1

x̃H
mΦH

l Φlx̃m

= |β|2
Np∑

m=1

x̃H
mΦH

l Φlx̃m. (32)

The SJR given the node locations is the ratio of the power of the signal to the power of the jammer. Since the

denominator does not depend on node locations, the average SJR equals SJR= Ps(l)/Pj(l).

Some insight into the above obtained expression will be given in the following for some special cases.

B. SJR based on a modified measurement matrix

Since the jammer signal is uncorrelated with the transmitted signal, the SJR can be improved by correlating the

jammer signal with the transmitted signal. Therefore, we propose a measurement matrix of the form

Φ̃l = Φ′
lX

H (M × L) (33)

where Φ′
l is an M ×Mt Gaussian random matrix. Note that Φ̃l is also Gaussian. As stated in [12], a random

measurement matrix with i.i.d. entries, e.g., Gaussian or ±1 random variables, is nearly incoherent with any fixed

basis matrix. Therefore, the proposed measurement matrix exhibits low coherence with Ψl, thus guaranteeing a

stable solution to (18). Based on (33), the average power of the desirable signal Ps(l) is given by (30), except that

Qkk′ is based on A
k,k′

l = XHDH(fk)X(Φ′
l)
HΦ′

lX
HD(fk′)X. The average power of the jammer signal is given

by (32) where Φl is replaced by Φ̃l.

Let us assume that the MT transmit nodes emit periodic pulses containing independent quadrature phase shift

keying (QPSK) symbols, and that XHX = IMt . Also, we assume that ΦlΦ
H
l = Φ′

l(Φ
′
l)
H = IM .

Let x̃i(n) be expressed as ϑin/
√
L, where ϑin is a random variable with mean zero and variance one. Then the

average power of the jammer signal Pj(l) can be rewritten as follows:

Pj(l) = |β|2
Np∑

m=1

x̃H
mΦH

l Φlx̃m

= |β|2
Np∑

m=1

L−1∑

i=j=0

x̃∗m(i)x̃m(i)cii + |β|2
Np∑

m=1

L−1∑

i6=j=0

x̃∗m(i)x̃m(j)cij

=
1

L
|β|2

Np∑

m=1

L−1∑

i=0

ϑ∗miϑmicii +
1

L
|β|2

Np∑

m=1

L−1∑

i6=j=0

ϑ∗miϑmjcij (34)

where cij is the (i, j)-th entry of ΦH
l Φl. Since the entries of Φl are i.i.d Gaussian variables with zero means and

variances 1
L , cii, i = 1, . . . , L are i.i.d chi-square random variables with means M

L and variances 2M
L ; cij , i 6= j

are of mean zero and variance M/L2. Let us express cij , i 6= j as ̺ij
√
M/L, where ̺ij has zero mean and unit
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variance. It holds that

Pj(l) = |β|2
Np∑

m=1

E{ϑ∗miϑmicii}+
√
M

L2
|β|2

Np∑

m=1

L−1∑

i6=j=0

ϑ∗miϑmj̺ij

= |β|2Np
M

L
+

|β|2
√
M(L− 1)

L

Np∑

m=1

1

L(L− 1)

L−1∑

i6=j=0

ϑ∗miϑmj̺ij

= Np|β|2
M

L
+

|β|2
√
M(L− 1)

L

Np∑

m=1

E{ϑ∗i,mϑj,m̺ij}

≈ Np|β|2
M

L
(35)

where we have used the fact that for large L,

1

L

L−1∑

i=0

ϑ∗miϑmicii → E{ϑ∗miϑmicii} =
M

L
(36)

and
1

L(L− 1)

L−1∑

i6=j=0

ϑ∗miϑmj̺ij → E{ϑ∗miϑmj̺ij} = 0 . (37)

Using the measurement matrix Φ̃l in (33) will not affect the average Pj(l) over the jammer signal due to the

fact that
∑

i cii = Tr{X(Φ′
l)
HΦ′

lX
H} = Tr{XHX(Φ′

l)
HΦ′

l} = Tr{Φ′
l(Φ

′
l)
H} = Tr{IM} =M .

In the following, we will look into the SJR improvement using Φ̃l as opposed to Φl, for two different cases,

i.e., stationary targets and moving targets.

1) Stationary Targets: First, let us consider the SJR using the random measurement matrix Φl.

When the targets are stationary, the Doppler shift is zero and so A
k,k′

l = Al = XHΦH
l ΦlX. Therefore, the

average power of the desired signal can be approximated as

Ps(l) ≈ Np

K∑

k=1

|βk|2
∑

i

qi,i +Np

∑

k 6=k′

β∗
kβk′ej

4π
λ (dk(0)−dk′ (0))ς2kk′

∑

i

qi,i (38)

where qi,j is the (i, j)-th entry of Al.

Letting xi denote the i-th column of X,
∑

i qi,i can be expressed as

∑

i

qi,i = Tr{Al} =

Mt∑

i=1

xH
i ΦH

l Φlxi =

Mt∑

i=1

L∑

m,n=1

x∗i (m)cmnxi(n)

=

Mt∑

i=1

L∑

m=1

x∗i (m)xi(m)cmm +

Mt∑

i=1

L∑

m 6=n

x∗i (m)xi(n)cmn. (39)

The entries of X have zero means and mutually independent; therefore, for sufficiently long L and Mt it holds

that

∑

i

qi,i =
Mt

L

L∑

m=1

cmm =
MMt

L
. (40)

Based on (40), a concise form of Ps(l) is given by

Ps(l) ≈ NpMMt

∑K
k=1 |βk|2

L
+
NpMMt

L
ϕ (41)
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where ϕ =
∑

k,k′,k 6=k′ β∗
kβk′ej

4π
λ (dk(0)−dk′(0))ς2kk′ .

Thus, the SJR corresponding to the random measurement matrix Φl is

SJRl =
Ps(l)

Pj(l)
≈ Mt(

∑K
k=1 |βk|2 + ϕ)

|β|2 . (42)

When using the measurement matrix Φ̃l = Φ′
lX

H , the quantity corresponding to A
k,k′

l is

Ã
k,k′

l = Ãl = XHX(Φ′
l)
HΦ′

lX
HX = (Φ′

l)
HΦ′

l . (43)

It holds that
∑

i qi,i = Tr{(Φ′
l)
HΦ′

l} = Tr{Φ′
l(Φ

′
l)
H} =M . Similarly, the average power of the desired signal

can be approximated as

Ps(l) ≈ NpM(

K∑

k=1

|βk|2 + ϕ). (44)

Therefore, the SJR corresponding to the random measurement matrix Φ̃l is

SJRl =
Ps(l)

Pj(l)
≈ L(

∑K
k=1 |βk|2 + ϕ)

|β|2 . (45)

From (42) and (45), it can be seen that the use of Φ̃l instead of Φl can improve SJR by a factor of L/Mt when

L≫Mt. The SJR can be improved by an increase in L. However, increasing L will require a higher sampling rate

when the pulse duration is fixed. It is interesting to note that the SJR of (45) does not depend on the the number

of measurements, M .

2) Slowly Moving Targets: For simplicity, we consider only the scenarios in which fkT << 1.

Based on the measurement matrix Φl, and considering the Doppler shift, we have A
k,k′

l = XHDH(fk)Φ
H
l ΦlD(fk′ )X.

When the normalized Doppler frequency fkTs ≤ 1, we have

∑

i

qk,k
′

i,i = Tr{Ak,k′

l } = Tr{XHDH(fk)Φ
H
l ΦlD(fk′)X} ≈ MMt

L
. (46)

Thus, Ps(l) for the moving targets with fsT << 1 is approximately the same as that of stationary targets.

Let us now consider the measurement matrix Φ̃l. Let ckij denote the (i, j)-th entry of XHDH(fk)X and note

that ckij is given by ckij =
∑L−1

n=0 x
∗
i (n)xj(n) ∗ ej2πfknTs . In scenarios in which fkTs << 1 and L is relatively

large, the following approximations are readily derived:

ckij







= 1
L

1−ej2πfkLTs

1−ej2πfkTs
i = j

≈ 0 i 6= j
. (47)

Since the off-diagonal elements are small compared with the diagonal elements, they can be ignored.

Then, we obtain the following approximation

A
k,k
l = XHDH(fk)X(Φ′

l)
HΦ′

lX
HD(fk)X ≈ (Φ′

l)
HΦ′

l. (48)

Therefore, the SJR of moving targets with fsT << 1 is approximately equal to that of stationary targets for both

random measurement matrices.
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V. SIMULATION RESULTS

The goal of this section is to demonstrate the ability of the proposed MIMO radar approach, denoted in the

figures as CS, to pick up targets in the presence of noise and/or a jammer, and also show the effect on the various

parameters involved. In each case the performance is compared against other methods that have been proposed in

the context of MIMO radar (here referred to as “conventional”) in order to quantify weaknesses and advantages.

For the case of stationary targets, the conventional methods tested here are the methods of Capon, APES, GLRT

[2] and MUSIC [27], while for moving targets, comparison to the matched filter method [21] is conducted.

In our simulations we consider a MIMO radar system with the transmit/receive antennas uniformly distributed

on a disk of radius 10m. The carrier frequency is f = 5GHz and the sampling rate fs =
1
Ts

= 20MHz. The pulse

repetition interval is T = 1/4000s. Each transmit node uses uncorrelated QPSK waveforms. The received signal is

corrupted by zero mean Gaussian noise. We also consider a jammer that transmits waveforms uncorrelated to the

signal waveforms. For simulation purposes we take the jamming waveforms to be white Gaussian [28]. The SNR

is defined as the ratio of power of transmit waveform to that of thermal noise at a receive node.

A. Stationary Targets

The presence of a target can be seen in the plot of the magnitude of ŝ obtained by (18). We will refer to this

vector as target information vector. The location and magnitude of a peak in that plot provides target location and

RCS magnitude, respectively. The proposed approach results in a clean plot away from the target locations, and

well distinguished peaks corresponding to the targets. This is a desirable behavior for target detection, as it would

result in small probability of false alarm. To demonstrate the appearance of the graph we define the peak-to-ripple

ratio (PRR) metric as follows. For the k-th target, PRRk is the ratio of the square amplitude of the DOA estimate

at the target azimuth angle to the sum of the square amplitude of DOA estimates at other angles except at the

jammer location, i.e., PRRk = |sk|
2

s
H
s−

P

K
i=1 |sk|2−|sj |2

, where s is the defined in (13), sk and sj denote the elements

of s corresponding to the location of the k-th target and the jammer, respectively. A clean plot would yield a high

PPR, while a plot with a lot of ripples would yield a low PRR.

A metric that shows the degree to which a jammer is suppressed, namely the peak-to-jammer ratio (PJR), is also

used here. PJR is defined as the ratio of the average square amplitude of the DOA estimates at the target angles

to the square amplitude of DOA estimates at the jammer, i.e., PJR =
1
K

PK
i=1 |sk|

2

|sj |2
. Unlike PRR, PJR is averaged

over all targets. In this way, the jammer is considered to be suppressed only if the peak amplitude at the jammer

location is much smaller than the peak amplitude at any target location.

The results that we show represent 1, 000 Monte Carlo simulations over independent waveforms and noise

realizations. To better show the statistical behavior of the methods we plot the cumulative density function (CDF)

of PPR and PJR, i.e., Probability(PPR < x) and Probability(PJR < x), where PPR is the union of PRRk, k =

1, . . . , K .

1) Targets falling on the grid: We consider the following scenario. Two targets are located at angles θ1 = 0.2o

and θ2 = −0.2o. The corresponding reflection coefficients are β1 = β2 = 1. A jammer is located at angle 7o and
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transmits an unknown zero-mean Gaussian random waveform with variance β2 = 400. Additive white Gaussian

noise is added at the receive nodes. The ratio of the power of transmitted waveforms at each transmit node to the

variance of the additive Gaussian noise is set to 0 dB. The number of transmit antennas is fixed at Mt = 30. For

the purpose of reducing computation time, the angle space is taken to be [−8o, 8o], and is sampled with increments

of 0.2o from −8o to 8o, i.e., a = [−8o,−7.8o, . . . , 7.8o, 8o]. The received signal in a single pulse is sampled, and

M = 30 random measurements of one pulse are used to feed the Dantzig selector. Since the MUSIC method

requires the number of receive antennas to be greater than the number of targets, when only one receive antenna

is used we compare the proposed CS method with only the Capon, APES and GLRT methods. The comparison

methods are using L = 512 samples to obtain their estimates, while the proposed approach uses M = 30 samples.

The result of one realization for the case of one receive node is shown in Fig. 2. One can observe the cleaner

appearance of the graph corresponding to the proposed approach, where the two targets appear correctly except

with a small error in the magnitude of the target RCS. The CDF of the corresponding PRR and PJR are also shown

in the same figure. One can clearly see that with one receive antenna the comparison methods yield PRR close to

1, which is indicative of severe ripples.

In general, an increase in the number of transmit snapshots L leads to improved PRR and PJR for all methods.

In the following results we fix L to 512. For the comparison methods, L represents that number of samples needed

to obtain target information. For CS, the number of samples used to extract target information is M .

For the scenario of Fig. 2, the effect of the threshold µ is evaluated in terms of the empirical CDF of the PRR

and the amplitude estimate of RCS, and the results are shown in Fig. 3. One can can see that the increase in µ can

lead to fewer ripples but at the same time it degrades the amplitude estimate of RCS. In the following, the values

of µ used in each case will be shown on the figures.

For the same target and jammer configuration as above, we now examine the effect of different levels of jammer

strength. We consider the scenario where Nr = 10 receive nodes participate in the estimation. For the case of CS,

each node sends to the fusion center M = 30 received samples, while for the comparison methods, each node

sends to the fusion center L = 512 received samples. In Fig. 4 we show the CDF of PPR and PJR corresponding

to jammer variance β2 = 400, 1600 and 3600 and SNR equal to 0 dB. One can see that for CS, the probability of

low PRR and PJR increases when the jammer becomes stronger. In particular, there is some non-zero probability

that the PRR will be close to 10−7. Such cases are rare and occur when one of the two targets is missed. The

increase in the threshold µ can improve the DOA estimates at the target locations and reduce the probability of

missing one of the targets. The cost, however, would be an increase in ripples. The performance of the proposed

approach can be improved, i.e., the rare low PPR values can be completely avoided by increasing Nr, or M . This is

demonstrated in Fig. 5, where the strong jammer case of Fig. 4 is considered, i.e., β2 = 3600, and Nr is increased

to 30. We should note here that it does not help to increase M beyond Mt as the maximal rank of Φ′
l is Mt.

Next, we consider the same scenario as above but let the two targets be at variable distance d in the angle

domain. Figure 6 demonstrates performances for the cases d = 0.2o, 0.3o, 0.4o in the presence of a strong jammer

with variance β2 = 3600. The SNR is 0 dB, Nr = 10 and M = 30. One can see that the comparison methods
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produce good level PRR. Regarding the PJR, as expected, MUSIC fails, Capon and APES results is PRR≈ 1 most

of the time, while GLRT performs well all the time. The proposed CS approach performs well with a few exceptions

in which a PRR or PJR less than 1 is obtained with very small probability. Again, the CS method performance can

be improved by increasing Nr and/or M .

Based on the above results, the performance of the proposed approach for the jammer dominated scenario can be

made at least comparable to that of the conventional methods while using about 5.8% (= 30/512) of the number

of samples required by the conventional methods.

Next, we study a thermal noise dominated case, i.e., SNR=−40dB. Figure 7 shows PRR and PJR performance for

different values of jammer variance, i.e., β2 = 400, 1600 and 3600. In all cases it was taken Nr = 10, Mt =M = 30

and the targets were separated by d = 0.4o. CS yields good performance even in the presence of both a strong

jammer and thermal noise. The PRR performance of other methods appear to deteriorate at this noise level. The

performances for targets with spacing d = 0.2o, 0.3o and 0.4o are given in Fig. 8 for Nr = 20, Mt = M = 30

and β2 = 400. Like in the case of a strong jammer, the decrease in the spacing d does not affect the performance

significantly. In this thermal noise dominated case, CS appears to perform very well in terms of PRR, and PJR,

while the comparison methods appear to be very noisy. To further examine this case, we consider two additional

performance measures, i.e., mean squared error (MSE) and probability of false alarm (PFA), which are computed

based on the obtained estimate ŝ as follows. A new vector, ŝt is formed; if ŝi is greater than some threshold then

ŝti = 1, otherwise, ŝti = 0. The MSE is calculated as MSE = ‖ŝt − st‖22/N , where st is an N × 1 vector which

contains zeros everywhere except at angles corresponding to target locations, where it is 1. The PFA measures

the probability of 1 occurring in ŝ at non-target locations. Figure 9 shows the MSE based on 8, 000 Monte Carlo

simulations. Note that the performance of MUSIC is not shown here since MUSIC always yields a peak at the

jammer location. One can see that the simple thresholding described above helps the comparison methods, and

if the threshold is picked appropriately all methods can produce a low angle MSE and PFA. However, the MSE

corresponding to the CS method is less sensitive to the particular threshold than other methods. For the milder

jammer case (β = 20), the CS approach exhibits slightly better “best MSE performance” than the comparison

methods, while in the stronger jammer case (β = 60) GLRT outperforms CS for most thresholds. For the strong

jammer case, the MSE and PFA of CS are compared to those of GLRT for different number of samples, L in

Fig. 10. One can see that for the strong jammer case (β = 60) CS performs comparably to GLRT with L = 256.

Thus, in the strong jammer case, CS still achieves good performance with fewer samples than GLRT, except that

the savings in terms of number of samples is smaller. For CS, the trend of an increasing MSE as the threshold

increases can be explained by the fact that one of the two targets can be missed as the threshold increases. GLRT

relies on the Gaussian assumption for the noise and jammer signals, which is totally valid in our simulations. Thus,

unlike the other methods, GLRT can suppress the jammer completely. We should note that the specific values of

MSE and PFA depend on the kind of thresholding performed. For example, applying thresholding on a nonlinear

transformation of the estimated vector can give different MSE and PFA, and the best results for each method are

not necessarily obtained based on the same non-linear transformation. Determining the best thresholding method is
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outside the scope of this paper.

2) Targets falling off the grid points: In this section, we consider scenarios in which targets do not fall on

the grid points. This is a case of practical interest, as the target locations are unknown, thus the best grid in not

known in advance. We first select the proper step to discretize the angle space following the procedures described in

Section III-B. The angle space is sampled by increments of 0.2o from −8o to 8o, i.e., a = [−8o,−7.8o, . . . , 7.8o, 8o].

Assume that four targets of interest are located at θk = {−1.1o,−0.3o, 0.3o, 1.1o}. Their reflection coefficients are

{βk = 1, k = 1, 2, 3, 4}. A jammer is still located at 7o. Since the targets are located between the grid points, we

cannot plot PRR and PJR as in the case of targets onto the grid points. Therefore, we show the mean plus and

minus one standard deviation (std) for the amplitude of DOA estimate at each grid point. The results are shown in

Fig. 11. The power of the jammer was 400 (left column of Fig. 11) and 3600 (right column). Based on Fig. 11, it

can be seen that with the proper grid points, the proposed method can capture well the targets that do not fall on

grid points. The next best method is the GLRT which captures the targets but exhibits high variance as indicated

by the shaded region around the mean.

B. Moving Targets

We continue to consider orthogonal QPSK waveforms and a jammer located at 7o with the power 400. The SNR

is still set to be 0 dB and each receive node collects M = 30 measurements. Figures 12 and 13 show the target

scene of the proposed CS method and the matched filter approach [21] for targets on the grid points and off the grid

points, respectively. The matched filter correlates the receive signal with the transmit signal distorted by different

Doppler shifts and steering vectors.

1) Targets falling onto the grid points: We assume the presence of three targets located at {θk = −1o, 0o, 1o}
that are moving at the speed of {vk = 60m/s, 70m/s, 80m/s}, respectively. We sample the angle-Doppler space

by the increment (0.5o, 5m) as

a = [(−8o, 50m/s), (−7.5o, 50m/s), . . . , (8o, 50m/s), (−8o, 55m/s) . . . , (8o, 55m/s), . . . , . . . , (8o, 110m/s)] (49)

Figure 12 shows the target scene for one realization corresponding to N1 = 1 receive nodes (left column of the

figure), and also Nr = 10 (right column of the figure). We can see that the performance of the match filtering

method is inferior to that of the CS approach even when using the data of 30 pulses. The proposed CS approach

can yield the desired performances even with a single receive node and as low as 5 pulses. Comparing the left

column and right column of Fig. 12, one can see the effect of the number of receive antennas Nr. The increase in

Nr can reduce the number of pulses required to produce good performance.

2) Targets falling off the grid points: In this section, we consider the scenarios in which targets that do not fall

on grid points. From simulations (the corresponding figure is not given here because of space limitations), we found

that the column correlation is more sensitive to the angle step than the speed step, since fTs << 1. This indicates

that in the initial estimation, the grid points should be closely spaced in the angle axis and relatively sparser in the
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speed axis. Then the resolution of target detection can be improved by taking denser samples of the angle-Doppler

space around the initial angle-Doppler estimate.

Like the scenarios with the stationary targets, the angle dimension is sampled by increments of 0.2o and the step of

the speed dimension is set to 5m/s. Three targets are moving at the speed of {vk = 62.5m/s, 72.5m/s, 82.5m/s}
in the direction of {θk = −1.1o, 0.1o, 1.1o}. Fig.13 demonstrates that the proposed method can capture the targets

which fall out of the grid points in both angle and speed dimensions and it can outperform the conventional matched

filter method. Moreover, we can see that the increase in Np or Nr will not necessarily improve performance for

the targets between grid points. This is because an increase in the dimension of the basis vectors will decrease the

correlation of columns in the basis matrix, which contradicts the requirement for capturing the targets out of the

grid points III-B. The performance in the case of closer spaced targets, i.e., d = 0.4o is shown in Fig. 14.

VI. CONCLUSIONS

We have proposed a MIMO radar system that can be implemented by a small-sized wireless network. Network

nodes serve as transmitters or receivers. Transmit nodes transmit uncorrelated waveforms. Each receive node applies

compressive sampling to the received signal to obtain a small number of samples, which the node subsequently

forwards to a fusion center. Assuming that the targets are sparsely located in the angle-Doppler space, the fusion

center formulates an ℓ1-optimization problem, the solution of which yields target angle and Doppler information.

For the stationary case, the performance of the proposed approach was compared to that of conventional approaches

that have been proposed in the context of MIMO radar. The comparison scenario assumed that each receive node

forwards the received signal to a fusion center, where Capon, APES, GLRT or MUSIC is implemented to obtain

target information. The proposed approach can extract target information based on a small number of measurements

from one of more receive nodes. In particular, for a mild jammer, the proposed method has been shown to be at

least as good as the Capon, APES, GLRT and MUSIC techniques while using a significantly smaller number of

samples. In the case of strong thermal noise and strong jammer, the proposed method performs slightly worse than

the GLRT method. In that case, its performance is still acceptable, especially if one takes into account the fact that

it uses significantly fewer samples than GLRT. For the case of moving targets, the proposed approach was compared

to conventional matched filtering, and was shown to perform better in both single and multiple receive nodes cases.

An important feature of the proposed approach is energy savings. If the fusion center implemented the proposed

CS approach, it would require nodes to forward M samples each, as opposed to L samples that would be needed

if the fusion center implemented the conventional methods. In order to meet a certain performance, M is typically

significantly smaller than L, i.e., fewer samples would be needed for the CS implementation as compared to the

implementation of conventional methods. This translates to energy savings during the transmission of the samples

from the receive nodes to the fusion center. The obtained savings would be significant in prolonging the life of the

wireless network. Future work includes extension to extracting range information, and also studying scenarios of

widely separated antennas and wideband radar signals. The proposed approach assumes that nodes are synchronized

and the fusion center has perfect node location information. The effects of localization and synchronization errors
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and ways to mitigate them need to be further studied.
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APPENDIX I

THE EFFECTS OF Nr, Np,Mt ON THE CORRELATION OF COLUMNS IN THE SENSING MATRIX

A. The effect of the number of pulses on the column correlation in the sensing matrix

The sensing matrix for the l-th receive antenna Θl is given by

Θl =








ΦlΨl1

...

ΦlΨl(Np−1)








(50)

where Ψlm,m = 0, . . . , Np − 1, is defined in (15).

On letting gk denote the i-th column of Θl, the correlation of columns gk and gk′ equals

pkk′ = | < gk,gk′ > | =







Np|vH(ak)B
kk
l v(ak)| k = k′

| sin(π(bk−bk′ )NpT )
sin(π(bk−bk′ )T ) ||vH(ak)B

kk′

l v(ak′ )| k 6= k′
. (51)

where Bkk′

l = XHDH(bk)Φ
H
l ΦlD(bk′ )X.

For a given pair (k, k′), k 6= k′, the ratio of | < gk,gk > | to | < gk,gk′ > |, i.e., hkk′ , reveals the effect of Np

on the correlation of the two columns. It holds that

hkk′ ∝ Np

| sin(π(bk − bk′)NpT )|
. (52)

Let assume that T has been fixed. As long as (bk−bk′)NpT ≤ 1, hkk′ increases with Np, and attains the maximum

value when (bk − bk′)NpT = 1, because the cross correlation of gk and gk′ becomes zero. Therefore, the increase

in Np can improve the performance of CS estimation of (18) as long as (bk − bk′)NpT ≤ 1. This indicates that if

(bk − bk′)NpT ≤ 1 for each pair of (k, k′), k 6= k′, the increase in Np can always improve the performances of CS

estimation. For a conventional radar, the number of pulses can also improve the resolution of Doppler estimates

since the Doppler shift creates greater change between pulses.
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B. The effect of the number of receive antennas on the column correlation in the sensing matrix

Next, we investigate the effect of the number of receive antennas Nr on the correlation of columns in the sensing

matrix. For simplicity, we assume only the received data collected during the n-th pulse is considered and the

random measurement matrix Φ is constant over receive antennas. Then the sensing matrix Θ can be represented as

Θ =








ΦΨ1n

...

ΦΨNrn







. (53)

Thus, the correlation of columns gi and gj equals

pij = | < gi,gj > | =
∣
∣
∣
∣
∣

Nr∑

l=1

ej
2π
λ (ηr

l (aj)−ηr
l (ai))

∣
∣
∣
∣
∣

∣
∣
∣ej2π(n−1)T (bj−bi)vH(ai)X

HDH(bi)Φ
HΦD(bj)Xv(aj)

∣
∣
∣

=







Nr|vH(ai)B
i,jv(aj)| i = j

|∑Nr

l=1 e
j 2π

λ (ηr
l (aj)−ηr

l (ai))||vH(ai)B
i,jv(aj)| i 6= j

(54)

where Bi,j = XHDH(bi)Φ
HΦD(bj)X.

Then the ratio of | < gi,gj > | to | < gi,gi > | is

hij ∝
1

Nr

∣
∣
∣
∣
∣

Nr∑

l=1

ej
2π
λ (ηr

l (aj)−ηr
l (ai))

∣
∣
∣
∣
∣
. (55)

Since the receive nodes are randomly and independently distributed, 1
Nr

|
∑Nr

l=1 e
j 2π

λ (ηr
l (aj)−ηr

l (ai))| approaches

0 as Nr becomes large. Therefore, the correlation of two columns in the sensing matrix can be reduced when the

number of receive antennas is increased.

C. The effect of the number of transmit antennas on the column correlation in the sensing matrix

Finally, let us see the effect of the number of transmit nodes on the correlation of columns. For simplicity, we

assume Nr = Np = 1. Then vH(ai)B
i,jv(aj) can be rewritten as

vH(ai)B
i,jv(aj) =

∑

k,p

vk(aj)v
∗
k(ai)B

i,j
p,p/L+

∑

k

∑

p6=q

vk(aj)v
∗
k(ai)xk(q)x

∗
k(p)B

i,j
p,q

︸ ︷︷ ︸

σij
1

+
∑

k 6=k′

∑

p,q

vk(aj)v
∗
k′ (ai)xk(q)x

∗
k′ (p)Bi,j

p,q

︸ ︷︷ ︸

σij
2

(56)

≈







MMt

L + σii
1 + σii

2 i = j

M
P

k vk(aj)v
∗

k(ai)

L + σij
1 + σij

2 i 6= j
(57)

where vk and Xp,q denote the k-th entry of v and the (p, q)-th entry of X, respectively.

Thus, the ratio of | < gi,gj > | to | < gi,gi > | is

hij =

∣
∣
∣
∣
∣

M
P

k vk(aj)v
∗

k(ai)

L + σij
1 + σij

2
MMt

L + σii
1 + σii

2

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

M
P

k vk(aj)v
∗

k(ai)

MtL
+

σij
1

Mt
+

σij
2

Mt

M
L +

σii
1

Mt
+

σii
2

Mt

∣
∣
∣
∣
∣
∣

. (58)
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It can easily be seen that the numerator approaches 0 as Mt approaches infinity. Therefore, the correlation of two

columns of the sensing matrix can be reduced by employing a large number of transmit nodes Mt.
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Fig. 1. Schematic diagram of the receiver. Φl denotes the measurement matrix for the lth receive node.
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Fig. 9. MSE of target information vector and probability of false alarm (PFA) for two targets with spacing d = 0.4o for Nr = 20,Mt =

M = 30 and SNR= −40 dB.
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Fig. 11. Modulus of DOA estimates for four targets that do not fall on grid points. The dotted line is the mean of DOA estimates. The yellow
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Fig. 12. Angle-Doppler estimates for three targets on the grid points. The three targets are located at {-1o, 0o , 1o}. Mt = M = 30, SNR= 0

dB and β2 = 400.

Fig. 13. Angle-Doppler estimates for three targets that do not fall on the grid points. The three targets are located at {-1.1o, 0.1o, 1.1o}.

Mt = M = 30, β2 = 400 and SNR= 0 dB.
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Fig. 14. Angle-Doppler estimates for three targets on and off grid points. Nr = 10, Mt = M = 30, SNR= 0 dB, β2 = 400 and d = 0.4o.
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