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Sajid AhmedMember, IEEEand Mohamed-Slim AlouiniFellow, IEEE

Abstract

MIMO-radar has better parametric identifiability but compared to phased-array radar it shows loss in signal-to-

noise ratio due to non-coherent processing. To exploit the benefits of both MIMO-radar and phased-array two transmit

covariance matrices are found. Both of the covariance matrices yield gain in signal-to-interference-plus-noise ratio

(SINR) compared to MIMO-radar and have lower side-lobe levels (SLL)’s compared to phased-array and MIMO-

radar. Moreover, in contrast to recently introduced phased-MIMO scheme, where each antenna transmit different

power, our proposed schemes allows same power transmissionfrom each antenna. The SLL’s of the proposed first

covariance matrix are higher than the phased-MIMO scheme while the SLL’s of the second proposed covariance

matrix are lower than the phased-MIMO scheme. The first covariance matrix is generated using an auto-regressive

process, which allow us to change the SINR and side lobe levels by changing the auto-regressive parameter, while

to generate the second covariance matrix the values of sine function between 0 andπ with the step size ofπ/nT

are used to form a positive-semidefinite Toeplitiz matrix, wherenT is the number of transmit antennas. Simulation

results validate our analytical results.

Index Terms

MIMO radar, phased MIMO, colocated antennas.

I. I NTRODUCTION

Recently several researchers have considered the application of multiple-input multiple-output (MIMO) techniques

developed for wireless communication systems to the radar systems [1]–[3]. In MIMO communication systems,

nT antennas are deployed at the transmitter andnR antennas at the receiver to increase the data rate and provide
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multiple paths to mitigate the fading in the channel. Like MIMO communications, which revolutionized the design,

development and deployment of wireless networks over the last decade, MIMO-radar offers a new paradigm for

signal processing research. MIMO-radars have many advantages over their phased-array counterparts: improved

spatial resolution; better parametric identifiability, and greater flexibility to achieve the desired transmit beampattern.

MIMO-radar is an emerging technology that has a number of non-defence applications as well. For example, in

biomedical engineering MIMO-radar (using radio-frequency and acoustic waves) can be used for cancer detection

and treatment [4], [5].

MIMO-radars can be classified into two categories: widely distributed [1] and colocated [2]. In the widely

distributed case the transmitting antennas are separated so that each antenna may view a different aspect of the

target. This topology can increase the spatial diversity ofthe system. In colocated systems the transmitting antennas

are spaced so that all the transmit antennas view the same aspect of the target. The colocated antenna radar

cannot provide spatial diversity but can increase the spatial resolution of the system. In contrast to phased-array,

MIMO-radar allow each transmitting antenna to transmit independent waveforms, which provide extra degrees-of-

freedom (DOF) that can be exploited to improve system performance [6], [7]. Therefore, in MIMO radar, waveform

design is the focus of research from past few years. The waveform design methods to achieve specific goals for

widely distributed radars are discussed in [8] (and the references therein) while the waveform design methods for

colocated-radars to achieve a desired beampattern are discussed in [3], [9]–[12].

In phased-array radars the transmitted signals are coherent between different elements of the array that yields gain

in signal-to-noise ratio (SNR) but it has poor parametric identifiability problem. MIMO-radar has better parametric

identifiability but compared to phased-array radar it showsloss in SNR due to non-coherent processing. To exploit

the benefits of both MIMO-radar and phased-array the available antennas are configured in number of ways. The

configuration in [13] uses multiple independent phased-arrays at widely separated locations. The coherent processing

between the individual phased-array at the fusion center isa practical issue. The configuration in both [14] and [15]

divides the given transmit antennas intoK overlapping sub-arrays, where1 ≤ K ≤ nT . Each sub-array transmits

the waveform, which is orthogonal to the waveforms transmitted by the other sub-arrays. The main advantage of

this scheme is that it yields lower side-lobe levels (SLL)’sat the cost of different power transmission from different

antennas.
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Radio-frequency amplifiers (RFA)’s have non-linear relationships between their input and output and they cannot

have maximum power efficiency at all power levels. If each antenna is required to transmit at a different power level

then, for maximum power efficiency, multiple different RFA’s with different bias voltage levels will be required. A

better solution is to have identical RFA’s all working at thesame maximum power level.

In this work, two covariance matrices are proposed for the transmitted waveforms. To generate the first covariance

matrix the values of an auto-regressive process are used to form a positive-definite Toeplitz matrix. While to generate

the second covariance matrix the values of cosine function from 0 to π with the step size ofπ/nT are used to

form a positive-semidefinite Toeplitz matrix. The key benefits that can be obtained using the waveforms with the

proposed covariance matrices are

• Lower SLL’s compared to phased-array and MIMO-radar schemes.

• Higher SINR compared to MIMO-radar and close to the phased-array and phased-MIMO schemes.

• Same power transmission from each antenna, which is not possible with the phased-MIMO scheme.

• The SLL’s using first covariance matrix are higher and the SLL’s using second covariance matrix are

significantly lower than the phased-MIMO scheme.

The remainder of this paper is organised as follows. In the following section the problem formulation and some

background are given. The proposed algorithm is developed in section IV and the beamformer for the receiver is

designed in section??. Simulation results are given in section??, followed by our conclusions in section??.

Notation: Bold upper case letters,X, and lower case letters,x, respectively denote matrices and vectors. The

mth column vector of a matrixX is denoted byxm. The identity matrix of dimensionN × N is denoted byIN

and the vector ofN ones is denoted by1N . Conjugate transposition of a matrix is denoted by(.)H and statistical

expectation is denoted by E{.}.

II. PRELIMINARIES

This section provides some results from trignometric identities that are essential for the proposed algorithms. For

more details please see [16]

N−1
X

n=0

un sin(nx) =
u sin(x) − uN sin(Nx) + uN+1 sin((N − 1)x)

1 − 2u cos(x) + u2
(1)
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and

N−1
X

n=0

un cos(nx) =
1 − u cos(x) − uN cos(Nx)

1 − 2u cos(x) + u2

+
uN+1 cos((N − 1)x)

1 − 2u cos(x) + u2
. (2)

If u = 1 then using (1) and (2) following result can be easily derived

nT −1∑

n=0

sin

(
nπ

nT

)

=
sin
(

π
nT

)

1 − cos
(

π
nT

) , (3)

nT −1∑

n=0

cos

(
nπ

nT

)

= 1, (4)

nT −1∑

n=0

cos

(
(n − p)π

nT

)

=
2 sin

(
pπ
nT

+ π
2nT

)

sin
(

π
2nT

)

1 − cos
(

π
nT

) , (5)

nT −1∑

n=0

cos2
(

nπ

nT

)

=

N−1∑

n=0

sin2

(
nπ

nT

)

=
nT

2
. (6)

Similarly, from (2) by assumingx = 0 andu = ejnπ sin(θ) following result can be derived

nT −1∑

n=0

ejnπ sin(θ) =
1 − ejnT π sin(θ)

1 − ejπ sin(θ)
. (7)

If A, B, C, andD are two matrices then from the matrix algebra following results can be easily obtained [17]

(A ⊗ B)−1 = A−1 ⊗ B−1, (8)

(A ⊗ B)(C ⊗ D) = (AC ⊗ BD). (9)

III. PROBLEM FORMULATION AND PREVIOUS WORK

Consider a uniform linear array ofnT transmit andnR receive antennas, the inter-element-spacing between any

two adjecent antennas is half of a wavelength of the transmitted waveform. In the given scenario, there is a target

of interest located at an angleθt, and L interferers located at anglesθ1 to θL. The reflection coefficient of the

target isβt and interfereri is βi. For the best detection performance, the receiver should beable to maximise the

received power from the target direction and minimise it from all the other directions. In addition to this, it should

be able to place deep nulls in the direction of interferers. To design such receiver, ifxm(n) is the baseband signal

transmitted from antennam then the received signals after matched-filter atnR antennas in vector form can be

written as

y(n) = βtaR(θ)aT
T (θ)x(n) +

L
X

i=1

βiaR(θi)a
T
T (θi)x(n) + v(n), (10)
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where

aT (θp) =

[

1 ejπ sin(θp) · · · ej(nT −1)π sin(θp)

]T

aR(θp) =

[

1 ejπ sin(θp) · · · ej(nR−1)π sin(θp)

]T

,

x(n) =

[

x1(n) x2(n) · · · xnT
(n)

]T

and v(n) =

[

v1(n) v2(n) · · · vnR
(n)

]T

(11)

are respectivly the, transmit and receive steering vectorscorresponding to the target at locationθp vector of symbols

transmitted fromnT antennas at time indexn, and the vector of circularly symmetric white Gaussian noise samples

each of zero mean andσ2
n variance. Generally, in MIMO-radar, the transmitted waveforms from all antennas are

fully uncorrelated i.e., E{xp(n)x∗

q(n)} = 0, for p 6= q. At each receive antenna the received signal is passed

through a matched-filter and the output samples are correlated with nT transmitted waveforms. ThenT outputs

after correlation are collected from each ofnR receive antenna and cascaded into a vector after which thenT nR×1

received signal vector can be written as

ym = βtaT (θt) ⊗ aR(θt) +
L∑

i=1

βiaT (θi) ⊗ aR(θi) + vm, (12)

where aR(θq) =

[

1 ejπ sin(θq) · · · ej(nR−1)π sin(θq)

]T

is the receive-steering-vector of the target at

locationθq andv =

[

v(0) v(1) · · · v(nRnT − 1)

]T

is the vector of circularly symmetric white Gaussian

noise samples each of zero mean andσ2
n variance.

To maximise the SINR in MIMO-radar concept a beamformer is designed at the receiver. To design a beamformer

weight vector,b, definesm(θq) = aT (θq)⊗ aR(θq) a virtual steering vector corresponding to the target/ interferer

at locationθq. By multiplying the received signal in (19) with the beamformer we can write

bHym = βtb
Hsm(θt) +

L∑

i=1

βib
Hsm(θi) + bHv. (13)

From (13) the SINR can be defined as

SINR =
|bHsm(θt)|

2

bHRinb
, (14)
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whereRin ∈ CnT nR×nT nR is the covariance matrix of interference plus noise samplesand is defined as

Rin =

L∑

i=1

|βi|
2sm(θi)s

H
m(θi)

︸ ︷︷ ︸

Interferer covariance matrix

+ σ2
nInRnT
︸ ︷︷ ︸

Noise covariance matrix

.

To maximise SINR with respect tob using Schawarz’s inequality (14) can be written as

SINR =
|bHR

1/2
in R

−1/2
in sm(θt)|

2

bHRinb

≤
bHRinb sH(θt)R

−1
in sm(θt)

bHRinb
.

≤ sH
m(θt)R

−1
in sm(θt) (15)

Therefore, the optimal value of SINR is given by

SINR◦ = sH
m(θt)R

−1
in sm(θt).

(16)

It can be easily proved that the beamformer weight vector that brings the optimal value of SINR can be derived as

b =
R−1

in s(θt)

sH(θt)R
−1
in s(θt)

, (17)

Finding the beamformer vectorb requires the inversion of covariance matrixRin, which can be computed in

O(nRnT )3 computations. In the presence of only noise the matrix of eigen vectors,U, can be replaced by an

identity matrix,InRnT
, and the maximum value of SINR becomes

SINR◦ =
nRnT

σ2
n

(18)

In the following different configuration of MIMO radar are discussed to see the leverage in improving the SINR

of the system.

A. Phased-Array radar

In MIMO-radar if the transmitted waveformxm(n) = x1(n)e−jπ(m−1) sin(θt) then all the transmitted waveforms

will be fully correlated. Such configuration of MIMO-radar is called a phased-array radar, here at each receive

antenna only one matched-filter corresponding tox1(n) is required. Therefore, the received samples collected after

the matched-filtering in vector form can be written as

yp = βtnTaR(θt) +

L∑

i=1

βia
H
T (θt)aT (θi)aR(θi) + v̂, (19)
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For this configuration of MIMO-radar the optimal value of SINR can be easily derived as

SINR◦ = sH
p (θt)R̂

−1
in sp(θt),

wheresp(θt) = nT aR(θt) andR̂in ∈ CnR×nR . The SINR for noise only case becomes

SINR◦ =
nRn2

T

σ2
n

(20)

B. Phased-MIMO radar

To improve the SINR performance in [14] the concept of phased-MIMO is introduced, where in contrast to

MIMO radar the beamforming is applied at the transmitter as well to transmit the maximum power in the direction

of interest. In this work thenT transmit antennas are divided intoK uniform sub-arrays such that all the antennas in

the sub-arrayk transmits the waveforms coherently. Here, an antenna in sub-arrayk can contribute to more than one

other sub-arrays. The simulation results in this work showsimprovement in the SINR using the proposed schemes

when compared to MIMO-radar and phased-array. However, in [14] the comparison of the proposed phased-array

with the MIMO-radar and phased-array is not a fair. In this work, the MIMO-radar and phased-array transmit total

power ofnT while the proposed phased-array transmits the total power of (nT − K + 1)2. This problem is fixed

in [18]. According to the phased-MIMO concept, if all the sub-arrays have equal number of antennas then the

sub-arrayk will be consist ofnT − K + 1 antenna. Sub-arrayk transmits the waveformxk(n) at time indexn.

For transmit beamforming antennam in the sub-arrayk multiply the waveformxk(n) by a weightwkm. Using

this model the signal reflected by the target/interferer at locationθp can be written as

The received signal at each receive antenna is passed through the matched-filter and correlated with theK

transmitted waveforms. Similar to MIMO radar case after cascading all the samples from thenR receive antennas

the received signal in vector can be written as

ypm = βts̃pm(θt)
︸ ︷︷ ︸

signal-term

+

L∑

i=1

βispm(θi) + ṽ

︸ ︷︷ ︸

interferers-plus-noise term

(21)
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where

spm(θp) =

√
nT

K















wH
1 aT1(θp)

wH
2 aT2(θp)

...

wH
KaTK

(θp)















⊗ aR(θp)

while

wk =

[

wk1 wk2 · · · wk(nT −K+1)

]T

. (22)

andaTk(θt) containsk to nT −K + k elements ofaT (θt). To maximise the SINR, in (21)wk’s can be optimised

at the transmitter. To find the optimised values ofwk ’s Schawartz inequality tells us

|wH
k aTk(θt)|

2 ≤ |wk|
2|aTk(θt)|

2. (23)

Therefore, in (21) the energy in the signal term will be maximum iff wk = aTk(θt) for k = 1, 2, . . . , K. With

normalisedwk ’s to transmit total power ofnT from all antennas the optimum value of SINR, similar to MIMO-radar

case, can be derived as

SINR◦ = sH
pm(θt)R̃

−1
in spm(θt).

where

R̃in =
L∑

i=1

|βi|
2spm(θi)s

H
pm(θi) + σ2

nInRK .

In the absence of interferers the maximum SINR becomes

SINR◦ =
nRnT (nT − K + 1)

σ2
n

(24)

By comapring (18) with (24), we can say that in the absence of interferers the SINR of phased MIMO is(nT −K+1)

times higher than the MIMO radar.

However, phased-MIMO scheme performs better than the MIMO-radar, it has few drawbacks;

• Although the total power constraint is met but each antenna transmits different power, which require different

power amplifiers for different antennas.

• It is difficult to find the optimal value ofK to maximise the optimal SINR, and therefore hit and trial method

is applied to find the optimal value ofK.
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• Introduction of phased-array decreases the parametric identifiability compared to MIMO-radar.

Due to the above drawbacks in the following, two covariance matrices are proposed.

IV. PROPOSEDCORRELATED MIMO- RADAR FORMULATION

In MIMO-radar, if the transmitted waveforms are correlatedand the given waveform covariance matrix isRx

then by correlating the each element ofy(n) in (10) with thenT transmitted waveforms and cascading the outputs

into a vector one can write

yc = βtaR(θt) ⊗ RxaT (θt) +

L∑

i=1

βiaR(θi) ⊗ RxaT (θi) + vc, (25)

For the proposed model given in (25), similar to previous cases, the maximum SINR can be derived as

SINR◦ = sH
c (θt)R̄

−1
in sc(θt), (26)

where

sc(θp) = aR(θp) ⊗ RxaT (θp)

From (25), the covariance matrix of interference and noise can be found as

R̄in =

K∑

i=1

|βi|
2sc(θi)s

H
c (θi) + σ2

n(InR
⊗ Rx).

It can be noted here that the SINR depends onRx and the noise is not white rather it is colored. In what follows,

two waveform covariance matrices are proposed that yields lower SLL’s compared to the phased-array, MIMO-radar,

and phased-MIMO schemes.

A. Covariance matrix using auto-regressive process

The first covariance matrix of the waveform is generated using the auto-regressive model and is given by

Rx1 =















1 γ1 · · · γnT−1

γ1 1
. . .

...

...
. . .

. . . γ1

γnT−1 · · · γ1 1















(27)
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Here forγ = 0, the covariance matrix,R1x will become diagonal and the correlated-MIMO system will become

conventional MIMO, on the other hand forγ = 1 it will become a conventional phased-array. It can be easily

proved that all the eigenvalues ofR1x are positive and hence it is a covariance matrix (Please see apppnedix for

the proof). In Fig. 2, the transmit beampattern corresponding to different values ofγ is shown. Now, we will

derive the optimal SINR and the received power from the target direction using conventional receiver using this

proposed covariance matrix.

−80 −60 −40 −20 0 20 40 60 80
0
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4

5
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10

θ(Degrees)

P
t(
θ
)

 

 

γ = 1

γ = 0.75

γ = 0.5

γ = 0.25

Fig. 1. Transmit beampatterns using the proposed covariance matrixR1x for different values ofγ.

1) Optimal SINR:The optimal SINR for noise only case can be derived as

SINRo =
aH

R (θt) ⊗ aH
T (θt)R

H
1x · (InR

⊗ R1x)−1
· aR(θt) ⊗R1xaT (θt)

σ2
n

(28)

Using (8) and (9) the optimal SINR can be wriiten as

SINRo =
aH

R (θt) ⊗ aH
T (θt)R

H
1x · (InR

⊗R−1
1x ) · aR(θt) ⊗R1xaT (θt)

σ2
n

=
aH

R (θt) ⊗ aH
T (θt)R

H
1x · aR(θt) ⊗ aT (θt)

σ2
n

=
nRaH

T (θt)R
H
1xaT (θt)

σ2
n

(29)

SinceR1x is real and symmetric the main lobe for any value ofγ will be symmetric aboutθt = 0 as shown in

Fig. 2 and the transmit steering vector corresponding toθt = 0 will become

aT (θt = 0) =

[

1 1 · · · 1

]T

∈ CnT ×1 (30)
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and using (2) forx = 0 yield

R1xaT (θt = 0) =















∑0
n=0 γn +

∑nT −1
n=0 γn − 1

∑1
n=0 γn +

∑nT −1−1
n=0 γn − 1

...

∑nT −1
n=0 γn +

∑nT −1−(nT −1)
n=0 γn − 1















. (31)

Both (30) and (??) help us to write the optimal SINR in (29) as

SINR◦ =
nR

σ2
n

nT −1∑

p=0

(
p
∑

n=0

γn +

nT −1−p
∑

n=0

γn − 1

)

=
nR

σ2
n

nT −1∑

p=0

(
1 − γp+1

1 − γ
+

1 − γnT −p

1 − γ
− 1

)

=
nR

σ2
n

nT −1∑

p=0

(
1 + γ

1 − γ
−

γp+1 + γnT −p

1 − γ

)

=
nR

σ2
n(1 − γ)

nT −1∑

p=0

(

1 + γ −
(
γp+1 + γnT−p

)
)

=
nR

σ2
n(1 − γ)

(

nT (1 + γ) − γ

(
1 − γnT

1 − γ

)

− γnT

(
1 − γ−nT

1 − γ−1

))

,

=
nRnT

σ2
n

+
2nRγ

σ2(1 − γ)

(

nT −
1 − γnT

1 − γ

)

. (32)

Here, it can be noted that
∑nT −1

n=0 γn = 1−γnT

1−γ ≤ nT for γ ∈ [0, 1] therefore SINR usingR1x is greater than

MIMO-radar for any value ofγ and asγ approaches 1 SINR usingR1x approaches the SINR of phased array.

2) Conventional Beamformer:For the proposed covariance matrix the conventional beamformer can be found

as

bc1 = aR(θt = 0) ⊗ R1xaT (θt = 0). (33)

The received power from the direction ofθ at the output of a conventional receiver can be derived as

Pr(θ) =

˛

˛

˛

˛

˛

b
H
c1 · aR(θ) ⊗ R1xaT (θ)

˛

˛

˛

˛

2

=

˛

˛

˛

˛

a
H
R (θt = 0)aR(θ) ⊗ a

H
T (θt = 0)RH

1xR1xaT (θ)

˛

˛

˛

˛

2

. (34)
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To simplify (34), the first scalar term using (7) can be written as

aH
R (θt = 0)aR(θ) =

nR−1∑

n=0

ejπn sin(θ),

=
1 − ejπnR sin(θ)

1 − ejπ sin(θ)
,

= ej π
2 (nR−1) sin(θ) sin(π

2 nR sin(θ))

sin(π
2 sin(θ))

. (35)

While the second scalar term can be derived by first finding theindividual vectors

aH
T (θt = 0)R1x =

[

∑nT −1
n=0 γn

∑1
n=0 γn +

∑nT −1−1
n=0 γn − 1 · · ·

∑nT −1
n=0 γn +

∑nT −1−(nT−1)
n=0 γn − 1

]

,

and R1xaT (θ) =















∑0
n=0 γn +

∑nT −1
n=0 γnejπn sin(θ) − 1

∑1
n=0 γ(1−n)ejπn sin(θ) +

∑nT −2
n=0 γnejπ(n+1) sin(θ) − ejπ sin(θ)

...

∑nT −1
n=0 γ(nT−1−n)ejπn sin(θ) +

∑nT −nT

n=0 γnejπ(n+nT −1) sin(θ) − ejπ(nT −1) sin(θ)















, (36)

as

a
H
T (θt = 0)RH

1xR1xaT (θ) =

nT −1
X

p=0

 

„ p
X

n=0

γn+

nT −1−p
X

n=0

γn
−1

«„ p
X

n=0

γp−nejπn sin(θ)+

nT −1−p
X

n=0

γnejπ(n+p) sin(θ)
−ejπp sin(θ)

«

!

(37)

Using (2), (37) can be written as
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=

nT −1∑

p=0

((
1 − γp+1

1 − γ
+

1 − γnT −p

1 − γ
− 1

)

(

γp

(
1 − γ−(p+1)ejπ(p+1) sin(θ)

1 − γ−1ejπ sin(θ)

)

+ ejπp sin(θ)

(
1 − γ(nT −p)ejπ(nT −p) sin(θ)

1 − γejπ sin(θ)

)

− ejπp sin(θ)

)

=
1

1 − γ

nT −1∑

p=0

(

(1 + γ − γp+1 − γnT −p)

(
γp+1 − ejπ(p+1) sin(θ)

γ − ejπ sin(θ)
+

ejπp sin(θ) − γnT −pejπnT sin(θ)

1 − γejπ sin(θ)
− ejπp sin(θ)

))

=
1

1 − γ

nT −1∑

p=0

(

(1 + γ)

(
γp+1 − ejπ(p+1) sin(θ)

γ − ejπ sin(θ)
+

ejπp sin(θ) − γnT −pejπnT sin(θ)

1 − γejπ sin(θ)
− ejπp sin(θ)

))

−
1

1 − γ

nT−1∑

p=0

(

γp+1

(
γp+1 − ejπ(p+1) sin(θ)

γ − ejπ sin(θ)
+

ejπp sin(θ) − γnT−pejπnT sin(θ)

1 − γejπ sin(θ)
− ejπp sin(θ)

))

−
1

1 − γ

nT−1∑

p=0

(

γnT −p

(
γp+1 − ejπ(p+1) sin(θ)

γ − ejπ sin(θ)
+

ejπp sin(θ) − γnT −pejπnT sin(θ)

1 − γejπ sin(θ)
− ejπp sin(θ)

))

=
1

1 − γ

nT −1∑

p=0

(

(1 + γ)

(
γp+1 − ejπ(p+1) sin(θ)

γ − ejπ sin(θ)
+

ejπp sin(θ) − γnT −pejπnT sin(θ)

1 − γejπ sin(θ)
− ejπp sin(θ)

))

−
1

1 − γ

nT−1∑

p=0

(

γ2(p+1) − γp+1ejπ(p+1) sin(θ)

γ − ejπ sin(θ)
+

γp+1ejπp sin(θ) − γnT +1ejπnT sin(θ)

1 − γejπ sin(θ)
− γp+1ejπp sin(θ)

)

−
1

1 − γ

nT−1∑

p=0

(

γnT +1 − γnT −pejπ(p+1) sin(θ)

γ − ejπ sin(θ)
+

γnT−pejπp sin(θ) − γ2(nT −p)ejπnT sin(θ)

1 − γejπ sin(θ)
− γnT −pejπp sin(θ)

)

=
(γ2 − 1)ejπ sin(θ)

(
(1 − γ2ejπ sin(θ)) + (1 − ejπ sin(θ))γnT +1ejπnT sin(θ)

)

(1 − γ)(γ − ejπ sin(θ))(1 − γejπ sin(θ))2(1 − ejπ sin(θ))

+
(γ2 − 1)ejπ sin(θ)

(
(ejπ sin(θ) − γ2)ejπnT sin(θ) + (ejπ sin(θ) − 1)γnT +1

)

(1 − γ)(γ − ejπ sin(θ))2(1 − γejπ sin(θ))(1 − ejπ sin(θ))

+
γ

γ − ejπ sin(θ)

[
(1 + γ)2(1 − γnT ) − γ(1 − γ2nT ) − nT γnT (1 − γ2)

(1 − γ)2(1 + γ)

]

−
γejπnT sin(θ)

1 − γejπ sin(θ)

[
(1 + γ)2(1 − γnT ) − γ(1 − γ2nT ) − nT γnT (1 − γ2)

(1 − γ)2(1 + γ)

]
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Further solution yields

=
(γ2 − 1)ejπ sin(θ)

(
(1 − γ2ejπ sin(θ)) + (1 − ejπ sin(θ))γnT +1ejπnT sin(θ)

)

(1 − γ)(γ − ejπ sin(θ))(1 − γejπ sin(θ))2(1 − ejπ sin(θ))

+
(γ2 − 1)ejπ sin(θ)

(
(ejπ sin(θ) − γ2)ejπnT sin(θ) + (ejπ sin(θ) − 1)γnT +1

)

(1 − γ)(γ − ejπ sin(θ))2(1 − γejπ sin(θ))(1 − ejπ sin(θ))

+

[
(1 + γ)2(1 − γnT ) − γ(1 − γ2nT ) − nT γnT (1 − γ2)

(1 − γ)2(1 + γ)

](
γ

γ − ejπ sin(θ)
−

γejπnT sin(θ)

1 − γejπ sin(θ)

)

= −(1 + r)ejπ sin(θ)

(

(1 − γ2ejπ sin(θ)) + (1 − ejπ sin(θ))γnT +1ejπnT sin(θ)

(γ − ejπ sin(θ))(1 − γejπ sin(θ))2(1 − ejπ sin(θ))

+
(ejπ sin(θ) − γ2)ejπnT sin(θ) − (1 − ejπ sin(θ))γnT +1

(γ − ejπ sin(θ))2(1 − γejπ sin(θ))(1 − ejπ sin(θ))

)

+

[
(1 + γ)2(1 − γnT ) − γ(1 − γ2nT ) − nT γnT (1 − γ2)

(1 − γ)2(1 + γ)

](
γ

γ − ejπ sin(θ)
−

γejπnT sin(θ)

1 − γejπ sin(θ)

)

B. Covariance matrix using cosine function

The second covariance matrix is generated using the cosine function. To generate covariance matrix the values

of cosine function from0 to π with the step ofπ/nT are used in the symmetric circulant matrix.

Rx2 =















1 cos( π
nT

) · · · cos
(

(nT −1)π
nT

)

cos( π
nT

) 1
. . .

...

...
. . .

. . . cos( π
nT

)

cos
(

(nT −1)π
nT

)

· · · cos( π
nT

) 1















(38)

It can be easily proved that this is a covariance matrix and has only two eigenvaluesnT /2 andnT /2 (Please see

apppnedix for the proof).

1) Optimal SINR:The optimal SINR for noise only case can be derived as

SINRo =
aH

R (θt) ⊗ aH
T (θt)R

H
2x · (InR

⊗ R2x)−1 · aR(θt) ⊗ R2xaT (θt)

σ2
n

=
nR ⊗ aH

T (θt)R
H
2xaT (θt)

σ2
n

(39)

Since the matrix is real and symmetric the main lobe will be symmetric aboutθt = 0 and the transmit steering

vector correspond toθt = 0 will become

aT (θt) =

[

1 1 · · · 1

]T

∈ CnT×1.
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Fig. 2. Transmit beampatterns using the proposed covariance matrixR1x for different values ofγ.

To derive the optimal SINR, we can write

R2xaT (θt = 0) =















∑nT −1
n=0 cos

(
nπ
nT

)

∑nT −1
n=0 cos

(
(n−1)π

nT

)

...

∑nT −1
n=0 cos

(
(n−(nT −1))π

nT

)















,

which help us to write (39) as

SINR◦ =
nR

σ2
n

nT −1∑

p=0

(
nT −1∑

n=0

cos

(
(n − (p − 1))π

nT

))

. (40)

Using (5) in (40) we can write

SINR◦ =
nR

σ2
n

nT −1∑

p=0



cos

(
(p − 1)π

nT

)

+
sin
(

π
nT

)

1 − cos
(

π
nT

) sin

(
(p − 1)π

nT

)


 ,

=
nR

σ2
n

cos

(
π

nT

)(

1 +
1 + cos(π/nT )

1 − cos(π/nT )

)

=
2nR

σ2
n

(
cos(π/nT )

1 − cos(π/nT )

)

(41)

Interestingly, with the increase in the transmit antennas the gain in the SINR with the proposed covariance matrix

increases exponentially compared to the MIMO-radar.

2) Optimal SINR:For the proposed covariance matrix the conventional beamformer can be found as

bc2 = aR(θt = 0) ⊗ R2xaT (θt = 0), (42)
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and the receive power from the direction ofθ at the output of a conventional receiver can be found as

Pr(θ) =

˛

˛

˛

˛

˛

b
H
c2 · aR(θ) ⊗ R2xaT (θ)

˛

˛

˛

˛

2

=

˛

˛

˛

˛

a
H
R (θt = 0)aR(θ) ⊗ a

H
T (θt = 0)RH

2xR2xaT (θ)

˛

˛

˛

˛

2

. (43)

Using (7), we can write

a
H
R (θt = 0)aR(θ) =

nR−1
X

n=0

ejπn sin(θ),

=
1 − ejπnR sin(θ)

1 − ejπ sin(θ)
,

= ej π
2

(nR−1) sin(θ) sin(π
2
nR sin(θ))

sin(π
2

sin(θ))
. (44)

Similarly, using (1) and (2), thepth element ofR2xaT (θ) can be derived as

nT −1
X

n=0

ejπn sin(θ) cos

„

π(n − p)

nT

«

= cos

„

πp

nT

«

“

e−jπ sin(θ)
− cos( π

nT
)
”“

1 + ejπnT sin(θ)
”

2
`

cos(π sin(θ)) − cos( π
nT

)
´

+ sin

„

πp

nT

« sin( π
nT

)
“

1 + ejπnT sin(θ)
”

2
“

cos(π sin(θ)) − cos( π
nT

)
” ,

=

“

1 + ejπnT sin(θ)
”

2
`

cos(π sin(θ)) − cos( π
nT

)
´

×

»

cos

„

πp

nT

«

e−jπ sin(θ)
− cos

„

π

nT

(p + 1)

«–

. (45)
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The result in (5) and (45) can be used to obtain

a
H
T (θt = 0)RH

2xR2xaT (θ) =

»

PnT −1
n=0 cos

“

πn
nT

”

· · ·
PnT −1

n=0 cos
“

π(n−(nT −1))
nT

”

–

2

6

6

6

6

6

4

PnT −1
n=0 ejπn sin(θ) cos

“

πn
nT

”

...

PnT −1
n=0 ejπn sin(θ) cos

“

π(n−(nT −1))
nT

”

3

7

7

7

7

7

5

=

nT −1
X

p=0

 

2 sin
“

(p+0.5)π
nT

”

sin
“

0.5π
nT

”

1 − cos
“

π
nT

”

×

“

1 + ejπnT sin(θ)
”

2
`

cos(π sin(θ)) − cos( π
nT

)
´

»

cos

„

πp

nT

«

e−jπ sin(θ)
− cos

„

π

nT

(p + 1)

«–

!

(46)

=

 

2 sin
“

0.5π
nT

”

“

1 − cos
“

π
nT

””

ej
nT π sin(θ)

2 cos
“

nT π sin(θ)
2

”

`

cos(π sin(θ)) − cos( π
nT

)
´

×

nT −1
X

p=0

»

sin

„

(p + 0.5)π

nT

«

cos

„

πp

nT

«

e−jπ sin(θ)
− sin

„

(p + 0.5)π

nT

«

cos

„

π

nT

(p + 1)

«–

!

(47)

=

 

2 sin
“

0.5π
nT

”

“

1 − cos
“

π
nT

””

ej
nT π sin(θ)

2 cos
“

nT π sin(θ)
2

”

`

cos(π sin(θ)) − cos( π
nT

)
´

×
1

2

nT −1
X

p=0

»

sin

„

(2p + 0.5)π

nT

«

+ sin

„

0.5π

nT

«–

e−jπ sin(θ)
−

»

sin

„

(2p + 1.5)π

nT

«

− sin

„

0.5π

nT

«–

!

(48)

=

 

sin
“

0.5π
nT

”

“

1 − cos
“

π
nT

””

ej
nT π sin(θ)

2 cos
“

nT π sin(θ)
2

”

`

cos(π sin(θ)) − cos( π
nT

)
´

nT −1
X

p=0

„

sin

„

0.5π

nT

«

e−jπ sin(θ) + sin

„

0.5π

nT

««

!

(49)

=

 

sin
“

0.5π
nT

”

“

1 − cos
“

π
nT

””

ej
nT π sin(θ)

2 cos
“

nT π sin(θ)
2

”

`

cos(π sin(θ)) − cos( π
nT

)
´ nT sin

„

0.5π

nT

«

“

e−jπ sin(θ) + 1
”

!

(50)

=

 

2nT

ej
(nT −1)π sin(θ)

2 sin2
“

π
2nT

”

cos
“

nT π sin(θ)
2

”

cos
“

π sin(θ)
2

”

“

1 − cos
“

π
nT

””

`

cos(π sin(θ)) − cos( π
nT

)
´

!

=

 

nT

ej
(nT −1)π sin(θ)

2 cos
“

nT π sin(θ)
2

”

cos
“

π sin(θ)
2

”

`

cos(π sin(θ)) − cos( π
nT

)
´

!

(51)

Therefore, using (44) and (51), the received power in (43) can be written as

Pr(θ) =




sin
(

nRπ sin(θ)
2

)

sin(π sin(θ)
2 )





2

nT

cos
(

nT π sin(θ)
2

)

cos
(

π sin(θ)
2

)

(
cos(π sin(θ)) − cos( π

nT )
)





2

= n2
T




sin(nRπ sin(θ)

2 ) cos
(

nT π sin(θ)
2

)

cos
(

π sin(θ)
2

)

sin(π sin(θ)
2 )

(
cos(π sin(θ)) − cos( π

nT )
)





2

(52)

Here the maximum power using the conventional beamformer atθ = 0 is (nT nR)2
“

1−cos
“

π
nT

””2 , which in the case of
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MIMO-radar and phased-array is(nT nR)2. Therefore, the gain obtained using the proposed covariance matrix is
(

1 − cos
(

π
nT

))
−2

.

Above derivations are provided for the proposed real symmetric matrices to illuminate a taget located atθ=0.

Both of the above proposed covariance matrices can be very easily modified to illuminate a target at locationθt 6= 0

as given by [11]

R̃x = Rx ⊙ aT (θt)a
H
T (θt), (53)

where⊙ represnts Hadamard product.

V. SIMULATION RESULTS

In this section, to validate the performance of the proposedcovariance matrices, some numerical examples are

presented. In all of the following simulations half-wavelength inter-element spacing is used, target is located at

θt = 10 degrees, and two interferenrs are located atθ1 = −10 andθ2 = +30 degrees.

In the first simulation, to detect a target, Fig. 3 compares the normalised transmit beampattern of the proposed

waveform covariance matrix with the normalised transmit beampatterns of phased-array, MIMO-radar, and phased-

MIMO schemes. It can be seen in the figure that due to the coherent processing phased-array can focus the

transmitted power in the direction of target and its main-lobe beam-width is minimum among all the other shown

schemes. On the other hand MIMO-radar, with all independentwaveforms, transmits power equally in all directions.

Similarly, the first proposed covariance matrix withγ = 0.5, cannot efficiently focus the transmitted power in

the direction of target, but it performs better than MIMO-radar. Proposed phased-MIMO scheme can focus the

transmitted power in the direction of traget but compared tophased-array it has wider main-lobe beamwidth and

poor resolution in the SLL’s. Our proposed second covariance matrix,R2x, has similar main-lobe beamwidth to

that of phased-MIMO but it has better resolution in the SLL’scompared to phased-MIMO.

In the second simulation, the SINR of the proposed scheme is compared with the phased-array, MIMO-radar,

and phased-MIMO schemes. For this simulation, the number oftransmit and receive antennas is equal to12 and

for the covariance matrix of first schemes the value ofγ = 0.5. Fig. 4 shows the corresponding simulation results.

It can be seen in the figure that the SINR with both of the proposed schemes is much higher than the MIMO-radar

as it was expected from the analytical results. The SINR withR2x is close to phased-MIMO scheme. Similarly,
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Fig. 3. Transmit beampattern of phased-array, MIMO-radar,phased-MIMO, and proposed schemes. Here,nT = nR = 12, for R1x the value

of γ = 0.5, and for phased-MIMO schemeK = 6.

Fig. 5 compares the SINR of proposed schemes with the phased-array, MIMO-radar and phased-MIMO schemes.

Here, the number of transmit antennas are20 and the number of receive antennas are10. By comparing Fig. 4 and

Fig. 5, it can be noted that as the number of transmit antennasis increasing, the difference between the SINR of

first proposed scheme and phased-MIMO is increasing while the difference between the SINR of proposed second

scheme and phased-MIMO is decreasing this is inline with ouranalytical results. On the other hand as the number

of transmit antennas is increasing, the difference betweenthe SINR of first and second proposed scheme compared

to MIMO-radar is increasing.

The difference between the performance of phased array and with R2x is 4.10 for nT = 10 and fornT = 20 it

is only 3.17

In the third simulation, the received power with the conventional and MVDR receiver designed to detect the target

at locationθt = 10 using phased-array, MIMO-radar, phased-MIMO, and proposed schemes is compared. For this

simulation, the number of transmit and receive antennas is12 and the value ofγ = 0.5 (for the covariance matrix

of first schemes). Fig. 6 shows the normalised received powerfrom the direction ofθ using all schemes with the

conventional receiver. It can be seen in the figure that with the first proposed scheme the SLL’s are lower compared

to the MIMO-radar and phased-array but are higher compared to the phased-MIMO scheme. On the other hand

with the proposed second scheme the SLL’s are much lower eventhan the phased-MIMO scheme. The other thing
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R1x the value ofγ = 0.5 and for phased-MIMO schemeK = 6, andnT = nR = 12.
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Fig. 5. The comparison of the SINR using the proposed schemeswith the MIMO-radar, phased-array and phased-MIMO schemes. Here, for

R1x the value ofγ = 0.5, for phased-MIMO schemeK = 10 andnT = 20 andnR = 10.

that can be noted with the second scheme is the better resolution in the SLL’s compared to all the other shown

schemes. Similarly, Fig. 6 shows the receive beampattern using the MVDR receiver. To design MVDR receiver,

we assumed that there are two interferers located at anglesθ = −10 and+30 degrees. It can be seen in this figure

that both of the proposed schemes have similar interferer supression capabilities to that of other schemes. Similar

to conventional receiver, the first proposed scheme has lower SLL’s compared to the MIMO-radar and phased-array

but higher compared to the phased-MIMO scheme. While using the second proposed scheme SLL’s are lowest and
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has better resolution compared to all the other shown schemes.
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Fig. 6. Receive beampatterns using conventional beamformers of phased-array, MIMO-radar, phased-MIMO and proposed schemes. Here, for

R1x, the value ofγ = 0.5 and for phased-MIMO schemeK = 5.
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Fig. 7. Receive beampatterns using MVDR beamformers of phased-array, MIMO-radar, phased-MIMO and proposed schemes. Here, forR1x,

the value ofγ = 0.5 and for phased-MIMO schemeK = 5. The number of transmit and receive antennas is12.
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APPENDIX

A. Eigenvalues of auto-regressive covariance matrix

Eigenvalues ofRx1 can be found by solving the following equation forλ

det





























1 γ1 · · · γnT −1

γ1 1
. . .

...

...
. . .

. . . γ1

γnT −1 · · · γ1 1















− λI















= 0. (54)

If nT = 2 then (54) becomes

(1 − λ)2 = γ2,

which yields the following two eigenvalues

λ1 = 1 + γ,

λ2 = 1 − γ.

(55)

Sinceγ ∈ [0 , 1] both the eigenvalues are positive, where[a, b] represent a closed set.

If nT = 3 then the following eigenvalues can be derived from (54) as

λ1 = 1 − γ2,

λ2 =
1

2

(

2 + γ2 +
√

(4 + γ2)2 − 42
)

,

λ3 =
1

2

(

2 + γ2 −
√

(4 + γ2)2 − 42
)

. (56)

(57)

It can be easily noted thatλ1 andλ2 are positive. To proveλ3 is also positive, following theorem is used.

Theorem 1:If A andB are two real positive numbers then ifA2 > B2 thenA > B.
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It can be seen in (56) that(2 + γ2)2 − ((4 + γ2)2 − 42) = 4 − 4γ2 ≥ 0. Therefore, using Theorem 1,

we can say that(2 + γ2) ≥ (
√

(4 + γ2)2 − 42) and λ3 ≥ 0. Therefore, all the eigenvalues are positive andRx1

for nT = 3 is a covariance matrix.

Similarly, the eigenvalues fornT = 4 can be derived from (54) as

λ1 =
1

2

(

2 − γ − γ3 − γ(γ − 1)
√

(γ + 1)2 + 4
)

,

λ2 =
1

2

(

2 − γ − γ3 + γ(γ − 1)
√

(γ + 1)2 + 4
)

,

λ3 =
1

2

(

2 + γ + γ3 − γ(γ + 1)
√

(γ − 1)2 + 4
)

,

λ4 =
1

2

(

2 + γ + γ3 + γ(γ + 1)
√

(γ − 1)2 + 4
)

,

Here, again

(2 − γ − γ3)2 −
[
γ2(γ − 1)2((γ + 1)2 + 4)

]
= 4(1 − γ)2(1 + γ) ≥ 0

and (2 + γ + γ3)2 −
[
γ2(γ + 1)2(γ2 − 2γ + 5)

]
= 4(1 − γ)(1 + γ)2 ≥ 0,

which shows that(2−γ−γ3) ≥ γ(γ−1)
√

(γ + 1)2 + 4 and(2+γ+γ3) ≥ γ(γ+1)
√

(γ − 1)2 + 4. Therefore, all

the eigenvalues are greater than or equal to zero. Similary,it can be easily proved thatR1x is positive semidefinite

for all values ofnT .

B. Eigenvalues of cosine covariance matrix

Similar to previous case the eigenvalues ofRx2 can be found by solving the following equation forλ

det

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 cos( π
nT

) · · · cos

„

(nT −1)π
nT

«

cos( π
nT

) 1

.
.
.

.

.

.

.

.

.

.
.
.

.
.
. cos( π

nT
)

cos

„

(nT −1)π
nT

«

· · · cos( π
nT

) 1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

− λI

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

= 0.

Finding the determinant of above equation, we get

λnT −2

(

λ2 − nT λ +

nT −1∑

i=1

(nT − i) cos2
(

(i − 1)π

nT

))

= 0,

λnT −2

(

λ2 − nT λ +
n2

T

4

)

= 0. (58)
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Equation (58) shows thatRx2 has (nT − 2) zero eigenvalues. The remaining two eigenvalues can be found by

finding the roots of inner quadratic equation, which yield

λ1 =
nT

2
,

and λ2 =
nT

2
. (59)

By examining (58) and (59), it can be said that all the eigenvalues ofRx2 are greater than or equal to zero, therefore

it is a positive semidefinite matrix and hence can be a covariance matrix of the waveforms.

REFERENCES

[1] A. M. Haimovich, R. S. Blum, and L. J. Cimini, “MIMO radar with widely separated antennas,”IEEE Signal Processing Mag., vol. 25,

pp. 116–129, Jan. 2008.

[2] P. Stoica, J. Li, and X. Zhu, “MIMO radar with co-located antenna: Review of some recent work,”IEEE Signal Processing Magazine,

vol. 24, pp. 106–114, Sep. 2007.

[3] D. R. Fuhrmann and J. S. Antonio, “Transmit beamforming for MIMO radar systems using signal cross-correlation,”IEEE Trans. Aerosp.

Electron. Syst., vol. 44, pp. 171–185, Jan. 2008.

[4] D. W. Bliss and K. W. Forsythe, “MIMO radar medical imaging: Self-interference mitigation for breast tumor detection,” In Proc. 40th

Asilomar Conference on Signal, System and Computers, Pacific Grove, CA, USA, pp. 1558–1562, Nov. 2006.

[5] J. Li and P. Stoica, “MIMO Radar Signal Processing,”John, Wiley and Sons, Inc., 2008.

[6] E. Fishler, A. Haimovich, R. S. Blum, L. J. Cimini, D. Chizhik, and R. A. Valenzuela, “MIMO radar: An idea whose time hascome,” In

Proc. International Radar Conference, Philadelphia, PA, USA, pp. 71–78, Apr. 2004.

[7] E. Fishler, A. Haimovich, R. S. Blum, L. J. Cimini, D. Chizhik, and R. A. Valenzuela, “Spatial diversity in radars – Models and detection

performance,”IEEE Trans. Signal Processing, vol. 54, pp. 823–838, Mar. 2006.

[8] Y. Yang and R. S. Blum, “MIMO radar waveform design based on mutual information and minimum mean-square error estimation,” IEEE

Trans. on Aerospace and Electronic Systems, vol. 43, pp. 330–343, Jan. 2007.

[9] P. Stoica, J. Li, and Y. Xie, “On probing signal design forMIMO radar,” IEEE Trans. Signal Processing, vol. 55, pp. 4151–4161, Aug.

2007.

[10] P. Stoica, J. Li, and X. Zhu, “Waveform synthesis for diversity-based transmit beampattern design,”IEEE Trans. Signal Processing, vol. 56,

pp. 2593–2598, Jun. 2008.

[11] S. Ahmed, J. S. Thompson, and B. Mulgrew, “Unconstrained synthesis of covariance matrix for MIMO radar transmit beampattern,”IEEE

Trans. on Signal Processing, vol. 59, pp. 3837 – 3849, Aug. 2011.

[12] S. Ahmed, J. S. Thompson, B. Mulgrew, and Y. Petillot, “Finite alphabet constant-envelope waveform design for MIMOradar beampattern,”

IEEE Trans. on Signal Processing, vol. 59, pp. 5326 – 5337, Nov. 2011.

[13] L. Xu and J. Li, “Iterative generalised-likelihood ratio test for MIMO radar,”IEEE Trans. on Signal Processing, vol. 55, pp. 2375–2385,

Jun. 2007.

November 29, 2012 DRAFT



25

[14] A. Hassanien and S. A. Vorobyov, “Transmit/Receive beamforming for MIMO radar with colocated antennas,”In Proc. IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP–09), Taipei, Taiwan, pp. 2089–2092, Apr. 2009.

[15] H. Li and B. Himed, “Transmit subaperturing for MIMO radars with co-Located antennas,”IEEE Journal of Selected Topics in Signal

Processing, vol. 4, pp. 55–65, Feb. 2010.

[16] I. S. Gradshteyn and I. M. Ryzhik, “Table of integrals, series, and products,”Elsevier Inc, 7th Edition, 2007.

[17] P. Z. Peebles, “Radar Principles,”John Wiley and Sons Inc., 1998.

[18] A. Hassanien and S. A. Vorobyov, “Phased-MIMO Radar: A tradeoff between phased-array and MIMO radars,”IEEE Trans. on Signal

Processing, vol. 58, pp. 3137–1351, Jun. 2010.

November 29, 2012 DRAFT


